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Abstract

p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The
Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we
show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of
MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein)
ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from
activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-
associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in
vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production
during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together,
these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated
by activated DNA damage signaling during viral lytic infection.
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Introduction

The tumor suppressor p53 plays an important role in

maintaining genomic integrity [1,2]. In unstressed normal cells,

p53 usually exists in a hypophosphorylated form at only low levels

due to rapid degradation through the ubiquitin-dependent

proteasome pathway [3]. MDM2 is a key regulator of turnover

by binding to p53 and promoting its ubiquitination by acting as an

E3 ubiquitin ligase. In response to DNA damage, p53 is

phosphorylated at S15 by ataxia-telangiectasia mutated (ATM)

and then T18 by casein kinase 1, preventing the interaction with

MDM2, subsequently leading to escape from proteasomal

degradation [4]. The p53 protein level becomes elevated, resulting

in an increase in p53-dependent transcription of its target genes,

subsequently leading to cell cycle arrest or apoptosis [5,6].

Ubiquitination is important for the regulation of a variety of

cellular processes, including signal transduction, development,

apoptosis, cell cycle progression, and the immune response [7,8,9].

The ubiquitination of a substrate requires a cascade of enzymatic

reactions involving an E1 activating enzyme, an E2 conjugating

enzyme, and finally an E3 ligase enzyme that covalently attaches

ubiquitin to a lysine residue of the target protein [10]. The latter

enzyme is the most diverse, demonstrating substrate specificity and

determining the rate of ubiquitin conjugation. The E3 ligase itself

can be either a single protein or a multiprotein complex.

Cullin-containing ligases constitute a large class of E3s [11],

primarily consisting of a substrate-specific adaptor protein, the

scaffold protein Cullin, and a RING finger-containing protein that

interacts with E2 ligase [12,13,14].

For evading host security responses and generating an

advantageous environment for viral replication, a number of

viruses have evolved sophisticated mechanisms to utilize or

manipulate the host ubiquitin system. Specially, DNA viruses

target p53 for inactivation through the ubiquitin-proteasome

pathway. The E6 protein of the high-risk human papillomaviruses

and the cellular ubiquitin-protein ligase E6AP form a complex

which causes ubiquitination and degradation of p53 [15]. The

adenovirus E1B 55-kDa protein binds to both p53 and E4orf6,

and recruits a Cullin-containing complex to direct the ubiquitin-

mediated proteolysis of p53 [16]. However, in comparison with

the effects of the smaller DNA viruses, much less is known

regarding the precise mechanisms whereby the Epstein-Barr virus

(EBV) inhibits transcriptional functions of p53.

EBV, a human gamma-herpesvirus, is associated with several B-

cell and epithelial-cell malignancies and can choose between two

alternative infection states; latent and lytic [17]. Infection is

primarily latent, but EBV periodically reactivates and replicates in

a lytic manner in a subset of B cells, which is essential for viral

propagation and transmission. The switch from latent to lytic

infection is triggered by the BZLF1 protein [18], a b-Zip
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transcriptional factor which binds to the promoters of early lytic

genes [19,20]. Induction of the EBV lytic program elicits a cellular

DNA damage response with activation of the ATM-dependent

DNA damage signal transduction pathway [21]. Although ATM-

dependent DNA damage signaling is activated and consequently

p53 is phosphorylated at various sites including S15, the levels of

p53-downstream targets are maintained at very low levels

especially at middle to late stages of the infection [21,22]. This

poses the fascinating puzzle of why p53-downstream signaling is

blocked in EBV lytic infection even when p53 is phosphorylated

through activation of the ATM-mediated DNA damage response.

Recently, we found that the BZLF1 protein induces p53

degradation during the lytic infection [23]. In this study, we

investigated the mechanisms by which the viral immediate-early

(IE) BZLF1 protein targets p53 for degradation and revealed that

the protein directly functions as an adaptor component of the ECS

(Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase com-

plex targeting phosphorylated p53 for degradation during the lytic

replication.

Results

The EBV BZLF1 protein constitutes the ECS ubiquitin
ligase complex through interaction with Cul2/Cul5

We performed a bioinformatics search for structural motifs

within the BZLF1 protein that interact with the established

ubiquitin E3 ligase, to identify the E3 ligase responsible for the

BZLF1 protein-mediated degradation of p53 during lytic infection

[23]. Since the BZLF1 protein does not possess a RING finger

domain, it might not have an intrinsic E3 ligase activity by itself.

By this approach, we found that the BZLF1 protein possesses

putative Cul2 and Cul5 binding motifs termed the Cul2-box and

Cul5-box [14,24], respectively (Figure 1A). Cul2 and Cul5 are

subunits of the well-defined ECS ubiquitin ligase complex [14]. To

investigate whether the BZLF1 protein can associate with Cul2

and Cul5, three BZLF1 protein mutants (M1-M3) were construct-

ed (Figure 1A): M1, which contains mutations at positions 44 and

45 in the Cul2 box (LP to AA); M2, which contains mutations at

positions in the Cul5 box (LPEP to AAAA); M3, which contains

mutations in both Cul2- and Cul5- boxes. As shown in Figure 1B

and S1A, a series of IP assays using tagged protein showed wild-

type BZLF1 protein to interact with both Cul2 and Cul5. In

contrast, the M1 mutant did not interact with Cul2 while the M2

mutant lacked any reaction with Cul5. These observations strongly

suggest that the Cul2/Cul5-boxes in the N-terminus of BZLF1

protein are important for the physical association between the

BZLF1 protein and Cul2/Cul5 E3 ligases.

To specifically address the question of whether BZLF1 protein

interacts with Cul2 and Cul5 during lytic infection, IP assays were

performed. The BZLF1 protein actually associated with both Cul2

and Cul5 and formed to ECS complex in lytic replication-induced

293/EBV cells (Figure 1C and S1B). These interactions were also

confirmed in lytic infection-induced B95-8 cells (Figure S1C).

Next, we examined if the BZLF1 M1-M3 mutants could induce

reduction of p53 level. Contrary to wild-type BZLF1 and M1, M2

mutants, the M3 mutant failed to decrease the level of p53

(Figure 1D).

To further investigate whether the BZLF1 protein-mediated

degradation of p53 is dependent on the ECS complex, we applied

RNAi experiments. Two independent sequences for each molecule

were used as targets of RNAi. Since gene sequences for marmoset

Cul2 and Cul5 could not be obtained from the NCBI database, we

used 293/EBV cells to examine the effects of RNAi-knockdown of

Cul2 and Cul5. As shown in Figure 1E, transfection of various

combinations of plasmids encoding shRNAs specific for Cul2 and

Cul5 mRNAs, as well as a BZLF1 expression plasmid for

induction of lytic infection, caused significant increase in the level

of p53, compared with that apparent in cells transfected with

either a control plasmid for EGFP shRNA or an empty plasmid.

Consistent with the findings in Figure 1D, we indeed confirmed

that a knockdown of either Cul2 or Cul5 did not alter the p53

abundance in the lytic infection (data not shown). Hence, these

results indicate that BZLF1 protein-mediated degradation of p53

is dependent on the ECS complexes.

p53 ubiquitination mediated by recombinant BZLF1
protein-associated ECS complexes

To demonstrate that the BZLF1-ECS complex directly promotes

p53 ubiquitination in vitro, we reconstituted complexes in Sf21 cells

and assayed purified preparations for stimulation of p53 ubiquitina-

tion. Sf21 insect cells were coinfected with a series of recombinant

baculoviruses encoding each subunit of the BZLF1-Cul2 complex (N-

terminal His-and Flag-tagged BZLF1 protein (RHF-BZLF1), myc-

Rbx1, HA-Cul2, Elongin B and Elongin C), or the BZLF1-Cul5

complex (RHF-BZLF1, 36myc-Rbx2, HA-Cul5, Elongin B and

Elongin C), and the resultant BZLF1-ECS complexes were purified

[25]. Incubation of purified p53 substrate with RHF-BZLF1-Cul2 or

RHF-BZLF1-Cul5 complexes resulted in ubiquitination of p53 in the

presence of E1, E2, GST-ubiquitin and ATP, whereas purified

BZLF1 protein alone did not process activity for ligating ubiquitin

(Figure 2A). Omitting BZLF1 protein from the ECS complex

abolished p53 ubiquitination and the RHF-BZLF1-Cul2/Cul5

complex catalyzed the ubiquitination of p53 in a dose-dependent

manner (Figure S2A). To further confirm p53 ubiquitination by the

BZLF1 protein-associated ECS complex, we performed time-course

and drop-out experiments. Ubiquitinated p53 increased in a time-

dependent manner (Figure S2B and C) and was not detected without

E1, E2 or ATP (Figure S2D and E). Substitution of the d200-227

Author Summary

Inhibition of p53-mediated transactivation is essential for
regulating the cellular environment advantageous for viral
infection. Specially, DNA viruses target p53 for inactivation
through the ubiquitin-proteasome pathway. The E6
protein of the high-risk human papillomaviruses and the
cellular ubiquitin-protein ligase E6AP form a complex
which causes ubiquitination and degradation of p53. The
adenovirus E1B 55-kDa protein binds to both p53 and
E4orf6, and recruits a Cullin-containing complex to direct
the ubiquitin-mediated proteolysis of p53. However, in
comparison with the effects of the smaller DNA viruses,
much less is known regarding the precise mechanisms
whereby the Epstein-Barr virus (EBV) inhibits functions of
p53. EBV possesses two alternative life cycles, latent and
lytic replication. In latent phase, p53 is regulated by MDM2
ubiquitin ligase while after induction of lytic replication
p53 is phosphorylated and the level of activated p53 is
regulated by a novel system independent of MDM2. This
report describes a unique functional role of the BZLF1
protein encoded by EBV in the modulation of activated
p53. In this pathway, BZLF1 protein serves as an adaptor
molecule for both Cul2- and Cul5-containing E3 ubiquitin
ligase complexes to stimulate the ubiquitination and
degradation of p53 for inhibiting apoptosis, indicating
redundancy in the EBV machinery to downregulate p53
level. Therefore, it would be possible that the complexes
regulate not only p53 but also various proteins that
interact with BZLF1 protein.

Ubiquitination of p53 by EBV BZLF1-ECS Complex
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mutant BZLF1 protein, lacking the interaction with p53, for the wild-

type in the RHF-BZLF1-Cul2/Cul5 complex eliminated the

enhanced p53 ubiquitination (Figure 2B and S2F). Thus, the findings

suggest that the BZLF1 protein recruits p53 to the ECS ligase

complex for polyubiquitination, functioning as an adaptor for

substrate recognition in the complex.

Figure 1. BZLF1 protein associates with Cul2 and Cul5 through the Cul-box motif. (A) BZLF1 protein contains putative Cul2-box and Cul5-
box motifs at the N-terminus. Conserved amino acids are indicated in bold. TA, transactivation domain; bZip, basic leucine-zipper domain. Mutated
amino acids are highlighted. (B and C) Lysates of 293T cells transiently expressing the indicated proteins were subjected to immunoprecipitation
followed by immunoblotting with the indicated antibodies. (D) BZLF1 protein interacts with both Cul2 and Cul5 in lytic replication-induced cells. The
lytic infection was induced by transfection with BZLF1 protein expression plasmid into 293/EBV cells. Cells were treated with MG132 for 4 h before
harvesting and then harvested 48 h post-transfection. IP and IB assays were performed using the indicated antibodies. (E) The BZLF1 M3 mutant
features relaxed reduction of p53. SaOS-2 cells were transfected with BZLF1 wild-type or its mutant expression plasmid, and p53 expression plasmids
as indicated. Lysates were applied for immunoblot analysis with each antibody indicated. The intensity of the bands is expressed as a ratio between
p53 and GAPDH. (F) Cul2 and Cul5 are required for p53 degradation. 293/EBV cells were co-transfected with plasmids expressing BZLF1 protein and
shRNA targeting Cul2 and Cul5 mRNAs. Cells were lysed 48 h post-transfection for IB analysis with the indicated antibodies.
doi:10.1371/journal.ppat.1000530.g001
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Phosphorylation-dependent regulation of physical
interaction and ubiquitination of p53 with the BZLF1
protein

The mechanisms underlying regulation of the association

between p53 and BZLF1 protein in cells is of considerable

interest. Although the association between full-length p53 and

BZLF1 protein is well-characterized [21,23,26], the domain of p53

interacting with the BZLF1 protein remains obscure. To address

this, the interaction domain of p53 with the BZLF1 protein was

found to be located within the DNA binding domain from IP

analyses with deletion mutants of p53 (Figure 3A). Furthermore,

the BZLF1 protein appeared to have affinity for C-terminus

truncated mutants rather than full-length p53.

Interactions between certain classes of ubiquitin-ligating enzymes

and their targets are tightly regulated by posttranslational modifica-

tions such as phosphorylation [27]. The ATM-Chk2 DNA damage

signaling pathway is activated in the EBV lytic phase [21] and it was

recently reported that Chk2-mediates phosphorylation of p53 at

S366 and S378 in response to genotoxic stress [28]. These prompted

us to assume that Chk2 might play a pivotal role in phosphorylation

of p53 during lytic infection. Indeed, p53 was found to be

phosphorylated at least at S15, S20, S366 and S378 with progression

of EBV lytic infection (Figure 3B). However, the presence of

significant redundancy should be kept in mind since the same p53

residue can be phosphorylated by several different kinases [29].

Based on structural analysis of p53 [30], it is speculated that the

DNA binding domain is masked by its C-terminal regulatory

domain rich in basic amino acids. Furthermore, phosphorylation

of the C-terminal regulatory domain results in increased binding

to DNA [31]. Thus, it is reasonable to assume that conformational

change induced by phosphorylation of the regulatory domain

enhances the association with the BZLF1 protein. To check this

hypothesis, phospho-mimetic mutants of p53 (S15E, S15E&S37E,

S366E, S378E, and S366E&S378E) His-tagged at the N-terminus

were expressed in E. coli and purified. In vitro pull-down assays

with His-p53 wild-type or mutants as bait were then performed

using TALON His-tag affinity resin. As shown in Figure 3C, the

bacterially expressed p53 S15E, S15E&S37E, S366E and S378E

mutants showed negligible differences from wild-type p53 in their

affinity for the BZLF1 protein. In sharp contrast, double mutations

of S366 and S378 residues stimulated binding to the BZLF1

protein. To confirm the role of these p53 C-terminal phosphor-

ylations, we generated p53 mutant in which residues 366 and 378

to nonphosphorylatable alanine. The p53 protein (WT or

S366A&S378A) was expressed in 293T cells, phosphorylated by

ionizing irradiation (IR), purified by anti-FLAG antibody and pull-

downed with recombinant BZLF1 protein. In contrast to wild-

type, p53 S366A&S378A mutant abolished the enhanced binding

to BZLF1 protein under the IR stress (Figure 3D). These results

imply that the phosphorylation of p53 at both S366 and S378

stimulates the association between p53 and BZLF1 protein.

To further test whether phosphorylation-mediated enhance-

ment of the association affects p53 ubiquitination, we performed in

vitro ubiquitination assays. As shown in Figure 3E and S2G,

BZLF1 protein-associated ECS complexes more efficiently

ubiquitinated S366E&S378E mutant as compared to the wild-

type p53. Taken our results together, the C-terminal phosphor-

ylation of p53 by Chk2 appears to stimulate ubiquitination

through increase in the binding affinity for the BZLF1 protein.

Figure 2. Ubiquitination of p53 by recombinant BZLF1-ECS complexes in vitro. (A) Recombinant BZLF1 protein, and BZLF1-EC2S or BZLF1-
EC5S complexes were assayed for their ability to mediate the ubiquitination of p53 in the presence of ATP, Uba1 (E1), UbcH5c (E2) and GST-Ub.
Reaction mixtures were incubated for 1 h at 26uC, boiled in SDS sample buffer, and then subjected to IB analysis with anti-p53 antibody. Intensity of
the polyubiquitin chains is expressed as a ratio between polyubiquitinated p53 protein and p53 protein input. (B) The BZLF1 protein acts as an
adaptor protein to recognize the substrate for p53 ubiquitination. Wild type BZLF1 (WT) or d200-227 mutant protein was expressed with components
of the EC5S complex in Sf21 cells, and cell lysates were subjected to Ni-NTA affinity purification. The purified BZLF1 complexes were applied to the
reaction and then IB analysis with anti-p53 antibody (right panels). Each recombinant BZLF1-EC5S complex purified from Sf21 insect cell lysates was
analyzed by IB with the indicated antibodies (left panels).
doi:10.1371/journal.ppat.1000530.g002
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The degradation of p53 is required for efficient viral
propagation

Induction of lytic replication by wild type BZLF1 protein results

in low level of p53, while induction by the M3 mutant did not

reduce the level (Figure 4A). It turned out that the inhibition of

p53 degradation by the M3 mutant increased PARP cleavage,

well-defined apoptotic marker (Figure 4A). We further analyzed

the virus yield from the lytic-induced 293/EBV cells transfected by

BZLF1 wild type or M3 mutant expression vector. As shown in

Figure 4B, the yield of infectious virus from the BZLF1 M3 mutant

expressed cells was poor than that of virus from wild-type BZLF1

expressed cells. The simultaneous transfection of both p53 and

BZLF1 protein also produced low yield of infectious virus. To

further assess whether the degradation of p53 during lytic infection

is linked to anticipate effects on virus production, we examined

temporal linkage of the p53 effect on viral DNA replication. The

compensation for p53 at the middle and late stages of the lytic

infection when p53 level was decreased interfered with viral

genome synthesis (Figure 4C). These findings suggest that the

degradation of p53 contributed to prevent apoptosis and was

required for the efficient viral propagation in the lytic replication.

Discussion

In this study, we revealed p53 to be degraded via an ubiquitin-

proteasome pathway even under conditions of up-regulated ATM-

dependent DNA damage signaling in the EBV lytic phase. Our

data clearly indicate that the EBV BZLF1 IE protein plays a

critical role in the degradation of p53 independent of MDM2. The

BZLF1 protein interacts with Cul2 and Cul5 through the Cul2-

and Cul5-box motifs, located within its N-terminus. BZLF1-Cul2/

Cul5 complexes proved capable of reconstituting a multiprotein

ECS complex with ubiquitin ligase activity.

The large body of evidence implicating Cul2- and Cul5-

containing E3 ubiquitin ligases in regulation of diverse cellular

processes [32] provides us with new insights into their significance

as potential targets of viruses trying to manipulate the host cellular

system. Several viral proteins have the capacity to assemble with

Cullin-based ubiquitin ligase modules and act as E3 ligases. For

Figure 3. Phosphorylation-dependent enhancement of the interaction between p53 and BZLF1 protein. (A) BZLF1 protein interacts
with the DNA-binding domain near the N-terminal of p53. SaOS-2 cells were cotransfected with BZLF1 protein and a series of FLAG-tagged p53
deletion mutant expression plasmids as indicated. Cell lysates were prepared 24 h post-transfection, and equal amounts of proteins under each
condition were incubated with anti-FLAG M2 antibody beads. Immunoprecipitated proteins were analyzed by immunoblotting with anti-BZLF1
protein antibodies. Schematic illustration of the p53 wild-type and deletion mutants used. TA, transactivation domain; PR, proline rich domain; TD,
tetramerization domain; RD, regulatory domain. (B) p53 is hyperphosphorylated during lytic infection. Tet-BZLF1/B95-8 cells were cultured with Dox
for the indicated times. For p53 phosphorylation at S366 and S378 residues, IP/IB analysis was performed, while for the others IB analysis with the
indicated specific antibodies was carried out. The p53/GAPDH ratio is provided. (C) Interaction of the BZLF1 protein with WT p53 and a variety of
phospho-mimetic mutants. His-tagged p53 proteins were first attached to TALON beads and then incubated with purified recombinant BZLF1
protein in PBS. The beads were washed and spun down. Bound BZLF1 protein was detected by IB with anti-BZLF1 antibody. The intensity of the
bands is expressed as a ratio between BZLF1 protein and p53. (D) The requirement of the p53 phosphorylation at C-terminus for the enhancement of
binding to BZLF1 protein. 293T cells were transfected with FLAG-p53 (WT or S366A&S378A) expression vector, exposed to ionizing radiation (20 Gy)
46 h post-transfection and harvested 48 h post-transfection. FLAG-tagged p53 proteins were first purified using anti-FLAG antibody resin from cell
extracts, and then incubated with purified recombinant BZLF1 protein. The beads were washed and spun down. Bound protein was detected by IB
with indicated antibodies. AA indicates p53 S366A&S378A mutant. The band intensity was quantified as a fold change of IR-treated/untreated. (E) The
phospho-mimic p53 mutant is more ubiquitinated than wild-type p53 by BZLF1- EC5S complex in vitro. Recombinant His-p53 protein (WT or
S366E&S378E) was incubated in a reaction mixture containing purified BZLF1-EC5S complex. Reactions for p53 ubiquitination were carried out as
described in the legend for Figure 2. The ubiquitinated p53/p53 ratio is indicated.
doi:10.1371/journal.ppat.1000530.g003
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instance, Vif encoded by HIV-1 interacts with Cul5 through a

zinc-binding HCCH, a unique viral motif directing ubiquitin-

mediated proteolysis of APOBEC3G, a host defense factor that

causes hypermutation in newly synthesized viral DNA [33]. A

major difference between the BZLF1 protein and these viral

proteins is that BZLF1 protein associates not only with Cul2 but

also with Cul5, indicating redundancy in the EBV machinery to

downregulate p53. Although the molecular mechanisms are

controversial, a variety of reports on the herpesvirus family have

pointed to inactivation of p53 in lytic infection [34,35,36].

Consistently, overexpression of p53 in infected cells interferes

with efficient expression of viral genes (data not shown). Given the

importance of inhibiting p53-mediated transactivation to adapt

the cellular environment for viral propagation, the apparent

redundancy is not so surprising.

The present study indicated the existence of distinct mecha-

nisms of p53 quantitative regulation in the latent and lytic phases

of EBV infection, as schematically illustrated in Figure 5. We

observed that disruption of p53 binding to MDM2 by Nutlin-3

increased the level of p53 in latent phase but not during lytic

infection [23]. Since induction of the EBV lytic program activates

the ATM-Chk2 DNA damage-signaling pathway [21], p53 is

phosphorylated at least at S15 and S20 but its level is nevertheless

downregulated. Under these conditions, MDM2 hardly interacts

with N-terminal phosphorylated p53 [4,37], implying that EBV

possesses another strategy to ubiquitinate phospho-p53 to block

downstream signaling during lytic infection. On the basis of our

findings with the BZLF1 protein and Cul2- and Cul5-containing

ubiquitin ligase complexes, we propose a model for recognition

and ubiquitination of p53 by the BZLF1 protein-associated E3

ligases (Figure 5). A requirement of these complexes for effective

p53 degradation was supposed to achieve the efficient viral

replication. In addition, the phosphorylation at S366 and S378 by

virus-induced DNA damage response enhances the association

with BZLF1 protein and ubiquitination of p53. To our knowledge,

except for CARPs [38], neither RING nor HECT type E3 ligases

[7] have previously been demonstrated to recognize and

ubiquitinate phosphorylated p53 for degradation, including

MDM2, COP1, Pirh2 or E6/E6AP. Thus, this finding is one of

the most interesting aspects of our study.

Wen and colleagues revealed that BZLF1 is expressed as an

immediate-early gene following primary EBV infection of B

lymphocytes although early and late lytic gene expression is not

observed [39]. They speculate that BZLF1-expressing cells are the

only ones that survive and establish latency. In addition, it was

reported that BZLF1 expression in early-passage lymphoblastoid

cell lines may contribute to tumor formation in nudemice [40] and

cellular gene expression [41]. Thus, it is noteworthy to mention

the possibility that the degradation of p53 by BZLF1 protein-

associated ECS ubiquitin ligases contributes to efficient establish-

ment of latent infection at the early stages of primary EBV

infection or tumor formation in vivo.

Figure 4. The degradation of p53 during lytic infection is required for efficient viral propagation. (A) Inhibition of p53 degradation in
lytic replication induces apoptosis. The lytic infection was induced by transfection with BZLF1 protein expression plasmid (WT or M3) into 293/EBV
cells. Cells were lysed 48 h post-transfection for IB analysis with the indicated antibodies. (B) The expression of p53 reduced the virus yield. The 293/
EBV cells were transiently transfected with expression vectors as indicated. The virus yields were determined by counting GFP positive Akata (-) cells.
The results are the average of three independent experiments and shown as values relative to the virus yield of BZLF1 (WT) (infectivity value of 1).
Asterisk indicates p,0.05. (C) Ectopic expression of p53 at the middle and late stages of lytic infection interferes with efficient viral DNA replication.
Tet-BZLF1/B95-8 cells were transfected with p53 expression plasmid using a Microporator at different timings as indicated and then cultured in the
presence of doxycycline for 48 h. Viral DNA synthesis was determined by slot blot assay. Asterisk indicates p,0.05.
doi:10.1371/journal.ppat.1000530.g004
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Materials and Methods

Cells and reagents
SaOS-2 cells, 293T cells, and 293/EBV cells were grown in

DMEM supplemented with 10% fetal calf serum (FCS). 293/EBV

cells were prepared by transfection with EBV-Bac DNA [42] into

293 cells by hygromycin selection (hygromycin B; 150 mg/ml).

EBV-Bac was gifted by Wolfgang Hammerschmidt (Helmholtz

Zentrum München-Haematologikum, Germany). EBV-positive

marmoset B lymphocytes B95-8 cells and Tet-BZLF1/B95-8 cells

were described previously [22]. For MG132 (Sigma) experiments,

cells were treated with MG132 (20 mM) for 3–5 h, before

harvesting. Anti-p53 (FL-393) and anti-Cul5 (H-300) rabbit

polyclonal antibodies, anti-Rbx2 (N-15) goat polyclonal antibodies

and normal mouse IgG2a were purchased from Santa Cruz

Biotechnology. Anti-Phosho-p53 (Ser15), anti-Phosho-p53 (Ser20),

anti-Phopho-Chk2 (Thr68) and anti-Cleaved PARP (Asp214)

rabbit polyclonal antibodies were obtained from Cell Signaling

Technology. Mouse anti-Elongin C (BD Transduction Laborato-

ry), mouse anti-Elongin B (BioLegend), mouse anti-GAPDH

(Ambion), monoclonal mouse anti-p53 (Ab-6) (Merck), mouse

anti-MDM2 (Ab-3) (Merck) and mouse anti-FLAG M2 (Sigma)

antibodies were also used. Anti-Cul2 rabbit polyclonal antibody

and horseradish-peroxidase-conjugated secondary antibodies were

purchased from Zymed Laboratories. Affinity-purified anti-BZLF1

and anti-Rbx1 antibodies were prepared as described previously

[43]. Anti-phosho-p53 (Ser366) and (Ser378) antibodies were a

generous gift from Sheau-Yann Shieh (Institute of Biomedical

Sciences, Taiwan). These phospho-specific antibodies are used for

immunoprecipitation, and are not suitable for immunoblot

analysis.

Plasmids and transfection
Mammalian expression vectors for human wild-type p53

(pcNXRS) and the BZLF1 protein expression vector (pcDNA-

BZLF1) were kindly provided by Takashi Takahashi (Nagoya

University, Japan) and Kiyotaka Kuzushima (Aichi Cancer Center

Research Institute, Japan), respectively. Full-length cDNAs of

BZLF1, Cul2, Cul5, and ubiquitin were obtained by reverse

transcriptase-PCR (RT-PCR) and subcloned into the pcDNA4/

TO/myc-His vector (Invitrogen). For expression of the epitope

tagged protein, a FLAG-TEV-HA (FTH) or HA tag cassette was

inserted into the plasmids encoding the respective cDNAs. For the

expression of FLAG-tagged p53, constructs expressing p53 full-

length wild-type (wtp53) and deletion mutants (p53/1–200, p53/

100–292, p53/169–393, p53/309–368, p53/1–322̂323–393) in

p36FLAG-CMV-14 (Sigma) were prepared by PCR. BZLF1

mutants (M1, L44A P45A; M2, L52A P53A E54A P55A; M3,

L44A P45A L52A P53A E54A P55A in pcDNA4A) and p53-

mutant (L323A Y327A L330A; and S366A&S378A in p36FLAG-

CMV-14 and S15E; S15&S37E; S366E; S378E and S366E

&S378E in pET28b (Novagen)) expression plasmids were

generated by site-directed mutagenesis. A BZLF1 deletion mutant

(BZLF1 d200-227), lacking part of the Zip domain, was generated

by overlapping PCR. The inserted DNA sequence of each vector

was confirmed by direct DNA sequencing.

Cells were seeded, cultured to semi-confluence and transfected

with expression plasmids using lipofection reagent (Lipofectami-

neTM and Plus reagent; Invitrogen) according to manufacturer’s

instructions.

RNAi
Knockdown of Cul2 or Cul5 was achieved by electroporation

with shRNA plasmids as described previously [14]. Two days after

transfection, cells were harvested and subjected to immunoblot-

ting.

Immunoprecipitation and Western blotting
Cells were lysed in lysis buffer (50 mM Tris-HCl pH 7.6,

120 mM NaCl, 0.1% NP40, 1 mM EDTA, 100 mM sodium

fluoride, 2 mM sodium vanadate) containing a protease inhibitor

cocktail (Sigma), and then sonicated. The debris was removed by

centrifugation and the supernatants were applied for immunopre-

cipitation with specific antibodies. Complexes of antibody and

antigen were collected by centrifugation and washed three times

with NET-gel buffer (50 mM Tris-HCl pH 7.6, 150 mM NaCl,

0.1% NP40, 1 mM EDTA). The immunoprecipitates were then

subjected to SDS-PAGE followed by immunoblot analyses.

Preparation of the lysate for immunoblotting, Western blotting

and detection of signals were performed as described previously

[44]. Immunoreactivity was detected by Western Lightning

(Perkin-Elmer) and images were processed with LumiVision

PRO 400EX (Aisin/Taitec Inc.). Signal intensity was quantified

with a LumiVision Analyzer 400. The system used in this study

mounts a cooled CCD camera that has a 16 bit = 65,535 grayscale

wide dynamic range. It enhances the accuracy of the quantitative

analysis up to 100 times compared with ordinary quantitative

analysis scanning of an X-ray film into the personal computer after

exposing the signal to the film. Protein levels were quantified by

the densitometry in triplicate experiments, and the results were

expressed as ratios between the specific band under examination

and appropriate internal control.

Purification of proteins and in vitro ubiquitination assays
For preparing reconstituted RHF-ECS complexes, lysates from

Sf21 cells co-infected with baculoviruses encoding RHF-BZLF1,

HA-Cul2/5, myc-Rbx1/2, Elongin B and Elongin C, were applied

to Ni-nitrilotriacetic acid agarose (QIAGEN) as described previ-

ously [16,25]. HA-tagged p53 was expressed in Sf21 cells infected

Figure 5. Model for p53 degradation in the EBV life cycle. With
EBV latent infection, the level of p53 is regulated by MDM2 E3 ubiquitin
ligase. Induction of lytic replication elicits the DNA damage response via
activation of the ATM-dependent DNA damage signaling pathway.
Under these conditions, p53 is hyperphosphorylated at S15 by ATM and
S20, S366 and S378 by Chk2. C-terminal phosphorylation of p53 leads to
allosteric conformational change through dissociation of the negative
regulatory domain (gray) from the DNA binding domain (black),
enhancing the binding of BZLF1 protein to p53. BZLF1 protein
associated ECS ubiquitin ligase complexes then ubiquitinate p53,
leading to proteasomal degradation during lytic infection.
doi:10.1371/journal.ppat.1000530.g005
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with a recombinant baculovirus [45], kindly provided by Carol

Prives (Columbia University). HA-p53 protein was purified using a

monoclonal anti-HA agarose conjugate (Sigma) and elution was

performed using an HA peptide. To prepare His-tagged p53, His-

p53 and its phospho-mimetic mutants were expressed in bacteria,

and the expressed proteins were purified using Ni-nitrilotriacetic

acid agarose. In vitro ubiquitination assays were performed as

described previously [16] with some modifications. Reaction

mixtures were incubated for 1 h at 26uC, separated by SDS-PAGE,

and analyzed by IB with anti-p53 (Ab-6) antibody.

Purification of EBV BZLF1 protein
Hi-Five cells were infected with recombinant baculovirus

AcBZLF1, harvested 72 h post-infection, and then suspended in

hypotonic buffer (HB; 40 mM Tris-HCl pH 7.6, 1 mM EDTA,

1 mM EGTA, 1 mM DTT, 1 mM PMSF, 0.2% Triton X-100,

10 mg/ml leupeptin, 10 mg/ml pepstatin), followed by homogeni-

zation using a Dounce homogenizer. The resultant nuclei were

freeze and thawed, resuspended in 0.1 M NaCl-HB, and precipi-

tated again. After washing with 0.2 M NaCl-HB twice, extraction of

the BZLF1 protein was performed with 0.6 M NaCl-HB. The purity

of the recombinant BZLF1 protein is more than 90%.

Quantification of viral DNA synthesis during lytic
replication

Tet-BZLF1/B95-8 cells (16106 cells) were treated with doxycy-

cline and then transfected with p53 expression plasmid or empty

plasmid as a control at the indicated times. Total DNAs were

purified from the cells at 48 h post-induction. Dot-blot hybridiza-

tion was performed using DIG-labeling system (Roche) and viral

genome replication was quantified as described previously [22].

Titration of virus yields from 293/EBV cells
For titration of virus yields, 293/EBV cells were transfected with

BZLF1 expression plasmid using a microporator (Digital Bio) to

induce lytic replication. Cells and the culture supernatant were

collected, freeze-thawed, and centrifuged. The supernatant from

the centrifugation was filtered and used as a virus stock. EBV-

negative Akata (-) cells [46] (kindly provided by Kenzo Takada,

Hokkaido University) were infected with the virus and EGFP

positive cells were counted by FACS.

Data analysis and statistics
Data are presented as mean6S.E.. Statistical analysis has been

carried out using Student’s t-test Values were considered

significantly different when p,0.05.

Accession numbers
The Entrez Gene accession numbers for genes and gene

products discussed in this study are as follows: p53 (7157),

ubiquitin (7314), Cul2 (8453), Cul5 (8065), and BZLF1 protein

(3783744).

Supporting Information

Figure S1 Inhibition of the p53 reduction shows negative effect

on the EBV replication and viral gene expression. (A) BZLF1

protein interacts with either Cul2 or Cul5. Lysates of 293T cells

transiently expressing the indicated proteins were subjected to

immunoprecipitation followed by immunoblotting with the

indicated antibodies. (B) BZLF1 protein interacts with p53 and

Elongin C, a component of ECS complex in lytic replication-

induced cells. The lytic infection was induced by transfection with

BZLF1 protein expression plasmid into 293/EBV cells. Cells were

treated with MG132 for 4 h before harvesting and then harvested

48 h post-transfection. IP and IB assays were performed using the

indicated antibodies. (C) BZLF1 protein interacts with both Cul2

and Cul5 in lytic replication-induced cells. Tet-BZLF1/B95-8 cells

were cultured with Dox for 24 h and then treated with MG132 for

3 h before harvesting. IP and IB assays were performed using the

indicated antibodies.

Found at: doi:10.1371/journal.ppat.1000530.s001 (0.20 MB PDF)

Figure S2 A series of in vitro ubiquitination assays. (A) The

BZLF1 protein is essential for ubiquitination of p53 by ECS

complexes. Individual protein complexes were purified from Sf21

cells co-infected with recombinant baculoviruses encoding these

components. These complexes were assayed for their ability to

mediate the ubiquitination of p53 in the presence of ATP, Uba1

(E1), UbcH5A (E2) and GST-Ub. Reaction mixtures were

incubated for 1 h at 26uC, boiled in SDS sample buffer, and then

subjected to IB analysis with anti-p53 antibody. Intensity of the

polyubiquitin chains is expressed as a ratio between polyubiqui-

tinated p53 protein and p53 protein nput. (B and C) Both BZLF1-

Cul2 and BZLF1-Cul5 complexes allow ubiquitination of p53 in

vitro. Reaction mixtures were incubated for the indicated times.

(D and E) Both BZLF1-Cul2 and BZLF1-Cul5 complexes allow

ubiquitination of p53 in vitro. A drop out assay was carried out to

determine the specificity of in vitro p53 ubiquitination. (F) The

BZLF1 protein acts as an adaptor protein to recognize the

substrate for p53 ubiquitination. Wild type BZLF1 (WT) or d200-

227 mutant protein was expressed with components of the EC2S

complex in Sf21 cells, and cell lysates were subjected to Ni-NTA

affinity purification. The purified BZLF1 complexes were applied

to the reaction and then IB analysis with anti-p53 antibody (right

panels). Each recombinant BZLF1-EC2S complex purified from

Sf21 insect cell lysates was analyzed by IB with the indicated

antibodies (left panels). (G) The phospho-mimic p53 mutant is also

more ubiquitinated than wild-type p53 by BZLF1-EC2S complex

in vitro. Recombinant His-p53 protein (WT or S366E&S378E)

was incubated in a reaction mixture containing purified BZLF1-

EC2S complex.

Found at: doi:10.1371/journal.ppat.1000530.s002 (0.62 MB PDF)
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