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Ingredients of a Chronic Viral Infection

The many millions of humans who have life-long virus

infections represent a major health issue for the 21st century but

also a unique opportunity for investigative virologists. For

persistent virus infections to endure, two ingredients are essential.

The first is a unique strategy of viral replication; that is, instead of

killing its host cell, the pathogen causes little to no damage so it can

continue to reside in those cells. The second requirement for

persistent virus infection is an immune response that does not react

to or remove virus-infected cells. Overall, our knowledge of how

viral genes and cellular factors interact to allow persistence to

occur is incomplete. Although our libraries contain volumes of

facts on this subject, many physiologic functions and interrela-

tionships of viral genes with host genes that establish persistence

remain, in large part, unknown. We do know that acutely infected

cells express viral peptides, which, when attached to host major

histocompatibility complex (MHC) molecules on their surfaces,

signal the immune system to kill such cells. However, viruses apply

numerous avoidance strategies to persist. One is direct selective

pressure to suppress the infected host’s innate and/or adoptive

immune system that would otherwise destroy them (reviewed

[1,2]) [3]. For example, viruses can alter or interfere with the

processing of viral peptides by professional antigen-presenting

cells, thereby restricting expression of MHC/peptide complexes

on cell surfaces, a requirement for activation and expansion of the

T cells that normally remove infected cells. Additionally, viruses

can downregulate co-stimulatory and/or MHC molecules also

required for T cell signaling and expansion; they can inhibit the

differentiation of antigen-presenting conventional dendritic cells

(cDCs), and can infect effector T and B cells directly. Similarly, to

persist in infected cells, viruses can disrupt the processing or

migration of viral peptides or viral peptide/MHC complexes to

the cells’ surface, thereby removing the recognition signals for

activated killer T cells. Finally, viruses that persist frequently infect

neurons, which have defects in TAP, a molecule required for the

translocation of viral peptides to endoplasmic reticulum (ER) [4,5].

Perhaps neurons can also actively prevent cytotoxic T lymphocytes

(CTLs) or natural killer (NK) cells from degranulating and thereby

limit the activity of such virus-removing effector cells. Since

neurons are essential to health but rarely regenerate when

destroyed, Darwinian selection likely caused them to evolve

mechanisms to avoid immunologic assault. Such events would

allow infected neurons to escape immune recognition and live, as

well as allow viruses to persist in a neuronal safe house.

Immunological Tolerance as a Mechanism to
Explain Viral Persistence

Viruses can cause persistent infection early in life directly from

mother to child in utero or in newborns whose immune system is

immature, and even later in adults after the immune system has

matured. Infection in early life was initially attributed to

immunologic tolerance, that is, deletion or removal of cell clones

that generate an antiviral immune response [6]. The model for this

concept was congenital lymphocytic choriomeningitis virus

(LCMV) infection of mice, a life-long symptomless viral carrier

state induced by in utero or neonatal infection [7]. Like early

hepatitis B or C virus (HBV/HCV) infection of today, LCMV

infection studied in the past (LCMV-carrier mouse) was

characterized by persistent high titers of virus throughout life

without detectable antiviral immune response. This pattern was

duplicated in vertically transmitted murine retroviral infections.

Thus immunologic tolerance was defined (originally in the

LCMV-carrier model) as 1) resistance of normal newborn mice

to a viral dose lethal for mature adults; 2) presence of high titers of

virus in organs and blood of adults infected in utero or neonatally

with resistance to an ordinarily lethal LCMV challenge; and 3)

absence of complement-fixing or neutralizing antibodies and of

LCMV-specific CTLs (later after the discovery of CTLs) in adults

infected in utero or neonatally.

Problems with the Immunological Tolerance
Model

However, results from our work [8,9] and that of Jamieson and

Ahmed [10] indicated major problems with that theory. First, free

antiviral antibodies are present not in the circulation but bound to

viruses and viral antigens to form v-Ab complexes. These v-Ab

complexes deposit primarily in the glomeruli of kidneys, blood

vessels, and choroid plexus. Specific anti-LCMV antibodies are

readily isolated from the complex by using a low ionic and low pH

buffer and quantitatively comprise over 65% of the total

immunoglobulin extracted from the glomeruli, a factor 50 to

100 times greater than the specific antiviral LCMV antibody

found in the immunoglobulin fraction of adult mice immunized

with LCMV [8]. A similar scenario occurs with the in utero or

neonatal murine retroviral infections [9]. Further, circulating and

glomerular-deposited v-Ab complexes are found in humans with

persistent viral infections.

Specific antiviral CTLs are rarely found in adult mice or in

humans persistently infected early in life. Reconstitution of virus-

specific T cells first shown by adoptive transfer of anti-LCMV-

specific CD4 and CD8 T cells readily purged viruses and cleared

infection from blood and tissues of LCMV-carrier mice [11]. After

virus was cleared, these adult mice, when rechallenged with
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LCMV, generated a robust specific anti-LCMV CTL response

with normal kinetics and intensity and developed immunologic

memory, that is, protection against an ordinarily lethal intracere-

bral challenge with LCMV [10].

Therefore, we conclude that viral infection initiated in neonates

or in utero does not lead to deletion of T or B cell clones specific

for the virus [8–10]. Rather, antibodies are made but do not

circulate freely in blood, because they quickly bind to the virus

(viral antigen) that is in excess to form immune complexes. Indeed,

deposition of such v-Ab complexes leads to tissue injury that

accompanies persistent infections. Further, detection of immune

complexes is often a reliable marker for persistent virus infection.

T cell clones are not deleted, but they are not active or observed

until the viral load is lowered or removed. For the treatment of

HCV and HBV carriers infected in utero or neonatally, who also

fail to show virus-specific T cells, these findings suggest that

removal of virus and viral antigens followed by specific

immunization may provide a cure.

Viruses Actively Suppress the Host’s Immune
Responses

Immune responses reflect the sum of positive versus negative

regulators of that response. Negative regulators function to prevent an

excessive immunologic response leading to immunopathologic

disease. Of those so far identified [12–15], IL-10 [13,14] and PD-1

[12] have claimed the most interest. They evidently function via

separate pathways [13,16], so combination therapy that neutralizes

both has been more effective than removal of either one alone [16].

Viruses that initiate persistent infections in juveniles or adults

take advantage of this negative regulatory system by actively

causing hosts to make regulators that turn off or exhaust the

expected antiviral immune response. The discovery that viruses

can escape immunologic attack and persist by this means again

came from the study of LCMV infection in its natural murine host

[12–14] and has been extended to studies of humans persistently

infected with HIV and HCV [17–21] and primates infected with

simian immunodeficiency virus [22].

In the LCMV persistent infection induced in adults, IL-10 is

produced primarily by virus-infected cDCs and perhaps by B cells

[13]. In vivo, neither CD4 nor CD8 T cells produce significant

amounts of IL-10. Still not clear, though, is which cells IL-10

affects. What is known is that by 9 days after a persistent LCMV

infection is initiated in adult mice, T cells become unresponsive;

that is, they fail to or poorly lyse virus-infected targets and do not

make the positive immune regulators IL-2, interferon-c, or

TNF-a. However, when IL-10 is blockaded with antibody to

IL-10 receptors, T cell functions are restored, and their numbers

increase sufficiently to clear virus from blood and tissues [13].

Interestingly, although IL-10 plays a major role in T cell

exhaustion of adult mice persistently infected with LCMV, as

yet no similar role for IL-10 has been found in the persistent

infection of adults infected in utero or neonatally (D. Brooks, D.

McGavern, M. Oldstone, unpublished data).

Figure 1. Cartoon of the initiation of an uncontrolled persistent virus infection or a controlled acute virus infection in
immunocompetent adults. Dendritic cells (DC) present viral peptide/MHC complexes to activate T cells. There is an initial expansion phase
following infections that lead to either clearance of the virus or virus persistence. For virus clearance, following the acute infection positive immune
regulators (IL-2, IFN-c, TNF, etc.) are generated that expand the effector virus-specific T cell pool, resulting in elimination of virally infected cells,
termination of the infection, and resultant development of immune memory. By contrast, with viruses that persist there is a decreased expansion, and
in some cases deletion, of virus-specific T cells. Remaining T cells become exhausted or hyporesponsive and are defective in the release of positive
immune regulators and hence are unable to terminate the virus infection. The cause is the virus’ induction of negative regulators of the immune
response, i.e., IL-10 and PD-L1, and the cure is the blockade of such negative regulators with appropriate antibodies (see [12–14]).
doi:10.1371/journal.ppat.1000523.g001
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PD-1 expression increases on T cells during persistent LCMV

infection and, as stated above, these T cells become hyporespon-

sive or exhausted and cannot clear infection [12,15]. Blockade of

PD-L1 by specific antibody restores T cell function, which then

allows these effector T cells to control the virus infection [12].

The exploration and understanding of negative immune

regulators, including IL-10 and PD-1, are still at an early stage;

nevertheless, the implications are important and profound. First,

exhausted or hyporesponsive T cells found in persistent infections

can be resurrected to functional capacity. This is true not only for

the LCMV model in which the phenomenon was uncovered [12–

14], but also for HIV and HCV in vitro and simian

immunodeficiency virus in vivo [17–22]. Second, the environment

in which negative regulators are induced by the virus provides one

of the major problems in treating persistent infections. Our

prediction is that when vaccination strategies to treat persistent

infection fail, the likely cause is not a faulty immunogen or

adjuvant approach, but overwhelming control of the environment

by negative regulators. Indeed, therapeutic vaccination against

ongoing persistent LCMV infection was effective only when IL-10

or PD-L1 was first neutralized [23,24].

Clearance of a persistent LCMV infection requires virus-specific

CD4 T cell help to assist virus-specific CD8 T cells [25–28].

Recently, IL-21 was identified as essential for CD4 T cell

help and allowing CD8 T cells to control the persistent infection

[29–31].

The Future and Potential Applications for
Treating Persistent Viral Infections

Currently our laboratory and others are engaged in the

discovery of additional negative immune regulators and their

signaling pathway(s) using gene chip and forward genetics

technology. These projects have a multitude of applications. Some

examples are the development of pharmacologic small molecules

as effective antagonists of negative immune regulators, the use of

transient negative regulator blockers as an adjuvant approach to

enhance both prophylactic and therapeutic vaccination, and the

determination of how long during the course of persistent virus

infection exhausted T cells can be rescued to become antiviral

effector T cells. As always, the goal is to understand basic

principles in viral pathogenesis and to extend results in the murine

model to resolve persistent infections of humans.
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Figure 2. The scenario of virus induction of negative regulators leading to T cell hyporesponsiveness sprung from experimental
analysis of LCMV infection in its natural murine host using inoculation of parental LCMV Armstrong strain 53B or its variant, LCMV
Cl 13. The 10.7-kb genome of these viruses differs by only six nucleotides that code for three amino acids. One amino acid located in the viral spike
protein GP-1 at aa 260 (Leu Cl 13/Phe ARM 53b) is responsible for high affinity binding (2.5 logs higher affinity for Cl 13 over ARM 53b) for the LCMV
receptor alpha-dystroglycan, which is located in the immune system, preferentially on DCs (see [32,33]). A second important mutation is in the viral
polymerase at aa 1079 (Leu Cl 13/Gln ARM 53b) and is associated with enhanced transcription and replication of LCMV Cl 13. Recent studies have also
implicated infection of the fibroblastic reticular cells in lymphoid organs as contributing to the persistent infection (see [34]). Figure 2 shows this
using a whole body section of a mouse. The tissue section was placed on a membrane and stained with a riboprobe to LCMV at 30 days after
initiation of LCMV infection with either LCMV Cl 13 or LCMV ARM 53b. The presence of viral nucleic acids in mice receiving Cl 13 correlates directly
with high titers of virus carried in the sera (PFU/ml) at 30 days post-infection and the lack of a CTL response observed 7 days after initiation of
infection. By comparison, mice receiving LCMV ARM 53b at 30 days post-infection fail to display viral nucleic acid sequences or virus in their sera, as
virus has been successfully purged. Further, mice infected with LCMV ARM 53b generate a robust CTL response 7 days following virus infection.
doi:10.1371/journal.ppat.1000523.g002
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