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Abstract

Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated
vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of
potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering
replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication
activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus
adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant
toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-
122 within the 39 UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with
luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A
following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (561010 viral
particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4
microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus
retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many
potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for
designing safe attenuated vaccines applied across a broad range of viral diseases.

Citation: Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, et al. (2009) Use of Tissue-Specific MicroRNA to Control Pathology of Wild-Type
Adenovirus without Attenuation of Its Ability to Kill Cancer Cells. PLoS Pathog 5(5): e1000440. doi:10.1371/journal.ppat.1000440

Editor: Klaus Früh, Oregon Health & Science University, United States of America

Received November 7, 2008; Accepted April 22, 2009; Published May 22, 2009

Copyright: � 2009 Cawood et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: RC and FC are supported by Cancer Research UK (http://www.cancer.org.uk/), HC by a research studentship from the New Zealand Government, and
MB by a Bellhouse Foundation Fellowship (Magdalen College, Oxford). The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Len.Seymour@clinpharm.ox.ac.uk

Introduction

Viruses have a highly successful history as prophylactic vaccines

and are also being developed for their intrinsic anticancer activities

[1]. In both settings the ability to undergo restricted replication is

highly desirable. Attenuated (but not killed) viral strains often

represent the most effective viral vaccines, affording the possibility

of persistent low level infection without significant pathology [2,3].

Unfortunately many viruses are not suitable for production of

attenuated forms, and reversion to wild-type represents a

significant risk. Equally the field of cancer ‘virotherapy’ relies on

selective replication of lytic viruses within cancer cells, leading to

cell death and spread of infection to adjacent cancer cells. Several

‘conditionally-replicating’ viruses have been engineered for

activation by tumour-associated changes, showing greater potency

in cancer cells than in normal cells. Unfortunately these agents are

generally attenuated compared to the equivalent wild-type virus

even in cancer tissues, and have so far shown little therapeutic

activity in clinical trials [4,5]. For both vaccination and cancer

virotherapy it would be attractive to produce viruses that show

wild-type replication activity at therapeutic sites (eg. within

tumours or at sites of antigen presentation) but are specifically

attenuated at sites of potential pathology.

The network of naturally-occurring non-coding microRNA

molecules [6] negatively regulates cellular gene expression post-

transcriptionally through a number of mechanisms that all involve

binding of microRNA to complementary regions within a

messenger RNA (mRNA) [7,8] leading to decreased protein

production [9]. Tissue-selective microRNA expression is now well

characterised [10], and it provides an opportunity to regulate

transgene expression from therapeutic nucleic acids and viruses.

This principle was originally developed by Brown et al. [11], who

showed that inclusion of microRNA mir-142-3p binding sites within

39UTR of retrovirally-encoded transgenes prevented expression in

antigen presenting cells, preventing stimulation of an immune

response and allowing long term transgene expression in other cells

without rejection. The diversity of tissue-specific microRNAs now

identified should enable this approach of selective attenuation of

viral expression to be developed in several different contexts [12].

It is also possible to use the microRNA system to regulate

replication of vaccines or conditionally-replicating ‘oncolytic’

viruses. The small size of the required insertion (microRNA
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binding sites are generally only 21–24 bp) provides considerable

flexibility in the design of capacity-restricted therapeutic viruses.

Equally the negative regulatory principle of using microRNA

regulation to inhibit viral replication in sites of toxicity, could allow

significant therapeutic potency by avoiding attenuation in target

sites. This approach has previously been used to generate

microRNA-controlled conditionally-replicating RNA viruses, in-

cluding Polio virus for vaccination and coxsackie virus for cancer

virotherapy. These viruses were engineered to contain binding

sites for neural and muscle specific microRNAs respectively. The

neural-restricted polio virus showed good vaccine potential, while

the muscle-restricted coxsackie virus showed decreased myositis

and improved anticancer efficacy [13,14].

In this study we have explored the use of this approach in

engineering a microRNA-controlled wild-type adenovirus, a DNA

virus, by expressing binding sites for microRNA mir-122 within

the 39 UTR of E1A. Mir-122 is highly and selectively expressed in

hepatocytes [10,15], and this modification might prevent expres-

sion of E1A within hepatocytes, thereby reducing adenovirus

replication and hepatotoxicity whilst maintaining its therapeutic

replication within tumour cells.

Results

Evaluation of potency of mir122 regulation in vitro
To assess the repression capabilities of mir-122, CMV

promoter-driven luciferase plasmids containing 0, 4 and 8 sense

or 4 anti-sense microRNA binding sites (representative structures

shown in Figure 1) were transfected into HEK-293, OVCAR-3

and HUH7 cell lines using DOTAP (Roche) and luciferase activity

was measured by luminometry after 24 h. The presence of the

microRNA binding sites had no effect on luciferase levels detected

in the mir-122 negative cell lines HEK-293 and OVCAR-3

(Figure 2). In contrast, in mir-122-positive HUH7 cells, lumines-

cence was decreased from 7.96105 RLU/mg (anti-sense control

plasmid) to 9.96104 RLU/mg (4 microRNA binding sites,

P = 0.001)) and 3.46104 RLU/mg (8 microRNA binding sites,

P = 0.001). The inclusion of 4 anti-sense microRNA binding sites

did not effect luciferase activity compared to the unmodified

control plasmid in any cell type. Whilst the inclusion of 8

microRNA binding sites did show improved repression in

comparison to 4 binding sites, we decided to use 4 binding sites

for future use in view of the repetitive nature of the insertion and

to minimise the likelihood of viral recombination.

Evaluation of potency of mir-122 regulation in vivo
Luciferase expression from the microRNA-controlled plasmids

shown in Figure 1 was assessed in murine livers in vivo, using an

Ivis100 imaging system. Plasmid vectors were delivered at

equimolar amounts by hydrodynamic delivery and imaging was

performed at 8, 24 and 48 h post injection. Control CMV

promoter-driven plasmids gave high levels of transgene expression

after 8 h (2.761011 RLU) while inclusion of 4 microRNA binding

sites in the same plasmid decreased expression to 5.76109 RLU, a

47-fold decrease in expression (Figure 3A). Total levels of

luciferase expression fell substantially over the next 40 h, although

the differential expression increased up to 129-fold (P = 0.0064)

after 48 h (Figure 3C).

Plasmids containing the E1A promoter and E1A coding

sequence were engineered to generate an E1A-luciferase fusion

transcription cassette. This vector was then further modified to

contain four binding sites to mir-122 to allow in vivo imaging of

E1A expression (Figure 1). Following hydrodynamic delivery of

equimolar amounts of both vectors, expression from the plasmid

Author Summary

Attenuated viruses have found important applications in
medicine, including their use as vaccines (notably for
measles, mumps, polio, influenza, and chicken pox) and
their experimental development as selective cancer-killing
agents, so-called ‘‘virotherapy.’’ Wild-type versions are
often most effective in both of these settings; however,
attenuated viruses have usually been developed to
decrease the risk of significant viral pathology. Recent
advances in understanding regulation of gene expression
by microRNA now afford the possibility to design viruses
that are ‘‘selectively attenuated’’ in sites of potential
pathology, by engineering them for inhibition by micro-
RNA molecules that are expressed there. Here we have
engineered wild-type adenovirus for recognition by a
microRNA expressed in hepatocytes, producing a virus
that retains wild-type infection and replication at sites of
therapeutic activity (such as cancer cells) but is severely
attenuated in hepatocytes, both in vitro and in vivo. This
virus caused no significant liver toxicity to mice even when
applied at ten times the lethal dose of wild-type virus. The
ability to produce replication-competent viruses with key
toxicities removed should provide a new platform for
development of improved cancer treatments and better
vaccines for a broad range of viral diseases.

Figure 1. Plasmid construction. pCIK-Lux (referred to as pCMV-Luc) was cleaved with Not1 and concatamers of mir-122 binding sites (4 or 8 sense,
or 4 antisense; the sequence of the 4 sense insert is shown at the top of the figure) inserted into the luciferase 39UTR. Both pCMV-Luc and the version
containing 4 microRNA sites (pCMV-Luc-mir) were modified with the C terminal half of E1A expression cassette, isolated from pAd5WT (Ad5 wild-
type) by PCR. Both resulting constructs were then cloned into pAd5Kpn1, which contains the E1A promoter and coding sequence, to produce E1A
promoter regulated E1A-luciferase fusion constructs termed pE1A-Luc and pE1A-Luc-mir.
doi:10.1371/journal.ppat.1000440.g001
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producing the E1A-luciferase fusion protein (with no microRNA

sites) was much lower than from the equivalent pCMV vector,

probably reflecting relatively weak activity of the E1A promoter in

murine cells, however the inclusion of four microRNA sites within

this plasmid again mediated a significant decrease in expression

(86-fold after 8 h, P = 0.01, Figure 3B). It was noticeable that

luciferase expression from the fusion protein decreased more

rapidly with time than from the pCMV-driven vectors, perhaps

reflecting the ability of E1A to negatively regulate its own

promoter (Figure 3C).

Mir-122 binding sites do not affect adenovirus activity in
mir-122–negative cells in vitro and in vivo

Adenoviruses containing E1A-luciferase fusion constructs on a

background of wild-type Ad5 (Figure 4(iii) and 4(iv)) were used to

infect mir-122-negative A549 and OVCAR-3 cell lines in vitro.

Luciferase activity from both Ad-E1A-Luc (containing no mir-122

binding sites) and Ad-E1A-Luc-mir122 (containing 4 mir122

binding sites) increased slowly between 8 and 24 h and then

showed a more rapid rise that was sustained up to at least 72 h

(Figure 4B and 4C). This profile of luminescence may reflect initial

transcription from the input viral genomes that increases rapidly

following viral genomic replication. The microRNA insertion into

the 39 UTR did not affect the profile of luciferase expression in

these cells, suggesting the modification did not influence the

stability of mRNA encoding the E1A-luciferase fusion protein, nor

did it inhibit virus replication in these mir-122-negative cells.

To ascertain whether the microRNA insertion would also be

inactive in mir-122- negative cells in vivo, viruses (161010 v.p.) were

injected subcutaneously in Balb/C mice (n = 3) and animals were

imaged after 24 h. Results demonstrated no significant difference

between the expression from the two viruses (data not shown)

suggesting no effects of the microRNA at the subcutaneous site.

MicroRNA binding sites decrease activity of Ad-E1A-luc-
mir122 virus in mir122–positive cells in vitro and in vivo

Adenoviruses encoding the E1A-luciferase protein with and

without four microRNA binding sites were used to infect a

monolayer of the mir122 positive cell line Huh7. E1A-luciferase

expression was monitored by luminometry from 6 h to 72 h post-

infection (Figure 4E). Luciferase expression from the Ad5-E1A-

Luc showed a small but significant rise between 0 and 24 h

(reaching 1.16105 RLU/mg protein) and then increased rapidly,

rising to 1.76106 RLU/mg protein by 72 h. This suggests E1A

transcription and replication proceeded similarly to the situation in

A549 and OVCAR cell lines. In contrast, Ad5-E1A-Luc-mir122

virus showed significantly less luciferase expression at all time

points, reaching only 6.36104 RLU/mg after 72 h (P = 0.0001 for

both 48 and 72 h). The differential in luciferase expression

between the viruses with and without microRNA binding sites

increased over time, suggesting decreased genome replication of

Ad5-E1A-Luc-mir122 compared to Ad5-E1A-Luc. In order to

confirm that this differential in luciferase expression was due to

mir-122 knockdown of E1A, a precursor RNA mimic of mir-122

(Ambion) was introduced into A549 cells to simulate hepatocyte

expression. Ad-E1A-Luc-mir122 and either the mir122 pre-cursor,

or negative control pre-mir (Ambion) were added to cells and

luciferase readings performed after 24 h. Results showed that the

introduction of the pre-mir122 reduced luciferase, and therefore

E1A, expression from 9.26104 RLU (negative control pre-mir) to

3.46103 RLU (P = 0.0001, Figure 4B).

To assess the in vivo activity of these viruses and to observe the

effects of time on E1A expression over 96 h, 561010 vp of Ad5-

E1A-Luc and Ad5-E1A-Luc-mir122 were injected intravenously

into Balb/C mice. Animals were imaged at 6, 24, 48, 72 & 96 h

(Figure 5). After 6 h, Ad-E1A-Luc showed a luminescence signal of

1.66108 RLU whilst Ad-E1A-Luc-mir122 showed only 3.06106, a

differential of 52-fold. Interestingly, the signal from the Ad5-E1A-

Luc treated mice increased by 2.56109 RLU between 48 and 72 h

(Figure 5, time course) possibly reflecting a wave of virus

replication. At the same time the microRNA regulated virus

showed only a relatively small increase (a rise of 3.46107 RLU).

After 96 h the differential expression between the viruses with and

without microRNA sites had reached 80 fold.

MicroRNA regulation of wild-type Ad5 (Ad5WT) reduces
genomic replication and hepatic toxicity

In order to assess the effects on hepatic toxicity of including mir-

122 binding sites within wild-type adenovirus, 561010 v.p of

Ad5WT and Ad5-mir122 were injected intravenously to Balb/C

mice. One mouse in the study which received Ad5WT became

hunched and immobile, and was sacrificed after 60 h with visible

Figure 2. Effects of microRNA binding sites on expression of CMV promoter driven luciferase plasmids in vitro. Cells were seeded in
triplicate in 12 well plates. After 24 h 0.5 mg of plasmid DNA (containing 0 (black), 4 (light grey) or 8 (white) sense mir-122 binding sites, or 4 antisense
binding sites (dark grey)) was mixed with 2.5 ul DOTAP (Roche) reagent. 24 h following transfection cells were lysed and relative luminescence was
measured using 25 ml cell lysate. N = 3, Error bars +/2standard deviation and data is shown as RLU/mg cell protein, determined by BCA assay. (**
P,0.005).
doi:10.1371/journal.ppat.1000440.g002
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hepatic pathology. Remaining mice were exsanguinated under

anaesthesia 72 h post-injection and blood was allowed to clot.

Serum from both groups was tested for Alanine Aminotransferase

(ALT) levels and Aspartate Aminotransferase (AST) to assess

hepatic damage. Mice administered wild-type Ad5 showed

significantly increased ALT levels (90 times higher than control

mice treated with PBS, P = 0.0001; Figure 6A) suggesting

substantial liver damage had occurred. Mice administered Ad5-

mir122 showed approximately 15-fold less serum ALT (5 times

normal) demonstrating that less liver toxicity had occurred with

this virus. AST readings demonstrated similar results with a 17

fold decrease in AST in serum from mice administered Ad5-

mir122 compared to serum from mice receiving Ad5WT

(P = 0.0002, Figure 6A). To evaluate viral replication and tissue

Figure 4. Regulation of E1A expression. (A) Structures of viruses engineered and used in this study. (i) Ad5-WT (ii) Four tandem repeats of
binding sites for mir-122 were inserted into the 39 UTR of E1A. (iii) Luciferase coding sequence was inserted into Ad5 to generate a fusion with the
E1A coding sequence. (iv) Four tandem repeats of binding sites for mir-122 were inserted into 39 UTR of luciferase in the virus shown in iii. (B) A549
cells were seeded at 56104 cells per well and transfected with pre-mir122 (Ambion) or pre-mir negative control (Ambion). Immediately following
transfection Ad-E1A-Luc-mir122 was added at 10 vp/cell in 450 ml DMEM media (10% FCS). 18 h later, 30 pmol/well of pre-cursor mir122 and
negative control precursor microRNAs were added to each well in addition to the 500 ml described above. Luciferase readings were performed at
24 h (p = ,0.0005). (C–E) Time course of luciferase expression of Ad5-E1A-Luc (solid squares) and Ad5-E1A-Luc-mir (open squares) in mir-122-
negative OVCAR3 (C) and A549 (D) cells, and in mir-122-positive Huh7 cells (E) in vitro. (*** P,0.0005).
doi:10.1371/journal.ppat.1000440.g004

Figure 3. Effects of including binding sites for microRNA122a on expression of plasmids in vivo following hydrodynamic delivery
to mice. (A) Imaging luminescence (8 h from mice administered pCMV-Luc not containing (left panel) and containing (right panel) four binding sites
for mir-122 (plasmids pCMV-Luc and pCMV-Luc-mir in Figure 1).The animal on the right side of all images is a control treated with PBS, but mock
injected with luciferin, used to provide a background reading. (B) Imaging luminescence (8 h from mice administered pE1A-Luc fusion constructs not
containing (left panel) and containing (right panel) four binding sites for microRNA122a (plasmids pE1A-Luc and pE1A-luc-mir in Figure 1). The animal
on the right is an untreated control. The two images in A are directly comparable with each other, as also the two images in B; however scaling is
different between (A) and (B) in order to accommodate substantially different signal intensities from these plasmids. (C) Time course of luciferase
expression from CMV promoter-driven and E1A promoter driven constructs shown in A and B. Black = 8 h, Grey = 24 h, White = 48 h. n = 4 throughout
(except pCMV-Luc-mir122 where n = 3), error bars show standard deviation.
doi:10.1371/journal.ppat.1000440.g003
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damage, livers were divided for histological analysis and QPCR.

Livers taken from mice administered wild-type Ad5 showed an

average of 26109 genomes/mg liver (wet weight; Figure 6B). In

the total liver this represents approximately 60-fold more genome

copies compared to the total amount of virus originally injected,

suggesting significant genome replication. In contrast, livers from

mice administered Ad5-mir122 showed only 86107 virus ge-

nomes/mg liver, representing less than a doubling compared to

the input dose (P = 0.0001 for Ad5-mir122 compared to Ad5WT).

These data confirm that the microRNA suppression of E1A is

capable of significantly reducing replication of the virus genome in

murine liver in vivo.

Histological analysis showed a dramatic difference between

animals administered wild-type Ad5 and those administered Ad5-

mir122. Wild-type Ad5 induced vacuolation, haemorrhaging and

abnormal nuclear morphology, while livers from mice adminis-

tered Ad5-mir122 showed very little pathology, with some mice

showing no aberrant morphology in any liver section (Figure 6C).

Histological images of liver from a mouse administered 561010 vp

of a non-replicating adenoviral vector are presented for compar-

ison, showing similar or slightly greater liver pathology than was

induced by Ad5-mir122.

The maximum tolerated dose of Ad5WT given i.v. is reported as

about 16109 PFU [16], and this was confirmed in studies using

nude mice bearing HepG2 human hepatocellular carcinoma

xenografts (data not shown). Animals were found to tolerate higher

levels of Ad-mir122 (661010 v.p., 96109 PFU) with only mild

weight loss, although when this dose of Ad-mir122 was administered

on two consecutive days, all mice were showing signs of virus-related

toxicity by day 4 following the first injection. These mice were put

down and the livers demonstrated macroscopic signs of viral liver

damage. It therefore appears that, in tumour bearing animals, the

maximum tolerated dose of Ad-Mir122 lies between 661010 and

1.2e1011v.p/mouse (96109–1.861010 pfu).

Discussion

Molecular engineering of replicating viruses to avoid pathology

whilst maintaining potency in therapeutic sites would provide an

important new platform for design of viral vaccines and oncolytic

Figure 5. Luciferase transgene expression following intravenous administration of reporter viruses to mice in vivo. Groups of four
mice were administered intravenously 561010 virus particles of Ad5-E1A-Luc (left hand group of each pair of images) or Ad5-E1A-Luc-mir122 (right
hand group of each pair) and luminescence was quantified using an Ivis100 imaging system after 6 h–96 h. The mouse on the right of all images is an
untreated control, mock injected with luciferin for background levels. Images within pairs can be directly compared, although the scaling is different
between time points (see scale bars for details). The graph summarises the expression profile as a function of time.
doi:10.1371/journal.ppat.1000440.g005
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treatments. In this study we explored the possibility of achieving

this using a DNA virus, wild-type Ad5, engineered to avoid its

major toxicity in murine liver by including four binding sites for

hepatocyte-specific mir-122 within the 39UTR of E1A.

To measure E1A expression non-invasively we introduced a

luciferase coding region 39 to the E1A coding region of wild-type

virus in order to produce a contiguous E1A-luciferase expression

cassette, where E1A splicing would produce a series of E1A-

luciferase fusion proteins. This novel virus (including a modified

version containing 4 mir-122 binding sites in the E1A 39 UTR)

produced strong luciferase activity in vitro and in vivo that reported

E1A protein levels clearly, enabling non-invasive real-time

assessment of protein translation including the effects of virus

genome replication. Measuring E1A protein in this way is a more

reliable indicator of microRNA activity than measuring E1A

mRNA, since microRNA regulation is known to affect protein

translation via multiple pathways. However, given that our

microRNA target sites are precisely complementary to mir-122

it is likely that argonaut 2 -mediated RNA cleavage is responsible

for the majority of the knockdown observed. While the presence of

the luciferase sequence slightly decreased the rate of cell killing in

vitro, compared to the corresponding virus without luciferase, a

complete cytopathic effect was still achieved in permissive cells

after one extra day. This suggests that the fusion proteins retain all

essential E1A functions. This is perhaps unsurprising given that

E1A protein has been shown to still operate despite significant

deletions and insertions, lacking both enzyme activity and

significant secondary structure [17].

Wild-type Ad5 is normally capable of an abortive genome

replication cycle in murine liver in vivo, where it mediates

considerable and sometimes lethal hepatotoxicity [16,18]. It was

unclear whether microRNA regulation could successfully control

Ad5, since the DNA genome is not a direct target for microRNA

recognition and it is known that even small amounts of E1A

translation can lead to genomic replication, which will then

provide a template for more transcription providing a greater

challenge for microRNA control. Nevertheless, although E1A

production in mir-122-positive Huh7 cells in vitro was decreased

only about 95% following introduction of 4 mir-122-binding into

the E1A-luciferase reporter virus, in vivo luciferase imaging

suggested a greater suppression of E1A expression by mir-122,

showing a 50-fold differential after 6 h that rose to 80-fold after

96 h. This may reflect a higher expression of mir-122 in murine

hepatocytes in vivo than in human Huh7 cells. To complement the

E1A reporter luciferase data, hepatic replication and toxicity was

also assessed using wild-type Ad5 and compared with a ‘wild-type’

modified to contain four mir-122 sites (Ad-mir122). After 72 h the

serum ALT was decreased 15-fold for the microRNA-containing

version compared to wild-type, hepatic morphology showed far

less evidence of toxicity (most sections appearing normal) and the

number of viral genomes found in liver was decreased by a factor

of 25. These findings are consistent with those using the E1A-

Figure 6. Assessment of hepatotoxicity of wild-type Ad5 modified with microRNA binding sites. (A) Measurement of serum ALT (black
bars) and AST (grey bars) 72 h following intravenous administration of 561010 viral particles of wild-type Ad5 and Ad5-mir122. Analysis was
performed as described in the Methods section. (B) Adenovirus genomes in murine liver were measured by real time PCR 72 h following intravenous
administration of 561010 viral particles of wild-type Ad5 WT and Ad5-mir122, as described in the Methods section. (C) Assessment of liver histology.
The left liver lobe from each mouse was immersed in 10% buffered formalin overnight at room temperature, embedded in wax and sectioned using a
vibratome. Sections were stained with haematoxylin and eosin and analysed by light microscopy at 640 magnification. Mice were treated with PBS,
non-replicating E1, E3-deleted Ad5 expressing GFP (Ad5-GFP), wild-type Ad5, or wild-type Ad5 modified to contain 4 mir-122 binding sites, as
indicated. (*** P,0.0005).
doi:10.1371/journal.ppat.1000440.g006
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luciferase reporter viruses, and suggest that inclusion of the mir-

122-binding sites had a dramatic effect on hepatic activity and

toxicity of the virus. It is worth noting that in this study the viruses

were applied at dose in vivo (561010 vp/mouse), well above the

lethal dose for wild-type Ad5 [16], hence this regulatory strategy

appears capable of controlling the activity of significant quantities

of virus. Also of note is the ability of mir-122 in mouse liver to

tightly regulate the very high levels of E1A-luciferase fusion

protein achieved following hydrodynamic plasmid delivery

(Figure 3), some 10-fold higher than those shown by the viruses.

This suggests that the doses of virus used in this study do not even

come close to exceeding the regulatory capacity of mir-122. When

even higher virus doses were applied, the maximum tolerated dose

of Ad5-mir122 was estimated at between 661010 and

1.2e1011v.p/mouse (96109–1.861010 pfu), and such doses pre-

sumably allow the virus to break through regulation by hepatic

mir-122. Nevertheless these doses are high, affording a range of

doses where the virus may be applied therapeutically.

A similar approach, using three microRNA binding sites, has

recently been evaluated for regulating activity of CR2-deleted

adenovirus in vitro [19]. However, the authors concluded that

further attenuation was required in order to prevent CPE in Huh7

cells. The superior performance of the virus reported here may

reflect the presence of four microRNA binding sites (rather than

three) in the 39 UTR although it is also possible that Huh7 cells

have insufficient mir-122 to achieve the level of virus control seen

in primary hepatocytes.

MicroRNA-based virus regulation strategies should find a

variety of applications in biotechnology. Their small size (an

individual site is typically 22 bp) allows insertion of multiple

binding sites, recognising diverse microRNAs, without compro-

mising virus packaging efficiencies. In addition the small insertion

size and typical proximity to essential virus genes and regulatory

regions (e.g the E1A poly A signal) decreases the likelihood of

propagating deletions. Hence a range of stable and versatile agents

may be produced using this approach.

Tissue-selective abrogation of virus replication to prevent

unwanted pathology should find important applications in cancer

virotherapy and also in the production of a new generation of

attenuated vaccines for viral diseases. For example, introduction of

binding sites for mir122 into the Hepatitis A, B or Hepatitis E

genome should prevent replication in hepatocytes and abrogate

the main viral toxicity, whilst maintaining infection and possible

replication at other cellular sites. Such an approach could yield an

important new range of therapeutic vaccines, with applications

across the broad sphere of viral diseases.

Materials and Methods

Ethics statement
All animal experimentation was performed in accordance with

the terms of UK Home Office guidelines and the UKCCCR

Guidelines for the Welfare of Animals in Experimental Neoplasia.

Engineering of microRNA–regulated luciferase reporter
plasmids

Luciferase reporter plasmids sensitive to mir-122 were prepared by

introducing concatamers of binding sites for mir-122 (4 or 8 sense or 4

antisense binding sites) into the 39UTR of the luciferase transcription

cassette. A CMV-driven luciferase-expressing plasmid vector pCIK-

Lux (a kind gift from Dr Deborah Gill) was cleaved with NotI,

oligonucleotides were annealed at 95uC, cooled and ligated into

dephosphorylated vector. This produced vectors pCMV-Luc-mir

(shown in Figure 1), pCMV-Luc-mir122X8 and pCMV-Luc-

mir122anti, together with the control (hereafter referred to as

pCMV-Luc) which contained no mir-122 binding sites.

The coding region for the C terminal half of E1A was PCR

amplified using Accuprime PFX (Invitrogen) and primers (forward

ATT ATA AGA TCT GGA TAG CTG TGA CTC CGG TCC

TTC, reverse TAT TCC ATG GAT GGC CTG GGG CGT

TTAC) using a plasmid containing wild-type Ad5 as template. These

primers introduced unique BglII and Nco1 restriction sites to the 59

and 39 termini respectively. The purified PCR product was cleaved

with BglII and Nco1 and cloned into pCMV-Luc and pCMV-Luc-

mir described above, using the same enzymes, producing a fusion

between the C terminal half of E1A and luciferase, including zero or

four microRNA sites in the 39 UTR. These products were subcloned

using PshA1 and Hpa1 into a plasmid pAd5-Kpn1 (produced by

restriction of wild-type Ad5, see below) to produce plasmids (pE1A-

Luc and pE1ALuc-mir122) in which E1A was C-terminally fused to

the luciferase coding sequence. The overall scheme of plasmid

cloning is shown in Figure 1.

Cloning of microRNA–regulated wild-type Ad5
Wild-type Ad5 plasmid containing kanamycin resistance (a kind

gift from Dr Reuben Hernandez) was cleaved with BstZ17I and

recircularised by blunt ended ligation. This vector (Ad5-BstZ17I)

was then further cleaved and re-ligated using Kpn1 to increase the

number of unique restriction sites available for further cloning. This

vector is referred to as Ad5-Kpn1. The 4 microRNA binding sites

for mir122 were PCR amplified from pCMV-Luc-mir (described

above) to introduce Dra1 sites to each end. The purified PCR

product was cleaved with Dra1 and blunt end ligated into Ad5-

Kpn1 which was cleaved with Hpa1 in the E1A 39 UTR. Insertion

of microRNA binding sites downstream of E1A was confirmed by

DNA sequencing. Ad5-Kpn1-mir122 was reconstituted to Ad5-

BstZ17I using the Kpn1 gel-extracted fragment from Ad5-BstZ17I.

To generate full size adenovirus genome Ad5-BstZ17I-mir122 was

cleaved with BstZ17I, dephosphorylated and subject to homologous

recombination with full size wild-type Ad5 ampicillin resistant

vector (a kind gift from Dr Peter Searle) and selected on kanamycin.

Insertion of microRNA binding sites was confirmed by sequence

analysis. Restriction digestion of the resulting vector confirmed full

size adenovirus had been recovered.

Cloning of microRNA–regulated luciferase reporter based
on wild-type Ad5

pE1A-Luc-mir and pE1A-Luc (which are modified forms of

Ad5-Kpn1 described above) were reconstituted to Ad5-BstZ17I

using the Kpn1 gel-extracted fragments from Ad5-BstZ17I. To

generate full size adenovirus genome Ad5-BstZ17I-E1ALuc-

mir122 and Ad5-BstZ17I-E1ALuc were cleaved with BstZ17I,

dephosphorylated and subject to homologous recombination with

full size wild-type Ad5 vector (a kind gift from Dr Peter Searle) and

selected on kanamycin. Insertion of microRNA binding sites and

luciferase was confirmed by sequence analysis. Restriction digests

of the resulting vectors confirmed full size adenoviruses had been

recovered. Genomic structures and sizes of the viruses are shown

in Figure 4A.

Adenovirus preparations
All adenoviruses were grown in A549 cells, purified by double

banding in CsCl gradients with benzonase treatment after the first

banding. Viral particle (vp) number was determined by measuring

DNA content using a modified version of the PicoGreen assay

(Invitrogen, Paisley, UK) [20]. TCID50 calculated with the

KÄRBER statistical method [21] was used to estimate the
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adenovirus titer (TCID50 units/ml) and corrected to determine

plaque forming units/ml (pfu/ml). Adenovirus preparations

characteristics are as follows: Ad5 wild-type: 1.1361012 vp/ml,

1.9861011 pfu/ml and particle:infectivity (P:I) ratio of 5.6; Ad5-

mir122: 1.2961012 vp/ml, 2.0161011 pfu/ml and particle:infec-

tivity (P:I) ratio of 6.4. All virus preparations were screened for

endotoxin and verified negative prior to use.

Maintenance of cell lines
Human hepatocellular carcinoma HUH7 cells, A549 lung

carcinoma cells, OVCAR3 ovarian cancer cells and HEK293

human embryonic kidney cells were obtained from the European

Collection of Cell Cultures (Porton Down, UK), and maintained

in DMEM with 10% foetal bovine serum (FBS) (PAA Laborato-

ries, Yeovil, UK) including penicillin (25 U/ml) and streptomycin

(10 mg/ml).

Luciferase expression assays in vitro
Cells were seeded in triplicate in 12 well plates. After 24 h

plasmid DNA (0.5 mg) was added to 50 ml of HBS buffer and

mixed with 2.5 ml DOTAP reagent (Roche) also in 50 ml sterile

HBS. The complex was incubated at room temperature for

30 min. 100 ml of transfection mixture was added to each well and

incubated at 37uC for 4 h. Cells were washed with PBS and

incubated with DMEM containing 2% FBS. 24 h following

transfection media were removed and 150 ml reporter cell lysis

buffer (Promega) was added to the cells. Cells were then frozen at

280uC for .1 h before thawing. Luciferin (25 ml) (Promega,

Southampton, UK) was added to 25 ml aliquots of cell lysate and

relative luminescence was measured by luminometry (Lumat LB

9507, Berthold Technologies, Redbourn, UK).

Pre-mir 122 transfection
A549 cells were seeded at 56104 cells per well and incubated

overnight. Pre-mir122 (Ambion) and pre-mir negative control

(Ambion) were re-suspended to 50 mM and then further diluted 10

fold. 3 ml per well of this dilution of each pre-mir was added to 22 ml

Opti-MEM medium (Invitrogen). 2 ml per well of NeoFx transfec-

tion reagent (Ambion) was added to 23 ml Opti-MEM solution. Pre-

mir/Opti-MEM was mixed with the NeoFx/Optimem and allowed

to complex for 10 minutes. A549 cells were washed with PBS and

the transfection mixture added to cells at a total volume of 50 ml.

Total amount of pre-mir is 15 pmol/well. Immediately following

transfection Ad-E1A-Luc-mir122 was added at 10 vp/cell in 450 ml

DMEM media (10% FCS). 18 h later, 30 pmol/well of pre-cursor

mir122 and negative control pre-cursor microRNAs were added to

each well in addition to the 500 ml described above. Luciferase

readings were performed at 24 h.

Real time (quantitative) PCR (Q–PCR) for Ad5
The Q-PCR methodology for measurement of adenoviral

particles has been previously described [22]. Viral DNA from

infected cell or tissue samples were extracted using a mammalian

genomic DNA miniprep kit (Sigma). Reactions were performed

using Applied Biosystems master mix following the manufacturer’s

protocol. The cycles were as follows: 94uC 10 min; 40 times (94uC
30 s, 60uC 1 min). Primers sequences for targeting Ad5 fiber are:

FW- TGG CTG TTA AAG GCA GTT TGG (Ad5 32350–

32370 nt) and RV- GCA CTC CAT TTT CGT CAA ATC TT

(Ad5 32433–32411 nt) and the TaqMan probe- TCC AAT ATC

TGG AAC AGT TCA AAG TGC TCA TCT (Ad5 32372–

32404 nt), dual labeled at the 59 end with 6-carboxyfluorescein

and the 39 end with 6-carboxytetramethylrhodamine. The results

were analyzed with the Sequence Detection System software

(Applied Biosystems). Standard curves for tissues and cells were

prepared by spiking samples of cell lysate or tissue homogenate

with serial dilutions of known concentrations of virus particles and

then extracting and analysing each sample separately by Q-PCR

as described above.

Measurement of Serum Alanine Aminotransferase (ALT)
and Aspartate Aminotransferase (AST)

Blood was taken from mice by cardiac puncture and allowed to

clot (15 min, room temperature) and spun at 1200 g for 10 min.

Serum was isolated and immediately frozen at 220uC). Samples of

thawed serum (5 ml) were added to ALT reagent (995 ml, Micro-

genics) or AST reagent (995 ml, Microgenics) in a 1 ml quartz

cuvette, incubated at 37uC and the change in absorbance (340 nm)

per minute was monitored. Units of ALT and AST activity were

calculated according to the manufacturer’s instructions.

Assessment of hepatic expression of plasmids in mice
Plasmids were administered by hydrodynamic injection

(0.8 pmole/mouse, using a 10% body volume of PBS administered

over 5–10 s with a 27 gauge needle) into the tail veins of Balb/c

mice. Non-invasive measurement of luminescence was performed

after 8, 24 and 48 h using an IVIS 100 system (Xenogen, MA)

under isofluorane anaesthetic. Luciferin was administered by

intraperitoneal injection (15.8 mg/ml in PBS, 100 ml/mouse)

4 min prior to imaging. Flux levels were analyzed with Living

Image Software (Xenogen, MA).

Evaluation of the activity of adenoviruses containing
microRNA binding sites in vivo

Clodronate was a gift of Roche Diagnostics GmbH, Mannheim,

Germany. It was encapsulated in liposomes as described previously

[23]. Viruses were administered intravenously (unless otherwise

indicated) and all animals were pretreated with bisphosphonate

liposomes (100 ml/mouse, obtained from Dr Nico van Rouijen)

24 h before. For imaging expression of E1A encoded within

replication-competent Ad5, E1A-luciferase reporter viruses with

and without 4 binding sites for mir122 (Ad5-E1A-luc and Ad5-

E1A-luc-mir122) were injected intravenously to Balb/c mice

(561010 v.p./mouse). Animals were imaged after 6, 24, 48, 72 and

96 h as described above.

To study the ability of mir-122-binding sites included within

wild-type A5 to decrease hepatic replication of virus genomes and

tissue damage, 561010 v.p./mouse of Ad5WT and Ad5-mir122

were injected i.v. Animals were monitored twice daily and

sacrificed after 72 h for measurement of genome replication (by

QPCR) and assessment of pathology (by histological analysis).

Histology
The left liver lobe from each mouse was immersed in 10%

buffered formalin overnight at room temperature, embedded in

wax and sectioned using a vibratome. Sections were stained with

haematoxylin and eosin and analysed by light microscopy at 640

magnification.

Statistical analysis
In vitro data are expressed as the mean of 3 replicates 6standard

deviation unless otherwise stated. In vivo data are expressed as the

mean of four replicates 6standard deviation, except using the

plasmid pCMV-Luc-Mir for which n = 3. Significance was

evaluated using t-test and denoted on the graphs as * P,0.05,

** P,0.005, *** P,0.0005.
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