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Abstract

Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable
expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random
switching of the modA gene controls expression of a phase-variable regulon of genes (a ‘‘phasevarion’’), via differential
methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria
meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens.
Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed
that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant:
modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain.
ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13
methyltransferase in N. gonorrhoeae strain FA1090 was identified as 59-AGAAA-39. Mutant strains lacking the modA11, 12 or
13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding
mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated
or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially
expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional
studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have
distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm
formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common
strategy used by host-adapted bacterial pathogens to randomly switch between ‘‘differentiated’’ cell types.
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Introduction

The pathogenic Neisseria are host-adapted human pathogens

that pose a significant health problem worldwide. Neisseria

meningitidis colonizes the upper respiratory tract and causes

meningitis and septicemia. Neisseria gonorrhoeae colonizes the

genitourinary tract and can cause a spectrum of disease ranging

from uncomplicated mucosal infection to disseminated gonococcal

infection. There is no N. gonorrhoeae vaccine, and no fully protective

vaccine for N. meningitidis. Vaccine development has been

hampered due to the high frequency of antigenic and phase

variation of surface structures typical of these organisms.

Phase variation is the high frequency reversible on/off

switching of gene expression and is commonly mediated by

mutations in simple tandem DNA repeats in the open reading

frame or promoter region of genes encoding surface expressed

virulence determinants [1]. The independent, random switching

of these genes results in phenotypically diverse populations that

enables rapid adaptation to host environments and evasion of

immune responses [2]. While phase variation is typically

associated with genes encoding surface structures, several host-

adapted bacterial pathogens have methyltransferases (mod genes)

associated with type III restriction modification (R-M) systems

that contain simple tandem DNA repeats that have been proven

to phase vary (Pasteurella haemolytica [3], Haemophilus influenzae [4]

and Helicobacter pylori [5]) or predicted to phase vary (N. meningitidis,

N. gonorrhoeae [6,7], and Moraxella catarrhalis [7]), as reviewed in Fox

et al [8].
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R-M systems are ubiquitous in bacteria and confer protection to

the bacterial host against invasion by foreign DNA [9]. R-M

systems are classified into three groups; Types I, II or III on the

basis of subunit composition, DNA cleavage position, sequence-

specificity and co-factor requirements [10]. Type III systems are

composed of a methyltransferase (modification, mod) gene and an

endonuclease (restriction, res) gene, whose products form a two-

subunit enzyme – Mod and Res [11]. Type III systems are unusual

in that Res must form a complex with Mod to be functional [12],

however, Mod can function independently of Res [13]. The Mod

subunit contains several conserved motifs in the N- and C-terminal

regions and the central region contains the DNA-recognition

domain that dictates sequence specificity [14].

In H. influenzae, the random switching of the modA gene controls

expression of a phase variable regulon of genes (a ‘‘phasevarion’’),

via differential methylation of the genome in the modA ON and

OFF states [15]. This was the first report of the coordinated

random switching of a ‘‘regulon’’ of genes and, considering the

wide distribution of phase variable type III R-M systems, may

represent a widely used mechanism in bacterial pathogens [8]. In

this study we investigate the phase variable type III R-M systems

of pathogenic Neisseria to determine whether they play a role in

gene regulation and virulence.

Results

Multiple phase-variable type III R-M systems in
pathogenic Neisseria

To investigate whether the type III R-M systems of the

pathogenic Neisseria behave as a phasevarion [15], we first carried

out a phylogenetic analysis of mod genes associated with type III R-

M systems of N. meningitidis and N. gonorrhoeae. A comparison of the

available genome sequences revealed that each strain contains two

distinct phase variable mod genes, which we define as modA and

modB, that share only 37% similarity to each other along the full

length of the Mod deduced amino acid sequence. Both genes

contain tracts of simple tandem repeats, 59-AGCC-39 (modA) and

59-CCCAA-39 (modB), that mediate phase variation of mod gene

expression (Figure 1). ModA is highly homologous (.90% identity

along the length of the Mod deduced amino acid sequence

excluding the variable DNA recognition domain) to the mod gene

of H. influenzae strain Rd (HI1058/56) [4,15]. Differences in the

modA DNA recognition domain [14] (Figure 1) have previously

been observed in H. influenzae [16] with 17 distinct mod alleles

defined in this organism (modA1–17; [17]). The Neisseria modA

alleles present in the genome strains surveyed have the

designations modA11, 12 and 13 and share .94% similarity to

each other along the length of the Mod deduced amino acid

sequence, excluding the variable DNA recognition domain. Our

recent work also shows that the modA gene of H. influenzae and

Neisseria are essentially the same gene with evidence of horizontal

transfer of this gene in both directions between these organisms

[17]. Unlike modA, the modB gene appears to be specific to Neisseria

species. Two distinct modB alleles, modB1 and 2, distinguished by

differences in their DNA recognition domain, were also observed

(Figure 1). ModB1 and 2 share .95% similarity to each other

along the length of the Mod deduced amino acid sequence,

excluding the variable DNA recognition domain (which shares

,33% identity).

To investigate whether additional alleles of modA and modB are

present in these organisms, and to look at the distribution of mod

alleles and their repeat sequence type and number, sequence

analysis of a large, genetically diverse set of N. meningitidis and N.

gonorrhoeae isolates was performed. This analysis revealed that all

strains examined contained both modA and modB genes. Sequenc-

ing of the repeat region of the mod alleles revealed that the repeat

numbers vary in length between different strains, resulting in the

mod genes being in-frame (ON) or out-of-frame (OFF) for

expression, consistent with phase variation of the mod genes (Table

S1, Table S2). The N. gonorrhoeae strains contained either the

modA12 or modA13 allele, and only the modB1 allele. One strain was

found not to have a modB gene (Figure 1, Table S2).

A complete analysis of modA allele distribution was conducted in

N. meningitidis, which has a well characterized population structure

defined by multi locus sequence typing (MLST; [18]). The

complete 107 strain MLST modA survey revealed that the majority

of N. meningitidis strains had either the modA11 or modA12 allele,

with modA15 found in two strains and modA4 and modA18 found in

one isolate each (Figure 1, Figure 2A and 2B, Table S1). The most

notable associations were in capsule type, where 100% of

serogroup A strains and 92% of serogroup C strains contained

the modA12 allele (Table 1, Figure 2B). Some association with

clonal complex was also observed, with meningococci belonging to

the ST-32 clonal complex predominantly harbouring the modA11

allele. Further clustering could be seen among ST-41/44 and ST-8

clonal complexes. Unlike N. gonorrhoeae, which contained only one

type of modB allele, modB1, N. meningitidis strains contained either

modB1 or modB2. There were seven strains, all from the ST-32

group, which contained point mutations in modB1 suggesting the

gene is inactive in these strains (Figure 1, Table S1).

ModA expression and phase variation
The modA genes of N. meningitidis and N. gonorrhoeae have two

alternate initiation codons (Distal ATG and Proximal ATG) that

are predicted to code for proteins of either 589 aa/640 aa or 707

aa/758 aa, depending on the number of tetranucleotide repeats

that are present (Figure 3A). As this study is focused on modA phase

variation and expression, a clear understanding of the relationship

between tetranucleotide repeat number and modA expression was

established. ModA expression was examined in the three frames;

Distal, Proximal and OFF (which has no candidate ATG and a

stop codon immediately after the 59-AGCC-39 repeats), by

constructing a modA::lacZ reporter fusion in the N. meningitidis

strain MC58 chromosome (Figure 3A and Figure S1). Maximal

Author Summary

The pathogenic Neisseria are bacterial pathogens that
cause meningitis and gonorrhoea. They have adapted to
life exclusively in humans and have developed unique
strategies to colonize the host and to evade the immune
response. Central among these strategies are genetic
switches that randomly turn genes on and off. In most
cases, the genes controlled by these switches, contingency
genes, are required for making bacterial surface structures.
Recently we described a new class of contingency gene
that methylates DNA. Rather than affecting the synthesis
of a single surface structure, on/off switching of this DNA-
methyltransferase gene leads to random switching of
multiple genes. In this study, we have shown that this
mechanism exists in all pathogenic Neisseria, and alters
expression of multiple genes in all cases we examined. The
two distinct populations of bacteria generated by this
process had different behavior in model systems of
colonization and infection. Understanding this process is
key to understanding these human pathogens, and to
developing strategies for treatment and prevention of the
diseases they cause.

Phasevarions in Pathogenic Neisseria
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expression was found to be from the Distal ATG only and unlike

H. influenzae strain Rd [15], minimal expression was observed from

the Proximal ATG and the OFF frame (Figure 3B and 3C).

Natural modA ON and OFF colonies of N. meningitidis strain

MC58 and N. gonorrhoeae strain FA1090 were required for

microarray analysis and biological characterization experiments.

N. meningitidis strain MC58 has 21 59-AGCC-39 repeats resulting in

the modA11 gene being out-of frame (OFF) from the Distal ATG.

Single colonies of MC58 were picked and screened by PCR and

sequencing to find modA11 in-frame (ON) with the Distal ATG (see

Figure 3). Similarly, single colonies of N. gonorrhoeae strain FA1090

were picked and screened by PCR and sequencing to find modA13

in-frame and also out-of-frame with the Distal ATG. During this

process, ModA13 repeat tracts ranging from 13 (ON) to 26 (OFF)

and also 37 (ON) were observed, demonstrating phase variation of

N. gonorrhoeae strain FA1090 modA13 (results not shown).

Analysis of differentially expressed genes in N.
meningitidis modA11 and modA12 phasevarions

Having established the relationship between modA repeats and

modA expression (see Figure 3), we were in a position to conduct

studies to determine whether phase variation of the various modA

alleles in pathogenic Neisseria resulted in changes in gene

expression. These studies were initiated with N. meningitidis strain

MC58 modA11 gene, where the modA11 gene was inactivated by

insertion of a kanr cassette to make the mutant strain MC58

modA11::kan (Figure S2). Wild-type MC58 modA11 ON and MC58

modA11::kan were compared by microarray analysis using N.

gonorrhoeae/meningitidis genome arrays (Materials and Methods).

Initially, microarray analysis was performed using RNA isolated

from wild-type MC58 modA11 ON and MC58 modA11::kan strains

grown under standard culture conditions. However, these studies

revealed no statistically significant difference in gene expression.

Experiments were then performed in which N. meningitidis were

cultured under iron-limiting conditions to more closely reflect in

vivo conditions. Using this more physiologically relevant culture

condition, many genes were found to have an expression ratio of

1.5-fold and over, with 162 genes up-regulated in MC58

modA11::kan relative to wild-type and 123 genes down-regulated,

confirming modA11 phase variation has an influence on gene

expression (Table 2, Table S3). Five of these genes encode surface

exposed proteins, including NMB1540 (lbpA) and NMB1541

(lbpB), encoding LbpA and LbpB respectively, which are part of

the lactoferrin receptor that allows acquisition and binding of iron

from lactoferrin containing compounds. LbpA is the TonB-

Figure 1. Diagrammatical representation of the mod genes of N. meningitidis and N. gonorrhoeae. The methylase (mod) genes, restriction
endonuclease (res) genes, and repeat regions that mediate phase variation are indicated. Also shown are the conserved, characteristic motifs found
within type III R-M systems, which include in mod: the catalytic region (DPPY) and the AdoMet (methyl donor) binding pocket (FXGXG) [66,67], and in
res: the ATP binding motif (TGxGKT) the motif linked to ATP hydrolysis (DEAH), and the endonuclease domain [68–70]. The mod and res genes are
colored to indicate differences in homology between both mod genes and both res genes, respectively. A variable region within mod (highlighted in
stripes) contains the DNA recognition domain [14]. The percent distribution of the mod alleles in a N. meningitidis serogroup B collection and a N.
gonorrhoeae clinical isolate collection is shown to the right of each gene. Strains and accession numbers that define the mod alleles are shown to the
left. n indicates the number of repeats (refer to Table S1 and Table S2 for exact repeat numbers). A black circle on a line and black square on a line
indicate the position of a frame shift mutation and large deletion, respectively (Table S1 and Table S2). {, some modB1 strains contain a premature
stop codon after the DPP motif (Table S1). *, one N. gonorrhoeae strain does not have the modB gene. Others, minor/infrequent alleles.
doi:10.1371/journal.ppat.1000400.g001
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dependent integral outer membrane lactoferrin receptor and iron

transport channel. LbpB is an accessory lipoprotein anchored to

the outer membrane that contributes to lactoferrin binding/use

[19,20]. The lactoferrin receptor is a potential vaccine candidate

in N. meningitidis [21]. Quantitative real time PCR (RT-PCR) was

performed to confirm that the lbpA and lbpB genes were expressed

at a higher level in MC58 modA11::kan compared to the MC58

modA11 ON parent strain (see Figure 4A). Altered expression was

further confirmed by an lbpB::lacZ fusion (Figure S3) located on

the chromosome of each strain, which showed ,2-fold higher

expression in the modA11::kan mutant strain compared to the

modA11 ON parent strain (see Figure 4B). Consistent with this,

western blot analysis confirmed the effect of modA11 phase

variation on expression of LbpA, with an apparent reduction in

expression when modA11 is ON (Figure 4C). The same effect is

seen when comparing a wild-type modA11 ON strain to either a

modA11::kan mutant or a natural phase variant in which the

modA11 gene had switched OFF due to an alteration in the 59-

AGCC-39 repeat tract (from 22 to 21 AGCC repeats; see

Figure 4C), confirming the regulation of LbpA by ModA11 is

not related to the use of a kanr inactivated modA11 gene.

A similar microarray study was conducted using a N. meningitidis

modA12 clinical isolate, B6116/77. To determine whether phase

variable expression of the N. meningitidis strain B6116/77 modA12

Figure 2. Phylogenetic tree inferred from aligned modA genes belonging to a collection of 107 N. meningitidis isolates. More than 500
trees were generated using Clonalframe from which a 95% majority-rule consensus tree was derived and imported into MEGA version 4.0 for further
interpretation. (A) Each modA gene was annotated according to clonal complex. (B) Each modA gene was annotated according to the serogroup of
the corresponding isolate distinguishing modA12 genes belonging to capsule A meningococci.
doi:10.1371/journal.ppat.1000400.g002
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gene also led to alteration in global gene expression, the modA12

gene was inactivated by insertion of a kanr cassette to make the

mutant strain B6116/77 modA12::kan (Figure S2). Wild-type

B6116/77 modA12 ON and B6116/77 modA12::kan were compared

by microarray analysis using N. gonorrhoeae/meningitidis genome

arrays. Experiments were performed under the same conditions as

described above. Twenty six genes were found to have an

expression ratio of 1.5-fold and over, with 14 genes up-regulated in

B6116/77modA12::kan relative to wild-type and 12 genes down-

regulated, confirming modA12 phase variation has an influence on

gene expression (Table 2, Table S4). The set of genes differentially

expressed in the modA12 mutant were different to the modA11 set of

genes. This is consistent with the differences in the DNA

recognition domain between modA11 and modA12, and confirms

that these distinct alleles control different phasevarions in N.

meningitidis.

Analysis of differentially expressed genes in N.
gonorrhoeae modA13

An additional phasevarion study was conducted in N. gonorrhoeae.

In this case, a modA13 knockout mutant was constructed by

interrupting the modA13 gene with a kanr cassette (Figure S2).

Comparison of the phenotype of the FA1090 modA13::kan mutant

strain with wild-type FA1090 modA13 ON formed the basis of

expression and phenotypic studies.

Global gene expression was compared between wild-type

FA1090 modA13 ON and FA1090 modA13::kan under iron-limiting

conditions. 34 genes were up-regulated in FA1090 modA13::kan

relative to wild-type, and 20 genes were down-regulated (Table 2,

Table S5). Five of the differentially regulated genes have obvious

roles in virulence; four in oxidative stress and one in antimicrobial

resistance. NGO0929 (metF) and NGO0928 (metE) are part of the

MetFE operon, which plays a role in the methylation of

homocysteine, the final step of methionine biosynthesis, and is

involved in defence against oxidative stress [22]. NGO0554

encodes a gonococcal-specific hypothetical protein that is shown to

protect against damage caused by high levels of H2O2 [23].

NGO0650 (recN) encodes the DNA repair protein RecN. The

gonococcal RecN protein is demonstrated to be involved in DNA

repair and DNA transformation [24] and plays an important role

in H2O2 damage protection as well as resistance to killing by

polymorphonuclear leukocytes [25]. NGO1368 (mtrF) encodes the

inner membrane protein, MtrF, and has been shown to have a role

in antimicrobial resistance [26].

Our phylogenetic analysis revealed that N. gonorrhoeae strains

have one of two distinct modA alleles (modA12 or 13; see Figure 1),

indicating that different phasevarions may exist within N.

gonorrhoeae and that strains with the same mod allele may regulate

similar sets of genes. To determine if a strain with the same DNA

recognition domain as FA1090 (modA13 allele) would result in the

same set of genes being regulated, we chose a N. gonorrhoeae clinical

isolate, strain O1G1370, from a representative set of N. gonorrhoeae

strains (Table S2) that also contains a modA13 allele. A modA13::kan

knockout mutant was made using the same approach as described

for FA1090 (Materials and Methods). Quantitative RT-PCR on

the metF, mtrF and NGO1581 genes confirmed that metF and mtrF,

which are up-regulated in expression in the FA1090 modA13::kan

mutant, are also up-regulated in the O1G1370 modA13::kan

mutant (Table 2). NGO1581, which was down-regulated in the

FA1090 modA13::kan mutant, is also down-regulated in the

O1G1370 modA13::kan mutant (Table 2). Furthermore, similar

results were seen with quantitative RT-PCR on the same set of

genes when comparing a wild-type FA1090 modA13 ON strain to a

natural phase variant of FA1090 in which the FA1090 modA13

gene had switched OFF due to an alteration in the 59-AGCC-39

repeat tract (from 37 to 26 AGCC repeats) (Table 2), confirming

the regulation of this set of genes by ModA13 is not related to the

use of a kanr inactivated modA13 allele.

When we conducted microarray analysis of a N. gonorrhoeae

modA12 strain 96D551, comparison of 96D551 modA12 ON and

96D551 modA12::kan (OFF) strains revealed a distinct set of genes

being regulated compared to the modA13 data above (Table 1,

Table S6). These results are consistent with the differences in the

DNA recognition domain between modA13 and modA12 (see

below), and supports the idea that these distinct alleles control

different phasevarions in N. gonorrhoeae. However, unlike the

modA11, modA13 and modA12 (N. meningitidis) expression studies

described above, the 96D551 modA12 ON and 96D551 modA12::-

kan (OFF) strains showed a significant difference in growth rate for

the cultures used to make RNA (Figure S4D). We cannot rule out

the possibility that these differential growth rates may have

influenced the gene expression data in Table 1 and Table S6.

N. gonorrhoeae strain FA1090 ModA13 recognition site is
59-AGAAA-39

In all cases, phase variation or mutagenesis of modA of

pathogenic Neisseria results in altered gene expression, defining

these systems as functional phasevarions. In order to determine

whether the observed changes in modA expression correspond to

global changes in DNA methylation, thereby indicating this as the

likely mechanism of gene control, it was necessary to identify one

or more of the modA target sites. In addition to confirming global

changes in methylation, target site identification would also

facilitate future studies on the molecular mechanisms operating

at individual promoters within the phasevarion. In order to

identify methylation target sites, a strategy based on inhibition of

DNA restriction was used. In initial studies, plasmid pCmGFP was

isolated from N. gonorrhoeae or N. meningitidis modA11, modA12 or

modA13 ON strains and their corresponding modA::kan mutants,

and digested with a range of restriction enzymes known to be

inhibited by methylation of an adenine within their recognition

sequence (see Materials and Methods). Differences in digestion

patterns between plasmid extracted from modA ON cells (ModA

methylated DNA) and modA::kan cells (DNA not methylated by

ModA) would indicate an overlap of the respective ModA

methylated target and the restriction enzyme used. No such

fortuitous inhibition pairs were seen with modA11 or modA12

strains, but were with modA13. Figure 5A shows an obvious

difference in the restriction pattern of plasmid extracted from

modA13 ON and modA13::kan cells, indicating overlap between the

ModA13 site and ApoI. The recognition sequence of ApoI is 59-

RAATTY-39. The specific ApoI site displaying inhibition (59-

Table 1. Distribution of modA alleles in the N. meningitidis
MLST strain collection by serogroup.

Serogroup

A B C Y W Other

modA4 0 1 (2%) 0 0 0 0

modA11 0 16 (33%) 1 (8%) 0 0 0

modA12 37 (100%) 29 (59%) 11 (92%) 2 (100%) 1 (100%) 4 (100%)

modA15 0 2 (4%) 0 0 0 0

modA18 0 1 (2%) 0 0 0 0

doi:10.1371/journal.ppat.1000400.t001
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AAATTC-39) was not unique on the plasmid. Comparison

between the inhibited ApoI site and other ApoI sites whose

sequence was also 59-AAATTC-39 revealed that the overlap with

ModA13 must be 59 to the ApoI site. As seen in Figure 5B,

methylation of the different adenines in the ApoI recognition site

inhibits digestion to varying degree. Since over-digestion did not

result in the 722 bp band being cleaved into the two smaller

fragments, it can be assumed that the first adenine of the ApoI

sequence was not the methylation target, as methylation of this

adenine would result in only 10% inhibition of restriction [27], an

effect which could potentially be overcome by over-digestion.

Therefore, depending on which of the other two adenines was

methylated, the ModA13 recognition sequence must be found

within 59-CAGAAA-39.

To confirm which adenine is the ModA13 methylation target,

and to further specify the ModA13 recognition sequence, overlaps

of the putative ModA13 recognition sequence and ApoI restriction

sites were identified on the FA1090 chromosome. Chromosomal

DNA was extracted from FA1090 modA13 ON and FA1090

modA13::kan cells, digested with ApoI and examined by Southern

blot. Inhibition of ApoI restriction at the internal ApoI/ModA13

overlap results in the presence of one large band at 3408 bp, while

the unmethylated DNA (modA13::kan) is cleaved at this site by ApoI

into two smaller bands of 2500 and 908 bp (Figure 5C). This

Figure 3. Differences in Mod expression from alternate initiation codons. A chromosomally located modA::lacZ reporter fusion in N.
meningitidis strain MC58 was used to determine expression from all three possible reading frames generated by different repeat numbers. (A)
Schematic diagram showing that translation of the mod gene could be initiated from one of three frames (Distal, Proximal, or Off) depending on the
number of 59-AGCC-39 repeats. (B) Phenotypic differences of colonies from each reading frame as observed on brain–heart infusion (BHI) S-gal plates.
The arrow shows a phase variant colony that has switched from Distal to OFF. (C) b-galactosidase assay showing quantitative differences in the level
of mod gene expression between Distal, Proximal, and Off. A unit is defined as mg of O-nitrophenyl hydrolyzed per min–1. A Student’s t-test
confirmed a significant difference between expression of Distal and Proximal (p = 0.0024). A small difference was observed between Proximal and OFF
(p = 0.0146), but this can be accounted for by phase variation in the population of the modA11 gene from OFF to ON.
doi:10.1371/journal.ppat.1000400.g003

Phasevarions in Pathogenic Neisseria
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Table 2. A selection of differentially expressed genes from microarray expression studies.

Gene ID Description Ratio QRT-PCR B-Stat

Reduced expression in N.
meningitidis modA11 mutant

NMB0144 50S ribosomal protein L23 0.40 0.5860.16 4.99

NMB0144 30S ribosomal protein S3 0.40 0.4060.06 5.44

NMB0148 30S ribosomal protein S14 0.46 0.5760.08 3.41

Increased expression in N.
meningitidis modA11 mutant

NMB0014 3-deoxy-D-manno-octulosonic-acid transferase 2.97 2.4660.50 5.89

NMB1540 Lactoferrin-binding protein A 2.33 3.3960.47 5.51*

NMB1541 Lactoferrin-binding protein B 2.22 2.2660.63 4.10{

NMB1898 Lipoprotein 2.48 2.2460.58 4.32

Reduced expression in N.
meningitidis modA12 mutant

NMA1581 Membrane lipoprotein 0.72 0.6560.14 4.35

Increased expression in N.
meningitidis modA12 mutant

NMB0950 Succinate dehydrogenase, flavoprotein subunit 1.67 5.21

NMB0951 Succinate dehydrogenase, iron-sulfur protein 1.83 2.6160.46 2.90

NMB1206 Bacterioferritin B 1.42 2.1460.35 2.48

NMB1403 FrpA-C-related protein 1.69 5.11

NMB1405 FrpA-C-related protein 1.73 2.2160.49 4.25

Reduced expression in N.
gonorrhoeae modA12 mutant

NGO2090 Putative ABC transporter, permease protein, enterobactin 0.44 1.72

NGO2092 Ferric enterobactin periplasmic binding protein 0.62 0.61

NGO2093 FetA 0.24 2.5060.056 2.51

Increased expression in N.
gonorrhoeae modA12 mutant

NGO0365 Site-specific DNA-methyltransferase M.NgoVII 1.78 0.74

NGO0364 Restriction endonuclease R.NgoVII 1.60 0.33

NGO0861 Hypothetical protein 2.43 2.01

NGO0860 Hypothetical protein 2.03 1.64

Reduced expression in N.
gonorrhoeae modA13 mutant

NGO1581 Phosphate permease, putative 0.29 0.20860.051 8.53

NGO1931 Glyceraldehyde-3-phosphate dehydrogenase, typeI 0.37 0.41560.06 5.10

NGO2066 Pilin silent gene cassette 0.42 5.11

NGO0554 Hypothetical protein 0.49 0.22860.04 2.56

Increased expression in N.
gonorrhoeae modA13 mutant

NGO0318 DNA repair protein 1.98 2.02

NGO1368 Antibiotic resistance efflux pump component 2.20 13.4360.7631 5.51

NGO0340 Cysteine synthase 2.23 4.20

NGO0372 Amino acid ABC transporter, periplasmic binding protein 2.27 5.3061.18 3.28

NGO0373 Amino acid ABC transporter, permease protein 3.01 7.2460.588 5.47

NGO0374 Amino acid ABC transporter, ATP-binding protein 2.81 3.8360.616 7.14

NGO0656 oxalate/formate antiporter 2.39 3.0460.708 6.04

NGO0655 Exodeoxyribonuclease VII, large subunit 3.16 5.91

NGO0650 ATP-dependent RNA helicase, 3.14 6.62

NGO0198 Ammonium transporter 3.18 5.4460.630 6.45

NGO0927 Neisseria specific protein conserved hypothetical protein 2.93 6.1960.629 2.46

NGO0928 5-methyltetrahydropteroyltriglutamate 3.01 10.8960.493 6.59

NGO0929 5,10-methylenetetrahydrofolate reductase 4.92 20.1660.4101 8.32

The genes listed are either downregulated or upregulated in the N. meningitidis MC58 modA11::kan mutant, N. meningitidis B6616/77 modA12::kan mutant, N.
gonorrhoeae 96D551 modA12::kan mutant, or N. gonorrhoeae FA1090 modA13::kan mutant (refer to Table S3, Table S4, Table S5, and Table S6 for a complete list of
downregulated or upregulated genes in the N. meningitidis modA11 and modA12 mutants and N. gonorrhoeae modA12 and modA13 mutants). The identity of the gene
is indicated with the gene ID in the annotation of the N. meningitidis strain MC58 genome, N. meningitidis strain Z2491 genome, or N. gonorrhoeae strain FA1090
genome (TIGR). The average ratio presented is the mean of N. meningitidis MC58 modA11::kan mutant: wild-type MC58 modA11 ON and N. meningitidis B6116/77
modA12::kan mutant: wild-type B6116/77 modA12 ON, or the mean of N. gonorrhoeae 96D551 modA12::kan mutant: wild-type 96D551 modA12 ON and N. gonorrhoeae
FA1090 modA13::kan mutant: wild-type FA1090 modA13 ON, from six replicate spots on three independent microarrays, incorporating a dye swap. Only those genes
with an expression ratio above 1.5-fold were included in this study.
*Confirmed by Western blot (Figure 4C).
{Confirmed by b-galactosidase assay (see Figure S3 and Figure 4B).
1Quantitative RT-PCR (qRT-PCR) was also done with N. gonorrhoeae strain O1G1370 wild-type modA13 ON and O1G1370 modA13::kan mutant. Results are as follows:
NGO1581; 0.52460.101, mtrF; 4.5960.264, metF; 3.5160.805. Gene expression confirmed by qRT-PCR in a natural FA1090 modA13 ON and FA1090 modA13 OFF strain.
Results are as follows: NGO1581; 0.09060.101, mtrF; 17.1160.956, metF; 3.5160.477.

doi:10.1371/journal.ppat.1000400.t002
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confirms that ApoI restriction can be inhibited in DNA methylated

by ModA13, as shown by the plasmid digest (Figure 5A). Similar

studies were done with three other ApoI restriction sites in the

genome that overlap ModA13 with 59-TAGAAA-39, 59-GA-

GAAA-39 or 59-AAGAAA-39. In each of these cases, ApoI

restriction of ModA13 methylated DNA was inhibited compared

with DNA extracted from modA13::kan cells (data not shown). This

confirms the ModA13 recognition sequence to be 59-AGAAA-39.

To identify which of the two potential adenines in 59-AGAAA-

39 is methylated, ModA13 recognition sequences in the FA1090

chromosome were identified which overlapped with restriction

enzymes other than ApoI and were known to be inhibited by

methylation of adenines. Two of these enzymes were HindIII (59-

AAGCTT-39) and AluI (59-AGCT-39). Although the recognition

sequence of HindIII contains two adenines (Figure 5E), both these

adenines are part of the ModA13 recognition sequence.

Methylation of the adenine in the AluI recognition sequence is

known to result in complete inhibition [28]. When chromosomal

DNA digested with AluI is probed using a PCR product containing

an AluI/ModA13 overlap (Figure 5D) no difference in restriction is

seen between the modA13 ON and modA13::kan lanes, indicating

that the common adenine in this overlap is not methylated by

ModA13. This suggests that ModA13 methylates AGAAA on the

second most 39 adenine of recognition site 59-AGAAA-3.

Information on the sensitivity of HindIII to hemimethylation is

only known for the 59 adenine of the HindIII recognition site.

Hemimethylation of this adenine results in a 95% inhibition of

restriction [27]. Using a random site in the FA1090 genome where

the overlap between the ModA13 target site and HindIII resulted

in the 59 adenine of HindIII site corresponding to the second last

adenine of the AGAAA (see Figure 5E) we were able to determine

whether this was the residue methylated by ModA13. The results

shown in Figure 5E confirm the expected restriction inhibition

phenotype [27] allowing us to conclude that the ModA13

methylation site is AGAAmA, with the methyl group being added

to the third adenine in the sequence.

Having established the ModA13 target sequence, we tested

DNA derived from a modA12 strain and confirmed that the

ModA12 target site was distinct as there is no difference between

modA12 ON and modA12::kan (OFF) DNA in a ModA13/ApoI

inhibition assay (Figure 5F). Analysis of the FA1090 genome has

revealed a total of 5135 ModA13 target sites.

The role of the N. gonorrhoeae modA13 phasevarion in
model systems

To determine whether the phasevarion mediated changes in

gene expression correspond to altered phenotypes in model

systems, we chose to focus on the modA13 allele of N. gonorrhoeae.

Figure 4. Analysis of wild-type MC58 modA11 ON, MC58 modA11 OFF, and MC58 modA11::kan for LbpA and LbpB expression. (A)
Quantitative RT-PCR of lbpA and lpbB expression. Relative gene expression of lbpA and lbpB is higher in the MC58 modA11::kan mutant compared to
wild-type MC58 modA11 ON. (B) Effect of modA11 phase variation on expression of the lbpB gene. b-galactosidase assays showed a statistically
significant difference in the level of lbpB::lacZ gene expression resulting from modA11 repeat tract changes. A 1.9-fold difference in expression was
observed between modA11 ON and modA11 OFF. P-values were calculated using a Student’s t-test (C). The LbpA specific monoclonal antibody 296-
H1 was used to assess expression of LbpA. The positions of molecular weight standard proteins are shown on the right in kilo Daltons (kDa). The left
panel shows coomasie-stained wild-type MC58 modA11 ON, phase-variant MC58 modA11 OFF, and MC58 modA11::kan whole cells to show equal
loadings of cell extracts. The right panel shows the Western blot of wild-type MC58 modA11 ON, phase-variant MC58 modA11 OFF, and MC58
modA11::kan whole cells probed with a monoclonal LbpA specific antibody.
doi:10.1371/journal.ppat.1000400.g004
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Several model systems were available from our previous studies on

oxidative stress, biofilm formation and bacterial - host cell

interactions [29–32]. Furthermore, strains FA1090 and

O1G1370 provided an opportunity to test the reproducibility of

key phenotypes in two independent modA13 strains.

Phasevarion switching alters resistance to an
antimicrobial agent

Previous studies using N. gonorrhoeae strain FA19 demonstrate

that mtrF is required for induction of high-level antimicrobial

resistance to Triton X-100 by gonococci [33]. Our data show that

MtrF expression is up-regulated in the modA13 mutant relative to

the wild-type under iron-limiting conditions. To test whether

differences in antimicrobial-resistance could be observed between

wild-type FA1090 modA13 ON and the FA1090 modA13::kan

mutant, an antimicrobial-resistance assay was performed using

increasing Triton X-100 concentrations (Figure 6A). The FA1090

modA13::kan mutant was found to be more resistant than wild-type

FA1090 modA13 ON, consistent with the higher level of expression

of MtrF in this modA13 OFF strain. As modA13 ON is free to phase

vary to OFF, and OFF cells appear to be fitter in this assay, the

status of modA13 expression was monitored by PCR with

fluorescent primers across the repeat region to determine whether

ON to OFF phase variants had been selected in the survivor

colonies at various Triton X-100 concentrations. This analysis

revealed that the FA1090 modA13 ON culture plated on zero

Triton X-100 remained ON, with only 11.21% OFF cells.

However, cells plated on increasing Triton X-100 concentrations

changed to 46.99% OFF, 80.29% OFF and 80.15% OFF over the

course of the assay for 40, 50 and 60 mg/ml Triton X-100,

respectively (Figure 6B).

Phasevarion switching alters efficiency of biofilm
formation in modA13 strains

A number of studies have shown that N. gonorrhoeae can form a

biofilm in a continuous-flow chamber and over primary human

genital tract epithelial cells in culture [30,31]. Biofilms provide a

number of advantages in survival of the bacteria. It is suggested that

biofilm formation by N. gonorrhoeae may contribute to its ability to

persist in an asymptomatic state in the female genital tract [34]. In

addition, bacteria within biofilms show increased resistance to

antimicrobial agents [35,36] and links between biofilm formation

and oxidative stress defenses have been observed in N. gonorrhoeae [30].

The ability of N. gonorrhoeae O1G1370 modA13 ON, O1G1370

modA13 OFF and O1G1370 modA13::kan (OFF) to form a biofilm

was evaluated after two days of growth under continuous flow

conditions. Three-dimensional images of these biofilms were

created in Volocity (Materials and Methods). These images show

that O1G1370 modA13::kan and modA13 OFF form a thick and

dense biofilm, while O1G1370 modA13 ON forms an extremely

weak biofilm with a few sparse patches of cells scattered across the

surface of attachment (Figure 7A). The O1G1370 modA13 ON

strain also formed biofilms with lower maximum thicknesses than

the O1G1370 modA13::kan and O1G1370 modA13 OFF strains.

(Figure 7D). Scanning electron microscopy of the surface of the

biofilm taken at 5,0006 magnification shows that there are gaps

between clusters of biofilm in the O1G1370 modA13 ON strain,

unlike the O1G1370 modA13 OFF and O1G1370 modA13::kan

strain biofilms, where there are no areas where the glass surface of

attachment is visible. There are also large areas where no biofilm is

present in the O1G1370 modA13 ON samples (Figure 7B).

Scanning electron microscopy taken at 15,0006 magnification

shows that O1G1370 modA13::kan and O1G1370 modA13 OFF

form biofilms that are tightly enmeshed in an extracellular

material that obscures the structure of individual cells, while cells

in the modA13 ON biofilm are clearly distinguishable (Figure 7C).

Transmission electron microscopy shows that O1G1370 modA13::

kan forms a biofilm where individual cells are shedding copious

amounts of membrane, as seen in the numerous enclosed

membrane blebs on the surface of the cells, while there is no

evidence of blebbing in the O1G1370 modA13 ON biofilm. Cells in

the O1G1370 modA13 OFF biofilm also appear to be blebbing, like

those in O1G1370 modA13::kan biofilm, as numerous blebs can be

seen forming on the surface of the O1G1370 modA13 OFF strain.

These electron micrographs suggest that the extracellular matrices

of the O1G1370 modA13::kan and O1G1370 modA13 OFF biofilms

may be at least partially composed of fused membrane blebs

(Figure 7C). COMSTAT [37] was used to quantitatively assess the

biomass, and average and maximum thickness of confocal z-series

photomicrographs taken for each flow chamber. COMSTAT

analysis showed that the O1G1370 modA13::kan and O1G1370

modA13 OFF strains form significantly thicker biofilms with

significantly more biomass than the O1G1370 modA13 ON strain.

Specifically, O1G1370 modA13 ON had 3.5% of the biomass and

4.2% of the thickness of the O1G1370 modA13::kan mutant on

average and 4.7% of the biomass and 5.2% of the thickness of the

O1G1370 modA13 OFF (Figure 7E). Similar results were observed

using N. gonorrhoeae strains FA1090 modA13 ON and FA1090

modA13::kan (Figure S5).

ModA13 phase variation results in the altered fitness of N.
gonorrhoeae strain O1G1370 to survive within primary
human cervical epithelial cells

The use of primary human cervical epithelial (pex) cells as a

model system of gonococcal cervicitis is well established and has

been used in a number of studies, such as the examination of the

role of oxidative stress regulators in host-pathogen interactions

[29,32]. To determine the biological significance of O1G1370

Figure 5. Identification of the ModA13 recognition methylation target sequence. (A) ApoI restriction digest of plasmid pCmGFP isolated
from FA1090 modA13 ON and FA1090 modA13::kan cells. The modA13 ON lane shows the presence of a 722-bp fragment that results from lack of
restriction at a single ApoI restriction site. In the modA13::kan lane, this fragment is cut into fragments of 527 and 195 bp. (B) The ApoI recognition
sequence showing percentage inhibition of restriction by methylation of each adenosine as indicated by REBASE [27], and a schematic diagram of the
722 bp pair fragment showing the ApoI recognition site, overlapping with a putative ModA13 recognition site. The central panels show Southern
blots of chromosomal DNA extracted from modA13 ON and modA13::kan FA1090 cells. (C) DNA digested with ApoI and probed with a PCR product
containing an ApoI/AGAAA overlap showed inhibition of digestion in the modA13 ON lane compared to the modA13::kan lane. (D) DNA digested with
AluI and probed with a PCR product containing an AluI/AGAAA overlap showing no difference in restriction between the modA13 methylated and
unmethylated chromosomes. (E) DNA digested with RsaI and HindIII, and probed with a PCR product containing a HindIII/AGAAA overlap, showed
restriction is inhibited in the modA13 ON lane as compared to the modA13::kan lane. Below each blot is the recognition site for each of the restriction
enzymes used, and their known sensitivities to adenosine methylation as supplied by REBASE in the case of ApoI and HindIII [27]. Schematics of the
probes used in each blot include the coordinates of the FA1090 genome to which the primers bind (see Table S7) and the overlap of the restriction
enzyme recognition sequence with that of ModA13. (F) Chromosomal DNA extracted from N. gonorrhoeae strains FA1090 modA13 ON, modA13 OFF,
modA13::kan, and 96D551 modA12 ON and modA12::kan cells, digested with ApoI and probed as in (C).
doi:10.1371/journal.ppat.1000400.g005
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modA13 expression using this pex cell culture model, we performed

quantitative association, invasion, and survival assays using

O1G1370 modA13 ON, O1G1370 modA13 OFF, and O1G1370

modA13::kan mutant gonococci (Figure 8). These data revealed that

there was no significant (P$0.2338) difference in the ability of the

O1G1370 modA13 OFF and O1G1370 modA13::kan strains to

adhere to, invade, or survive within pex cells. This confirmed that

the modA13::kan knockout allele behaves in the same way as a

natural phase variant modA13 OFF strain. In contrast, behavior of

the O1G1370 modA13 ON strain was significantly (P#0.001)

different from that obtained with the use of either the O1G1370

modA13 OFF or O1G1370 modA13::kan strains in parallel assays. In

this regard, a modA13 ON phenotype resulted in the increased

ability of gonococci to associate with pex cells, whereas a modA13

OFF configuration augmented the ability of gonococci to invade

(Figure 8A, invasion index) and survive within pex cells following

invasion (Figure 8A, survival index). These data suggest a possible

role for Mod-dependent phase variation in promoting the adaptive

changes required for gonococci to switch from an extracellular to

an intracellular existence. This idea is supported by our

observation of selection for a switch from ON to OFF in the

O1G1370 modA13 ON strain. Fragment analysis confirmed that

the O1G1370 modA13 ON inoculum, which contains only 5.86%

OFF, changes to ,49.84% OFF by the time the 3 hour

intracellular survival sample was taken (Figure 8B, Table S9).

An independent N. gonorrhoeae modA13 strain, 1291, displayed the

same intracellular survival and modA13 switching phenotype

(Figure S6).

Discussion

The pathogenic Neisseria are the archetypal organisms for the

study of phase variation. Simple tandem repeats are typically

associated with individual genes involved in biosynthesis of a

surface component, such as an outer membrane protein, or a poly-

or oligosaccharide. The consequence of hyper-mutation of these

simple tandem repeats is phase variable expression of these genes,

i.e., the presence or absence of a single component on the surface

of the cell. Independent, random switching of many different

phase variable genes encoding these surface structures leads to a

combinatorial effect generating a huge number of alternate

combinations of surface components. Phase variation, in conjunc-

Figure 6. Comparison of wild-type FA1090 modA13 ON and FA1090 modA13::kan mutant in an antimicrobial resistance assay. (A)
Wild-type FA1090 modA13 ON and FA1090 modA13::kan mutant cells were serially diluted and spotted onto GC plates containing increasing
concentrations of Triton X-100 (x-axis) for determination of viable colony-forming units (y-axis). The white bars correspond to wild-type FA1090
modA13 ON, and the black bars correspond to FA1090 modA13::kan. A Student’s t-test showed a significant difference between the two samples
(P#0.021) at each of the following concentrations of Triton X-100; 40 mg/ml, 50 mg/ml, 60 mg/ml, and 80 mg/ml. (B) Shows the ratio of FA1090
modA13 ON to FA1090 modA13 OFF at each of the following concentrations of Triton X-100: 0 mg/ml, 40 mg/ml, 50 mg/ml, 60 mg/ml, and 80 mg/ml
for FA1090 modA13 ON. {, a statistically significant difference was seen in the ON/OFF ratio between FA1090 modA13 ON 0 mg/ml Triton X-100 and
the following FA1090 modA13 ON Triton X-100 concentrations: 40 mg/ml, 50 mg/ml, 60 mg/ml, indicating a selection to OFF organisms at these
concentrations. N/D indicates not done. Calculations are shown in Table S8.
doi:10.1371/journal.ppat.1000400.g006
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Figure 7. Biofilm formation by N. gonorrhoeae strain O1G1370 modA13::kan, modA13 OFF, and O1G1370 modA13 ON. (A) Confocal
microscopy of the biofilm mass over 2 days of growth for (1) N. gonorrhoeae O1G1370 modA13 ON, (2) O1G1370 modA13::kan, and (3) O1G1370
modA13 OFF. These images are three-dimensional reconstructions of stacked z-series taken at 2006magnification, which were rendered by Volocity.
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Figure 8. N. gonorrhoeae O1G1370 association with, and intracellular survival within, primary human cervical epithelial (pex) cells.
Pex cells were challenged with N. gonorrhoeae strain O1G1370 as outlined in the text. Data shown represent the invasion index (left panel) or the
survival index (right panel) following challenge of pex cells as outlined in the text. The invasion index represents the percentage of pex cell–
associated gonococci that survive gentamicin treatment; whereas the survival index is the percentage of invasive gonococci that survive,
intracellularly, within pex cells at 3 h post-invasion. There was no significant difference between the naturally occurring O1G1370 modA13 OFF isolate
and the O1G1370 modA13::kan ‘‘knockout’’ strain in either the invasion (P = 0.091) or survival (P = 0.23) indices observed. A statistically significant
difference (*) was obtained in the invasion (P = 0.046) and survival (P = 0.021) indices when comparing O1G1370 modA13 OFF to O1G1370 modA13
ON, and in the invasion (P = 0.019) and survival (P = 0.004) indices when comparing O1G1370 modA13::kan to O1G1370 modA13 ON. P-values were
determined using a Student’s t-test. (B) Shows the ratio of O1G1370 modA13 ON to O1G1370 modA13 OFF of the inoculum, and at the invasion and
survival time points for O1G1370 modA13 ON and O1G1370 modA13 OFF. {, a statistically significant difference was seen in the ON/OFF ratio between
the O1G1370 modA13 OFF inoculum and the O1G1370 modA13 OFF survival sample (P = 0.0234), indicating a selection for OFF organisms over the
course of the 3-h assay (for full data, see Table S8).
doi:10.1371/journal.ppat.1000400.g008

These experiments were performed in quadruplicate on three different occasions, and representative images are shown. (B) Scanning electron
microscopy of the surface of the biofilm mass over 2 days of growth on glass taken at 5,0006magnification. It can be noted that there are fewer cells
in the O1G1370 modA13 ON biofilm than either the O1G1370 modA13::kan or O1G1370 modA13 OFF biofilms. (C) Scanning electron microscopy of
the surface of the biofilm mass over 2 days growth on glass taken at 15,0006magnification. (D) Transmission electron microscopy of 70 nm thin-
sections of the biofilm mass over 2 days of growth on glass taken at 10,0006magnification. (E) COMSTAT analysis of biomass, average, and maximum
thickness of confocal z-series images of the O1G1370 modA13::kan, O1G1370 modA13 OFF, and O1G1370 modA13 ON biofilms grown for 2 days over
glass, which are depicted in (A). COMSTAT was performed for all replicates, and results are as shown. Statistical significance was determined using a
Student’s t-test. There was no statistically significant difference between the biomass, average, or maximum thickness of the O1G1370 modA13::kan
and O1G1370 modA13 OFF strains.
doi:10.1371/journal.ppat.1000400.g007
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tion with antigenic variation of the major antigen pili [38], leads to

evasion of host immune responses. The distinction between the

phasevarion and typical phase variation of genes encoding surface

factors is that the ON/OFF switching of the phasevarion

methyltransferase mediates expression changes in multiple genes

in a coordinated manner [15].

Our phylogenetic studies on the mod genes of a collection of

pathogenic Neisseria strains reveal that differences in the DNA

recognition domain within the mod gene results in distinct mod

alleles. R-M systems show extreme diversity in their DNA

sequence recognition specificities. DNA sequence specificity in

type III R-M systems is conferred by the Mod subunit [14]. Based

on differences in the DNA recognition domain, three major modA

alleles were found - modA11, modA12, modA13, and two distinct

modB alleles were found - modB1 and modB2. This suggests the

possibility that multiple phasevarions exist within the pathogenic

Neisseria, each regulating a different set of genes. Furthermore, as

each strain has both modA and modB, and these genes switch

independently, there are four potential combinations of mod gene

expression (ON/ON;ON/OFF;OFF/ON;OFF/OFF). We con-

firmed that two strains with the same DNA recognition domain

(modA13 allele) regulated the same set of genes, while, N. meningitidis

modA11 and modA12 were found to regulate the expression of

different sets of genes, consistent with differences in their DNA

recognition domain. In this study we also identified the recognition

sequence for ModA13 as 59-AGAAmA-39. In all, five randomly

selected sites were tested for ModA13 inhibition of digestion in

genomic DNA from modA13 ON and OFF strains. All five sites

tested displayed the expected inhibition of digestion phenotype

(with either ApoI or HindIII), supporting the hypothesis that when

expressed, ModA13 methylates all AGAAA sites in the genome,

and thereby indicating this as the likely mechanism of gene

control. Identification of the ModA13 target site is facilitating

current studies on the molecular mechanism of regulation

operating in the promoters of genes controlled by the modA13

phasevarion (see Figure S7).

Gene regulation through the methylation of specific DNA

sequences by methyltransferases has been reviewed [39,40], but

has focused on the role of Dam methylation. Dam methylation has

been reported to be essential for bacterial virulence. In Salmonella

species, dam mutants are highly attenuated for virulence and have

been proposed as live vaccine candidates [41–43]. In addition,

mutations in Dam attenuate the virulence of several other

pathogens [44–46]. In these studies the mechanisms of attenuation

(genes regulated) are unknown. In contrast, there are a few well-

established examples of Dam mediated phase variation of genes

encoding individual virulence factors[47–49], for example the

pyelonephritis-associated pilus (pap) operon in uropathogenic

Escherichia coli [47,50,51]. The fundamental characteristic of these

DNA-methylation-dependent phase variable systems is that the

target site’s methylation state affects the DNA binding of a

regulatory protein, which directly regulates transcription. The key

point to note is that the Dam methyltransferase itself does not

phase vary, nor are there any examples of Dam itself being

regulated by an environmental signal. These systems are not

analogous to phasevarions, but do provide examples of how DNA

methylation may alter gene expression at a bacterial promoter. In

the case of N. meningitidis, most strains have been found to be dam

negative [52], as are all of the N. meningitidis and N. gonorrhoeae

strains used in expression profile analysis and functional assay in

this study (result not shown).

The question of whether the phase variable mod genes are

associated with a functional type III restriction system remains to

be fully resolved. In H. influenzae we have reported inactivating

mutations in the res gene that is required for restriction function in

strains containing phase variable mod genes [17]. We propose that

in these cases the R-M system function has been lost and that the

modA gene is dedicated to a gene regulation function. We have

observed a similar inactivating mutation in the res gene associated

with modA11 of N. meningitidis (Table S2), and in N. gonorrhoeae, a

250 aa in-frame deletion has been observed in the res gene

associated with modA11 and modA12 (see Table S3), supporting a

dedicated gene regulation function for mod genes in pathogenic

Neisseria.

Several of the genes regulated by the modA11 phasevarion of N.

meningitidis strain MC58 are outer membrane proteins, including

the vaccine candidates LbpA and LbpB. These are typical of the

class of gene that have evolved phase variation mechanisms under

immune selection. It is clear that phasevarion mediated phase

variation of candidate vaccine antigens has the potential to

mediate escape from a vaccine primed immune response. In

contrast, none of the typical genes encoding outer membrane

structures were influenced by the modA13 phasevarion in strain

FA1090. Instead, the genes under phasevarion control were

involved in functions such as oxidative stress, antibiotic resistance,

and transport of nutrients. For example, the MetFE operon, which

plays a role in the methylation of homocysteine, the final step of

methionine biosynthesis. MetE catalyses the methylation of

homocysteine using a methyl group that is donated by the metF

gene product, 5-methyltetrahydrofolate [53]. In E. coli, a

correlation is shown between oxidative stress, methionine

availability, and MetE, where MetE is inactivated under

conditions of oxidative stress [22]. In addition, MtrF, which is

required for high-level, hydrophobic agent-resistance that is

mediated by the MtrC-MtrD-MtrE efflux pump [26,33], is

controlled by the modA13 phasevarion. The active efflux of

antimicrobial agents from the cell by this systems is recognized as a

major contributor to bacterial resistance to antibiotics [33,54].

Altered expression of this group of genes is more consistent with a

switch between cell types that are more suited to alternate physical

environments, rather than switching to enable evasion of a

particular primed immune response.

Phenotypic analyses of modA13 ON, modA13::kan mutant or

modA13 OFF revealed distinct behavior in the model systems

tested: modA13::kan and modA13 OFF mutant cells were superior at

formation of a biofilm. Bacteria within biofilms display increased

resistance to antimicrobial agents [35,36]. In addition, links

between biofilm formation and oxidative stress defenses have been

observed in N. gonorrhoeae [29]. Consistent with this observation,

genes involved in oxidative stress and antimicrobial susceptibility

were found to be up-regulated in expression in a modA13::kan

mutant. Furthermore, a modA13::kan mutant was also found to be

more resistant to antimicrobial agents in a Triton X-100 killing

assay. Finally, the modA13::kan mutant and modA13 OFF strains

were more fit in an intracellular survival assay in the pex model

system, and this assay selected for a switch from ON to OFF

during the course of the 3 hour assay. These observations are

consistent with random generation of two populations containing

different cell types with distinct niche specialization. The

observation of common biofilm and intracellular survival pheno-

type in independent modA13 strains suggests that these can be

attributed directly to modA13 phase variation, rather than an

independent phase variation event in an unrelated gene, and that

these may be key aspects of gonococcal - host interactions. This

study shows that all modA alleles regulate gene expression of many

genes, and that we observe distinct behavior of, and switching

between, modA ON and OFF states in model systems. It is clear

that any future study of pathogenic Neisseria that investigates gene
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expression or behavior of strains in model systems should take

modA phase variation into account.

Our initial microarray studies resulted in data with no

statistically significant difference in the regulation of any gene.

Changing the culture conditions to iron limitation resulted in the

differential expression of 54 genes (Table S5). This change in

expression was not due to differential growth rates (Figure S4) or a

direct effect of iron on expression of the Mod methyltransferase

(Figure S8). Clearly, a difference in gene expression can only be

detected if the genes in question are being expressed. It is well

established that many genes are expressed under iron-limiting

conditions in pathogenic Neisseria, via the Fur regulon, either

directly, or due to cascade effects resulting from activation of the

Fur regulon [55,56]. One limitation of the data presented in this

study is that the gene expression profile analysis of the

phasevarions was only done under one culture condition. Using

different physiologically relevant conditions may enable other

virulence-associated genes under the control of the phasevarion to

be discovered. For example, it is established that the interaction of

N. meningitidis with epithelial cells induces changes in the expression

of 347 genes [57].

The results presented in this paper, in conjunction with our

recent studies in H. influenzae [15,17], provide confirmation of a

role for phase variable mod genes associated with type III R-M

systems in gene regulation. The widespread distribution of phase

variable R-M systems in host-adapted pathogenic bacteria suggests

that this novel mechanism of coordinated random switching of

multiple genes may be a commonly used strategy for generation of

distinct, ‘‘differentiated’’, cell types with distinct niche specializa-

tion in host adapted bacterial pathogens.

Materials and Methods

Bacterial strains and growth conditions
N. meningitidis and N. gonorrhoeae strains were grown at 37uC with

5% CO2 in either GC broth or GC agar with IsoVitaleX (Becton

Dickinson). E. coli strains DH5a and JM109 (Promega) were used

to propagate plasmids and were grown at 37uC in Luria-Bertani

(LB) broth supplemented with either ampicillin (100 mg/ml) or

kanamycin (100 mg/ml).

DNA manipulation and analysis
All enzymes were sourced from New England Biolabs.

Sequencing was performed on PCR products using QiaQuick

PCR purification kit (Qiagen) and Big-Dye (Perkin Elmer)

sequencing kits. Data was analysed using MacVector v9.0

(Accelrys).

Mod allele specific PCR
PCR products specific for the DNA recognition domain and

repeat regions of modA and modB were generated using the primers

listed in Table S7. N. meningitidis isolates [58] and N. gonorrhoeae

DGI and MI clinical isolates [59] were used as templates. The

reaction was performed in 50 ml using 16 Taq buffer, 1.5 mM

MgCl2, and 1 unit of Taq DNA polymerase (Promega) with the

following cycling conditions for the DNA recognition domain: 30

cycles of 94uC for 30 sec, 57uC for 30 sec, 72uC for 2 min and 1

cycle of 72uC for 7 min with 5 mM of the primer pair

ModADRDF and ModADRDR for modA or ModBDRDF and

ModBDRDR for modB. For modA, a 597 bp region containing the

DNA recognition domain (393 bp downstream of ModADRDF

and 101 bp upstream from ModADRDR) was compared to the

genome strains to determine the modA allele group. For modB a

537 bp region containing the DNA recognition domain (461 bp

downstream from ModBDRDF and 285 bp upstream from

ModBDRDR) was compared to the genome strains to determine

the modB allele group. The following cycling conditions were used

for the repeat region: 30 cycles of 94uC for 30 sec, 57uC for 30 sec,

72uC for 30 sec and 1 cycle of 72uC for 7 min with 5 mM of the

primer pair ModAF and ModAREPEATR or ModBREPEATF

and ModBREPEATR. PCR products were cleaned using the

QIAquick PCR Purification Kit (Qiagen).

Res specific PCR
PCR products specific for the res gene were generated using the

primers listed in Table S7. N. meningitidis isolates [58] and N.

gonorrhoeae DGI and MI clinical isolates [59] were used as

templates. The reaction was performed in 50 ml using 16 Taq

buffer, 1.5 mM MgCl2, and 1 unit of Taq DNA polymerase

(Promega) with the following cycling conditions for the DRD: 30

cycles of 94uC for 30 sec, 55uC for 30 sec, 72uC for 3 min and 1

cycle of 72uC for 7 min with 5 mM of the primer pair ResF and

ResEDR2. PCR products were sequenced using ResF, ResR,

ResEDF2 and ResEDR2.

Nucleotide sequence manipulation and analysis
The modA nucleotide sequences were assembled using the Staden

sequence analysis package [60] and all sequences aligned manually

in the Seqlab alignment program (Genetics Computer Group,

Madison, Wis.). Phylogenetic analysis was undertaken using the

software package ClonalFrame version 1.1, which is a statistical

model-based method initially described for inferring bacterial clonal

relationships using multilocus sequence data [61]. Inference is

performed in a Bayesian framework and a neutral coalescent model

is assumed based on the hypothesis that the bacteria in the sample

come from a constant-sized population in which each bacterium is

equally likely to reproduce, irrespective of its previous history. The

key assumption of ClonalFrame is that recombination events

introduce a constant rate of substitutions to a contiguous region of

sequence with the end result that a clonal frame can be inferred. In

the present study, over 50,000 iterations were performed with every

hundredth tree sampled after which, a 95% majority-rule consensus

tree was derived. ClonalFrame is available at available at http://

bacteria.stats.ox.ac.uk. The modA gene is composed of relatively

conserved N and C-terminal regions with the DNA recognition

domain in between. Consequently, sequence input into Clonal-

Frame was undertaken by firstly adding the N-terminal region

starting at bp 359 in the modA gene belonging to the reference N.

meningitidis isolate MC58, followed by the DNA recognition domain

occurring from 416 to 795 bp and ending with the C-terminal

region 796 to 1242 bp. Annotation was then undertaken by

importing the tree into the Molecular Evolutionary Genetics

Analysis software package (MEGA ver 4.0) [62].

Plasmid pCmGFP (Source M A Apicella) was extracted from N.

meningitidis strain C311. Primers used to sequence this plasmid are

listed in Table S7. Sequencing reactions were prepared using the

plasmid as template and Big-Dye sequencing kit (Perkin-Elmer).

Samples were analysed using a 31306l Capillary Electrophoresis

Genetic Analyser (Applied Biosystems International). Data were

analysed and plasmid map constructed using MacVector (version

9.0). The plasmid sequence is deposited in GeneBank under

accession number FJ172221).

Identification of ModA13 modification site by inhibition
of restriction assays

Plasmid restriction method. Plasmid pCmGFP was

extracted from N. gonorrhoeae strain Fa1090 modA13 ON and
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FA1090 modA13::kan, N. gonorrhoeae strain 96D551 modA12 ON and

modA12::kan, and N. meningitidis strain MC58 modA11 ON and

modA11::kan cells using the Qiagen Plasmid Midi Kit (Qiagen,

Doncaster, Vic., Au). The modA13 expression status of the ON

cultures was verified by fragment analysis [17]. 2 micrograms of

each plasmid was digested overnight with a range of restriction

enzymes (AcuI, AluI, ApoI, BsgI, BsmI, DdeI, DpnII, DraI, HinfI,

HpyI88I, HpyI88III, MboI, MboII, MseI, MslI, NlaIII, TaqI,

Tsp509I) according to manufacturer’s instructions and the

resulting fragments were separated on a 1.5% agarose gel with

TBE at 120 V for 1 hour and visualised under UV illumination.

Chromosomal DNA restriction with Southern blot

detection method. Chromosomal DNA was extracted from

FA1090 modA13 ON, modA13 OFF and FA1090 modA13::kan. Mod

expression status of the modA13 ON and modA13 OFF cultures

were verified by fragment analysis. 1.6 micrograms of DNA was

digested overnight with ApoI, AluI and or mix of HindIII and RsaI

according to manufacturer’s instructions. Fragments were

separated on 0.8% agarose gels in TBE at 100 V for 1–2 hours

and visualised under UV illumination. Southern transfer and

hybridisation analysis was carried out as described by Sambrook et

al [63] using DIG-labelled (Roche) PCR products as probes.

Probes were amplified using the primers listed in Table S7 to

investigate restriction sensitivity at the respective ModA13/

restriction site overlaps.

Construction of a translation fusion between the modA
gene and lacZ gene and insertion into N. meningitidis
strain MC58

A modA::lacZ fusion was constructed in N. meningitidis MC58. The

gene fusion was initially constructed in E. coli with subsequent

transformation into the N. meningitidis chromosome. In the fusion

construct, the codons for LacZ are in the same translational frame

as ModA resulting in an in-frame Mod-LacZ fusion protein. A

4 kb fragment of a promoterless lacZ::kan fragment was amplified

by PCR using the primer pair LacZStyI1 and KanStyI. The

plasmid pBluescriptlacZ::kan was used as template. Following

digestion with StyI, the 4.0 kb lacZ::kan fragment was then ligated

into the XbaI site of pGEMmodA. The ligation mixture was

transformed into E. coli JM109 and transformants were selected on

LB agar plates supplemented with kanamycin (50 mg/ml; Sigma).

The orientation and sequence of the insert were checked and

found to be correct. The resulting construct was named

pGEMmodA::lacZ::kan. This plasmid was linearized with SacII

and used to transform competent N. meningitidis. The MC58mo-

dA::lacZ::kan transformants were streaked on BHI plates containing

Levinthal supplement and X-gal (40 mg/ml).

Construction of knockout mutants of the modA11,
modA12, and modA13 gene and insertion into N.
meningitidis strain MC58, N. meningitidis strain B6116/77,
N. gonorrhoeae strain FA1090, clinically isolated N.
gonorrhoeae strains O1G1370 and 96D551

The modA open reading frame (ORF) was amplified using PCR

with primers ModAF and ModAR (see Figure S1). N. meningitidis

strain MC58 was used as template. The PCR product was cloned

into vector pGEM-Teasy (Promega) and named pGEMmodA. The

pGEMmodA construct was digested with XbaI and blunt ended

using Klenow Polymerase (New England Biolabs). The Tn903 kan

resistance gene from the pUC4K vector (Pharmacia) was excised

using HincII and inserted into the blunt XbaI site. Previous work

has demonstrated that the pUC4Kan kanamycin cassette has no

promoter or terminator that is active in Neisseria and will neither

affect transcription nor have a polar effect on expression of

adjacent genes [29]. The resulting plasmid, pGEMmodA::kan was

linearized by digestion with SphI and used to transform competent

N. meningitidis strains MC58 and B6116/77 or N. gonorrhoeae strains

FA1090, O1G1370 or 96D551. MC58 modA11::kan, B6116/77

modA12::kan, FA1090 modA13::kan O1G1370 modA13::kan and

96D551 modA12::kan transformants were selected on BHI plates

containing Levinthal supplement and 100 mg/ml kanamycin.

Transformants were confirmed by PCR and sequence analysis

using primers ModAF2 and kanamycin specific primers. RNA

midi-preps of both the wild-type (MC58 modA11 ON, B6116/77

modA12 ON, FA1090 modA13 ON and O1G1370 modA13 ON) and

mutant (MC58 modA11::kan, B6116/77 modA12::kan, FA1090

modA13::kan and O1G1370 modA13::kan) were made using the

RNeasy Midiprep kit (Qiagen). Wild-type colonies, from which

RNA was isolated for microarray analysis, were sequenced using

primers ModAF and ModAREPEATR to check that the mod

repeat region was in-frame.

RNA extraction
Triplicate cultures of N. meningitidis strain MC58 modA11 ON

and the MC58 modA11::kan mutant, N. meningitidis strain B6116/77

modA12 ON and the B6116/77 modA12::kan mutant or N.

gonorrhoeae strain FA1090 modA13 ON and the FA1090 modA13::kan

mutant, O1G1370 modA13 ON and the O1G1370 modA13::kan

and 96D551 modA12 ON and 96D551 modA12::kan mutant were

grown to exponential phase (optical density at 600 nm = 0.5 to 0.6)

with 30 mM desferal (Sigma) in GC broth prior to RNA

extraction. Growth rates of strain pairs used to make RNA for

microarray comparison were determined (Figure S4) and were

found to be equivalent ensuring that the samples taken were in the

same growth phase. Only 96D551 modA12 ON and 96D551

modA12::kan (OFF) strains showed a significant difference in growth

rate (see Figure S4). Culture media for RNA preps was free of

antibiotics as once the modA::kan mutation is transferred to the

chromosome by double crossover we observed that it is stable

without selection. Approximately 100 mg of total RNA was

prepared from each sample using the RNeasy Maxi Kit according

to the manufacturer’s instructions (Qiagen). The triplicate samples

were pooled and the integrity and concentration of RNA was

determined via micro-fluidic analysis on a bio-analyser (Agilent

Technologies).

Microarray analysis
All microarray analysis was performed on N. gonorrhoeae/

meningitidis genome arrays (TIGR; http://pfgrc.tigr.org/). Each

microarray consists of 6,389 70mer oligonucleotides representing

open reading frames (ORFs) from N. gonorrhoeae strains FA1090

and ATCC 700825 (reference strain), as well as N. meningitidis

strains Z2491 (serogroup A) and MC58 (serogroup B). Methods

and analysis were as previously described [29]. All primary data

was imported into an in-house installation of the comprehensive

microarray relational database, BASE (accessible at: http://

kidney.scgap.org/base login: Nmmod, password: Nmmod, login:

NmmodA12, password: NmmodA12, login: NgmodA12, pass-

word: NgmodA12 or login: Ngmod, password: Ngmod).

Quantitative real-time PCR
Oligonucleotides (Table S7) were designed using Primer

Express 1.0 software (ABI Prism; PE Biosystems) and are named

according to the ORF being amplified. All real-time PCR

reactions were performed in a 25 ml mixture containing 1/5

volume of cDNA preparation (5 ml), 10XSYBR Green buffer (PE

Applied Biosystems) and 2 mM of each primer. We used 16S RNA
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as the standard control in each quantitative PCR. Amplification

and detection of specific products were performed with the ABI

Prism 7700 sequence-detection system (PE Applied Biosystems)

with the following cycle profile: 95uC for 10 min, followed by 45

cycles of 95uC for 15 sec and 60uC for 1 min. Data was analysed

with ABI prism 7700 (version 1.7) analysis software. Relative gene

expression between the MC58 modA11::kan mutant and wild-type

MC58 modA11 ON, N. meningitidis strain B6116/77 modA12 ON

and the B6116/77modA12::kan mutant or the FA1090 modA13::kan

mutant and wild-type FA1090 modA13 ON was determined using

the 2DDCT relative quantification method.

Semi-quantitative RT-PCR
Total RNA was isolated using the RNeasy kit (Qiagen). The

equivalent of 1 mg of the total RNA preparation was treated with

RQ1 RNase-free DNase (Promega). RT-PCR was performed

using the TaqMan RT-PCR kit (PE Applied Biosystems) as

recommended by the manufacturer. PCR was carried out in 50 ml

using 16 Taq buffer, 1.5 mM MgCl2, and 1 unit of Taq DNA

polymerase (Promega) and cDNA amplified using gene specific

primers designed for Real-time PCR (Table S7) with the following

cycling conditions: 30 cycles of 94uC for 30 s, 50uC for 30 s, 72uC
for 30 s and 1 cycle of 72uC for 7 min. 16S rRNA internal

standards for comparison were used with amplification resulting in

a 200 bp RT-PCR product. PCR products (20 ml) were run on a

3% agarose gel.

Growth studies comparing wild-type mod ON to the
modA::kan mutants

Growth experiments were carried out in GC medium

supplemented with IsoVitaleX, at 37uC with 5% CO2, under

iron-limiting conditions (30 mM desferal). Triplicate cultures of the

strain pairs being compared were adjusted to an identical initial

OD600. One milliliter of culture was removed at fixed times to

measure the OD600.

Analysis of LbpA expression
Wild-type MC58 modA11 ON, wild-type MC58 modA11 OFF

and MC58 modA11::kan mutant bacterial cells were grown under

iron-limiting conditions to an optical density at 600 nm = 0.55–

0.6. Cells were spun down at 5000 rpm for 5 min and then

washed once in PBS, pH 7.2. Cells were then re-suspended in PBS

to an optical density at 600 nm = 2.5 and separation was carried

out on a 4–12% Nu-PAGE Novex Bis-Tris gel (Invitrogen)

according to the manufacturer’s instructions. The Nu-PAGE semi-

dry system was used to transfer protein from gel to nitrocellulose

membrane (0.22 mM pore, Bio-Rad), as recommended by

Invitrogen. Immunoblotting of membranes was carried out in a

1:2000 dilution of LbpA specific monoclonal 269-H1 [19] in 5%

skimmed milk powder in TBS. Bands were visualized following

incubation in 1:5000 dilution of alkaline phosphatase-conjugated

anti-mouse IgG secondary antibody (Sigma).

Construction of a translation fusion between the lbpB
gene and lacZ gene and insertion into N. meningitidis
strain MC58

An lbpB::lacZ fusion was constructed in N. meningitidis strain

MC58. The gene fusion was initially constructed in E. coli with

subsequent transformation into the N. meningitidis chromosome. In

the fusion construct, the codons for LacZ are in the same

translational frame as lbpB resulting in an in-frame LbpB-LacZ

fusion protein. A 1.7 kb DNA fragment was amplified by PCR

using the primer pair LbpBF and LbpBR. MC58 was used as the

template. The reaction was performed in 50 ml using 16 Taq

buffer, 1.5 mM MgCl2, and 1 unit of Taq DNA polymerase

(Promega) with the following cycling conditions: 30 cycles of 94uC
for 30 sec, 57uC for 30 sec, 72uC for 1 min and 1 cycle of 72uC for

7 min. The fragment was then cloned into vector pGEM-Teasy

(Promega). A 4 kb fragment of a promoterless lacZ::kan fragment

was amplified by PCR using the primer pair LacZStyI+1 and

KanStyI. The plasmid pBluescriptlacZ::kan (M. Dieckelman,

personal communication) was used as template. Following

digestion with StyI, the 4.0 kb lacZ::kan fragment was blunted

using Klenow Polymerase and then inserted into the EcoRV site of

the lbpB construct. The ligation mixture was transformed into E.

coli JM109 and transformants were selected on LB agar plates

supplemented with kanamycin (50 mg/ml). The orientation and

sequence of the insert were checked and found to be correct. The

resulting construct was named pGEMlbpB::lacZ::kan. This plasmid

was linearized with NcoI and used to transform competent N.

meningitidis strain MC58 with a naturally derived number of mod

ON and OFF repeats. The MC58lbpB::lacZ::kan mod ON and

MC58lbpB::lacZ::kan mod OFF transformants were streaked on BHI

plates containing Levinthal supplement and X-gal (5-bromo-4-

chloro-3-indolyl-D-galactopyranoside; 40 mg/ml).

b-galactosidase assay
MC58lbpB::lacZ::kan modA11 OFF and MC58lbpB::lacZ::kan

modA11 ON strains were grown on GC plates with 15 mM

desferal at 37uC over night. The next day triplicate cultures of

iron-starved strains were grown to exponential phase (optical

density at 600 nm = 0.55 to 0.6) with 30 mM desferal in GC broth.

Cells were spun down at 15,0006g for 10 min, resuspended in

PBS and lysed by repeated freeze-thaw cycles. The cells debris was

spun down at 15,0006g for 5 min. The amount of protein was

calculated by using the BCA protein assay reagent kit (Pierce). The

amount of b-galactosidase in the cell extracts was measured in

Miller units, in triplicate, as described [64]. Miller units were

calculated as follows: Units (10006A420)/(t6v6C), where t is the

time of the assay (in mins), v is the volume of cell extract used in

the assay, and C is the total protein concentration (in mg/ml).

Antimicrobial resistance assay
The antimicrobial resistance assay was adapted from a method

described by Dougherty et al. [65]. In brief, N. gonorrhoeae FA1090

wild-type modA13 ON and FA1090 modA13::kan mutant colonies

were re-suspended in PBS to a density of 106 colony forming units

(CFUs), and 5 ml of serial ten-fold dilutions were spotted in

triplicate onto GC agar plates containing 15 mM desferal,

supplemented with IsoVitaleX and increasing concentrations of

Triton X-100 (40, 50, 60, and 80 mg/ml). The plates were then

incubated at 37uC under 5% CO2 for 24 h. Colony counts were

used to compare wild-type FA1090 modA13 ON to the FA1090

modA13::kan mutant by plating each dilution in triplicate. The

experiment was repeated on three separate occasions. The ratio of

FA1090 modA13 ON to FA1090 modA13 OFF at the following

concentrations of Triton X-100 (40, 50 and 60 ug/ml) was

calculated as follows. Colonies were taken from the triplicate

samples of the original inoculum and each of the increasing

concentrations of Triton X-100 from FA1090 modA13 ON and

used as PCR template. The percentage of modA13 ON and modA13

OFF from the starting inoculum and the three different Triton X-

100 concentrations was verified via fragment analysis [17] using

primers ModAF6Fam and ModAREPEATR (Table S7). A

Student’s t-test was used to determine the statistical significance

between the percentage of modA13 ON and modA13 OFF from the

original inoculum of modA13 ON and the percentage of modA13
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ON and modA13 OFF from the three different Triton X-100 of

modA13 ON.

Biofilm formation by N. gonorrhoeae
For examination of biofilm formation via confocal microscopy,

the N. gonorrhoeae FA1090 modA13::kan and wild-type FA1090

modA13 ON strains and N. gonorrhoeae strains O1G1370 modA13::-

kan, modA13 OFF and modA13 ON were transformed with a

plasmid encoding a green fluorescent protein, pCmGFP. Forma-

tion and analysis of biofilms was as described previously, except

the cells were grown under the same iron-limiting conditions as for

the microarray analysis [29]. Colonies used to inoculate cultures

for biofilm assays were assessed for morphology to ensure

equivalent level of piliation. Biofilms images are three-dimensional

reconstructions of stacked z-series taken at 2006 magnification,

which were rendered by Volocity.

Electron microscopy
Biofilms of N. gonorrhoeae strain FA1090 modA13::kan and modA13

ON and N. gonorrhoeae strains O1G1370 modA13::kan, modA13 OFF

and modA13 ON were grown at in glass flow chambers at 37uC
and a flow rate of 180 ml/min in 1:10 GC broth diluted in PBS

with 10 ml/L IsoVitaleX, 3 mM desferal, and 100 mM sodium

nitrite. The modA13 status of the starting inoculum was verified via

fragment analysis [17] using primers ModAF6Fam and ModAR-

EPEATR. After 48 hours of growth, biofilms were prepared for

scanning electron microscopy (SEM) and transmission electron

microscopy (TEM) as follows. Glass coverslips, which served as the

surface of attachment for biofilm, were removed from the

chambers and fixed in 1% osmium perfluorocarbon for 1 h.

The coverslips were then gently rinsed for 15 min with pure

perfluorocarbon three times. To avoid destruction of the biofilm,

rinse solution was gently added to coverslips in a 100 mm Petri

dish, allowed to incubate at room temperature for 15 min, then

the rinse was aspirated and another rinse was applied. The

samples were then dehydrated with 100% ethanol by performing

another three 15 min rinses. At this point, the coverslips were cut

in half and one half was processed for SEM, while the other half

was processed for TEM. SEM samples were transitioned into

HMDS for two 15 min washes and then allowed to air dry. SEM

samples were then sputter-coated and viewed with the Hitachi S-

4800 SEM. TEM samples were infiltrated with a 50% Eponate-12

resin (epon) in ethanol for 1 h. The coverslips were then inverted

and imbedded in 100% epon at 42uC overnight. Thin-sections

(70 nm) were prepared on an ultramicrotome, mounted on a grid,

and then stained with uranyl acetate and lead citrate. TEM

samples were viewed with the JEOL 1230 TEM.

Primary, human, cervical epithelial cell culture and
infection studies

Surgical cervical biopsies were used to seed primary cervical

epithelial (pex) cell cultures and were procured and maintained as

described previously [32]. Quantitative association, invasion, and

survival assays were performed as previously described using a

multiplicity of infection of 100 [32] with modification as follows.

Our previous studies demonstrate that pex cells produce a full

alternative pathway of complement, and that iC3b serves as a

critical opsonin for CR3-mediated gonococcus adherence to and

invasion of these cells. Thereby, antibiotic-free medium was

harvested from uninfected pex cell monolayers and treated

overnight with 30 mM desferal (Sigma). Our previous (unpub-

lished) studies have revealed that N. gonorrhoeae strain FA1090

uniquely becomes cytotoxic to human, primary cervical and male

urethral epithelial cells within 2 to 3 hours post-challenge, which

prohibits their confident use in gentamicin survival assays for time

periods totaling greater than 90 min. Therefore, N. gonorrhoeae

strains O1G1370 modA13 ON, O1G1370 modA13 OFF, and the

O1G1370 modA13::kan mutant, and 1291 modA13 ON, 1291

modA13 OFF, and 1291modA13::kan were selected to elucidate the

role of mod-dependent phase variation during pex cell challenge.

Complement-containing, iron-depleted, primed medium was

inoculated with 56106 gonococci per ml. Colonies used to

inoculate cultures for these assays were assessed for morphology

to ensure equivalent level of piliation. Bacterial cultures were

incubated (37uC, with shaking) for 2 h, after which the optical

density of the gonococcal cultures was adjusted to 107 gonococci

per ml and directly used to challenge (new) pex cell monolayers.

Pex cell infections were then allowed to progress at 37uC, 5%

CO2. Association (90 min infection), invasion (90 min infection

plus a 30 min incubation in 100 mg/ml gentamicin), and survival

(90 min infection, 30 min gentamicin treatment, plus a 3 h

incubation in antibiotic-free medium) assays were performed

using a modified gentamicin-resistance assay as described

previously [32].Serial dilutions of the cervical cell lysates were

plated to determine CFUs. The percent association, invasion, and

survival were determined as functions of the original inoculum.

From these data the invasion and survival indices were determine

as follows: Invasion index, percent invasion/percent association;

Survival index, percent survival/percent invasion. P-values were

determined for the actual data points using a Kruskal-Wallis non-

parametric analysis of variance. A Student’s t-test was used to

determine the statistical significance of the invasion and survival

indices. The ratio of modA13 ON and modA13 OFF within the

O1G1370 modA13 ON and O1G1370 modA13 OFF original

inoculum, association, invasion, and survival time points were

determined as follows. Samples were taken from the original

inoculum, association, invasion, and survival time points from

three independent assays and chromosomal DNA extracted. The

percentage of modA13 ON and modA13 OFF from the starting

inoculum was verified via fragment analysis [17] using primers

ModAF6Fam and ModAREPEATR (Table S7). A Student’s t-test

was used to determine the statistical significance between the

percentage of modA13 ON and modA13 OFF from the original

inoculum of O1G1370 modA13 ON and the percentage of modA13

ON and modA13 OFF from the invasion time point and survival

time point of O1G1370 modA13 ON. Similarly, a Student’s t-test

was used to determine statistical significance between the

percentage of modA13 ON and modA13 OFF from the original

inoculum of O1G1370 modA13 OFF and the percentage of modA13

ON and modA13 OFF from the invasion time point and survival

time point of O1G1370 modA13 OFF.

Production of anti-Mod antisera
The mod gene was amplified from H. influenzae strain Rd

chromosomal DNA using primers listed in Table S7. The NcoI

restriction site at the 59 end and the BamHI site at the 39 end of the

mod gene were introduced. The resulting PCR fragment was

subsequently digested with NcoI and BamHI and cloned into the

digested pET16b expression vector (Novagen & EMD, San Diego,

CA, USA) carrying the same enzyme cutting sites, leading to the

construct, pET16b::mod. The sequence of the insert was confirmed

and then used for generating the recombinant Mod protein with

the (His)10-tag (MGHHHHHHHHHH) attached at the N-

terminal end. For generating the recombinant Mod protein, the

construct, pET16b::mod, was transformed into E. coli strain

BL21(DE3) and the cells were grown in LB broth at 20uC.

Induction of the expression was initiated by adding IPTG to the
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final concentration of 0.1 mM and then incubated at 10uC for 3

days. After harvesting the bacteria by centrifuging at 6,000 rpm

for 30 min at 4uC, the bacterial pellet was lysed with the lysis

buffer (25 mM Tris-HCl, 300 mM KCl, 5 mM imidazole,

pH 7.5) plus protease inhibitor, Complete cocktail EDTA-free

(Roche, Switzerland). Soluble proteins were obtained from the

supernatant by centrifuging at 20,000 rpm for 20 min at 4uC to

remove the cell debris and precipitates. The Mod protein was

purified using the Ni2+-nitilotriacetic acid (Ni-NTA) column

(Amersham Biosciences, Piscataway, NJ, USA) with an elution

gradient from 25–500 mM imidazole in the buffer solution

(25 mM Tris-HCl, 300 mM KCl, pH 7.5). The purity of the

eluted protein was examined by SDS–PAGE analysis and the

concentration determined by Bio-Rad Protein Assay (Bio-Rad,

Hercules, CA, USA). The pure fractions were collected and

transferred to 25 mM Tris, pH 7.5 by the HiPrep 26/10 Desalting

column (Amersham Biosciences, USA) and store at 280uC.

Rabbits (New Zealand White strain, weighing 3–3.5 kg, were

immunized by intrasplenic injection with the soluble recombinant

Mod protein at 300 mg per immunization. The antigen was

administered together with an equal amount of Gold TiterMax

adjuvant (CytRx, Norcross, GA, USA). The rabbit antisera were

collected from weeks 4,9 and the titers of rabbit sera from weeks

4,6 were analyzed using Western blot assays. Antiserum of week

6 had a high titer of 5,000,000 against 1 mg of the Mod protein.

The antisera recognized a single band in wild type modA ON H.

influenzae strain RD and N. meningitidis strain MC58, but not in

their corresponding modA::kan mutants (not shown). For the

subsequent Western blot experiments, 1/1,000 dilution of the

antiserum of week 6 was used.

Supporting Information

Figure S1 Schematic of the construction of pGEMmodA::lacZ::

kan and subsequent transformation into N. meningitidis. (A) Insertion

of the lacZ::kan cassette into the modA ORF. (B) Transformation

into N. meningitidis strain MC58. (C) Double crossover event results

in insertion of the plasmid into the MC58 chromosome resulting in

strain MC58modA::lacZ::kan.

Found at: doi:10.1371/journal.ppat.1000400.s001 (0.13 MB PDF)

Figure S2 Schematic of the construction of pGEMmodA::kan and

subsequent transformation into N. meningitidis or N. gonorrhoeae. (A)

Insertion of the kanamycin (kan) cassette into the mod ORF. (B)

Transformation into N. meningitidis strain MC58, N. meningitidis

strain B6116/77, N. gonorrhoeae strain FA1090, or N. gonorrhoeae

strain 96D551. (C) A double crossover event results in insertion of

the plasmid; into the MC58 chromosome resulting in MC58

modA11::kan mutants, into the B6116/77 chromosome resulting in

B6116/77 modA12::kan mutants, into the FA1090 chromosome

resulting in FA1090 modA13::kan mutants, and into the 96D551

chromosome resulting in 96D551 modA12::kan mutants.

Found at: doi:10.1371/journal.ppat.1000400.s002 (0.18 MB PDF)

Figure S3 Schematic representation of the construction of

pGEMlbpB::lacZ::kan and subsequent transformation into N.

meningitidis. (A) Insertion of the lacZ::kan cassette into the lbpB

ORF. (B) Transformation into N. meningitidis strain MC58 with a

naturally derived number of modA11 OFF repeats and N.

meningitidis strain MC58 with a naturally derived number of

modA11 ON repeats. (C) Double crossover event results in insertion

of the plasmid into the MC58 modA11 OFF and MC58 modA11

ON chromosome resulting in strains MC58lbpB::lacZ::kan modA11

OFF and MC58lbpB::lacZ::kan modA11 ON.

Found at: doi:10.1371/journal.ppat.1000400.s003 (0.14 MB PDF)

Figure S4 Growth rate comparisons of MC58 modA11 ON and

MC58modA11::kan, FA1090 modA13 ON and FA10908 modA13::

kan, B6116/77 modA12 ON and B6116/77 modA12::kan, and

96D551 modA12 ON and 96D551 modA12::kan. The optical density

of wild-type and mutant cells, grown under the same iron-limiting

conditions as used for expression and functional studies (see

Materials and Methods), was measured and the differences in

growth rate compared. The generation time was calculated from

the slope of the line obtained in the logarithmic plot of exponential

growth for each set of wild-type and mutant triplicates. The

growth rate (minutes) was determined by 1/generation time. No

significant difference in growth rate was observed between (A)

MC58 modA11 ON and the MC58 modA11::kan mutant (P = 0.393),

(B) FA1090 modA13 ON and FA10908 modA13::kan (P = 0.068), (C)

B6116/77modA12 ON and B6116/77modA12::kan (P = 0.363).

However, a significant difference in growth rate was observed

between 96D551 modA12 ON and 96D551 modA12::kan

(P = 0.047). P-values were calculated using a Student’s t-test.

Found at: doi:10.1371/journal.ppat.1000400.s004 (0.14 MB PDF)

Figure S5 Biofilm formation by N. gonorrhoeae strain FA1090

modA13::kan and wild-type FA1090 modA13 ON. The ability of

wild-type FA1090 modA13 ON and N. gonorrhoeae FA1090

modA13::kan to form a biofilm was evaluated after two days of

growth under continuous flow conditions. These experiments were

performed in duplicate on three different occasions and represen-

tative images are shown. (A) Confocal microscopy of the biofilm

mass over 2 days of growth for the N. gonorrhoeae wild-type FA1090

modA13 ON (1) and FA1090 modA13::kan mutant (2). These images

are three-dimensional reconstructions of stacked z-series taken at

2006 magnification, which were rendered by Volocity (see

Materials and Methods). These images show that, overall, wild-

type FA1090 modA13 ON formed a thinner and more diffuse

biofilm with large gaps between biofilm clusters, while the FA1090

modA13::kan mutant formed a thicker and more densely packed

biofilm with very few gaps occurring between biofilm clusters. (B)

Scanning electron microscopy of the surface of the biofilm mass

over 2 days of growth on glass taken at 5,0006magnification. The

images show that FA1090 modA13::kan forms a biofilm that is

tightly enmeshed in extracellular material that obscures the

structure of individual cells. Cells in the FA1090 modA13 ON

biofilm are clearly distinguishable and exhibit a normal blebbing

phenotype. (C) Transmission electron microscopy of 70 nm thin-

sections of the biofilm mass over 2 days of growth on glass taken at

10,0006 magnification. The electron micrographs depicted are

representative of images taken for modA13 ON and modA13::kan in

two independent experiments. The images show that FA1090

modA13::kan forms a biofilm with a hyper-blebbing phenotype, as

seen in the numerous enclosed membranes on the surface of the

cells, while the FA1090 modA13 ON biofilm exhibit a wild-type

blebbing phenotype with fewer blebs on the surface of the cells.

The electron micrographs suggest that the extracellular matrix of

the FA1090 modA13::kan biofilm may be at least partially

composed of fused membrane blebs. (D) COMSTAT analysis of

biomass and the average thickness of confocal z-series images of

the modA13 ON and FA1090 modA13::kan mutant biofilms grown

for 2 days over glass, which are depicted in (A). COMSTAT

analysis showed that FA1090 modA13::kan exhibited enhanced

biofilm formation as compared to wild-type FA1090 modA13 ON

gonococci. Specifically, wild-type FA1090 modA13 ON had 21.8%

of the biomass and 49.7% of the thickness of the FA1090

modA13::kan mutant on average. The FA1090 modA13::kan mutant

also formed biofilms with a slightly lower maximum thicknesses

than wild-type FA1090 modA13 ON, but this result was not

statistically significant as determined by a Student’s t-test.
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COMSTAT was performed for all replicates, and results are as

shown. Statistical significance was determined using a Student’s t-

test.

Found at: doi:10.1371/journal.ppat.1000400.s005 (3.08 MB PDF)

Figure S6 N. gonorrhoeae 1291 association with, and intracellular

survival within, primary human cervical epithelial (pex) cells. Pex

cells were challenged with N. gonorrhoeae strain 1291 as outlined in

the main text. Data shown represent the invasion index (left panel)

or the survival index (right panel) following challenge of pex cells

as outlined in the main text. The invasion index represents the

percentage of pex cell-associated gonococci that survive gentami-

cin treatment; whereas the survival index is the percentage of

invasive gonococci that survive, intracellularly, within pex cells at

3 h post-invasion. There was no significant difference between the

naturally occurring 1291 modA13 OFF isolate and the 1291

modA13::kan ‘‘knockout’’ strain in either the invasion (P = 0.254) or

survival (P = 0.806) indices observed. A statistically significant

difference (*) was obtained in the invasion (P = 0.008) and survival

(P = 0.001) indices when comparing 1291 modA13 OFF to 1291

modA13 ON, and in the invasion (P = 0.037) and survival

(P = 0.001) indices when comparing 1291 modA13::kan to 1291

modA13 ON. P values were determined using a Student’s t-test. (B)

Shows the ratio of 1291 modA13 ON to 1291 modA13 OFF of the

inoculum, and at the invasion and survival time points for 1291

modA13 ON and 1291 modA13 OFF. {A statistically significant

difference was seen in the ON/OFF ratio between the 1291

modA13 OFF inoculum sample and the 1291 modA13 OFF invasion

sample (P = 0.0082) and the 1291 modA13 OFF inoculum sample

and the 1291 modA13 OFF survival sample (P = 0.0333), indicating

a selection for OFF organisms over the course of the 3-h assay.

Found at: doi:10.1371/journal.ppat.1000400.s006 (0.34 MB PDF)

Figure S7 Genes regulated by ModA13 in FA1090 containing

ModA13 methylation sites within their upstream regions. Of the

15 genes regulated by ModA13 listed in Table 2, six (represented

by the black arrows) were found to have a ModA13 methylation

site in the intergenic region upstream of the gene or operon. All

methylation sites in these genomic regions are indicated with their

FA1090 genome coordinates based on the genome sequence

AE004969.1. Orientation of these non-palindromic sites is

indicated by label position: sites in the sense orientation are

labelled above the sequence, while those in the antisense

orientation are labelled below.

Found at: doi:10.1371/journal.ppat.1000400.s007 (0.26 MB PDF)

Figure S8 Comparison of modA11 and modA13 expression in

iron-replete and -deplete media. (A) Quantitative RT-PCR of

modA13 and modA11 expression. No difference in modA13

expression was observed for modA13 ON cells grown in iron

replete compared to modA13 ON cells grown in iron- deplete

media (P = 0.241), confirming that Mod is not regulated by iron.

modA11 expression was observed to be 2.4-fold higher in modA11

ON cells grown in iron replete compared to modA13 ON cells

grown in iron-deplete media (P = 0.007). P-values were calculated

using a Student’s t-test. (B) Chromosomal DNA extracted from N.

gonorrhoeae strains FA1090 modA13 ON, modA13 OFF, modA13::kan

cells, grown in iron-replete and iron-deplete media, digested with

ApoI and probed with a PCR product containing an ApoI/

AGAAA overlap. The same pattern of digestion inhibition was

observed for modA13 ON cells grown in iron-replete and iron-

deplete media. No differences in the digestion patterns were

observed when comparing the modA13 OFF and modA13::kan cells

grown in iron-replete media to modA13 OFF and modA13::kan cells

grown in iron-deplete media, confirming that mod is not regulated

by iron. (C) Analysis of Mod expression for MC58 modA11 ON

iron replete and MC58 modA11 ON iron deplete. A Mod specific

antibody was used to assess expression of Mod, as the modA11 site

is unknown, an analysis similar to (B), cannot be conducted. The

positions of molecular weight standard proteins are shown on the

right in kilo Daltons (kDa). The left panel shows coomasie stained

MC58 modA11 ON iron-replete and -deplete whole cells to show

equal loadings of cell extracts. The right panel shows the Western

blot of MC58 modA11 ON iron-replete and -deplete whole cells

whole cells probed with a Mod specific antibody. No difference in

expression was observed between the modA11 ON iron-replete and

modA11 ON -deplete cell extracts.

Found at: doi:10.1371/journal.ppat.1000400.s008 (0.94 MB PDF)

Table S1 Mod alleles and repeat numbers for N. meningitidis

isolate strains. aGenome strains. bNumber and expression state of

repeats within the ModA11 or ModB1 gene; in-frame (ON) or out-

of-frame (OFF). cRepeats can be either CCCAA, GCCAA, or

TCCAA. dA strain was defined as having the modA11 allele if the

DNA recognition region was $95% identical at the nucleotide

level to modA11 gene of N. meningitidis strain MC58 (NMB1375; see

Figure 1). A strain was defined as having the modB2 allele if the

DNA recognition region was $95% identical at the nucleotide

level to modB2 gene of N. meningitidis strain Z2491 (NMA1467; see

Figure 1). eStrain defined as having modA4 or modA15 allele as

defined in Fox et al. 2007 [17]. fStrain has a new allele henceforth

defined as modA18 in this paper. Shares similarity to H. influenzae

strain 2019. gmodB1 strains that contain a premature stop codon.
hFrame shift mutation in res at nucleotide 2093. ND, not

determined. Refer to Figure 1 and to the text.

Found at: doi:10.1371/journal.ppat.1000400.s009 (0.11 MB PDF)

Table S2 Mod alleles and repeat numbers for N. gonorrhoeae

clinical isolate strains. aDGI, disseminated gonococcal infection

clinical isolates; MI, asymptomatic carriage or mucosal gonor-

rhoeae infection clinical isolates; UG, uncomplicated gonorrhoeae.
bNumber and expression state of repeats within the mod gene; in-

frame (ON) or out-of-frame (OFF). cA strain was defined as having

the modA13 allele if the DNA recognition region was $95%

identical at the nucleotide level to the modA13 gene of N. gonorrhoeae

strain FA1090 (NGO0641), and as modA12 allele if the DNA

recognition region was $95% identical at the nucleotide level to

the modA12 gene of N. meningitidis strain Z2491 (NMA1589/90). A

strain was defined as having the modB1 allele if the DNA

recognition region was $95% identical at the nucleotide level to

the modB1 gene of N. gonorrhoeae strain FA1090 (NGO0545), see

Figure 1. NA- modB gene not present. d 750 bp in-frame deletion

in res. ND, not determined. Refer to Figure 1 and to the text.

Found at: doi:10.1371/journal.ppat.1000400.s010 (0.07 MB PDF)

Table S3 Differentially expressed genes in N. meningitidis wild-

type MC58 modA11 ON versus the MC58 modA11::kan mutant.

The genes listed are either downregulated or upregulated in the N.

meningitidis MC58 modA11::kan mutant strain. The identity of the

gene is indicated with the gene ID in the annotation of the N.

meningitidis strain MC58 genome (TIGR). The average ratio

presented is the mean of MC58 modA11::kan mutant: wild-type

MC58 modA11 ON from six replicate spots on three independent

microarrays, incorporating a dye swap. Only those genes with an

expression value above 1.5-fold were included in this study except

for NMB0205 and NMB2091, which are shown in italics. *Genes

have been shown to be Fur regulated [55,56].

Found at: doi:10.1371/journal.ppat.1000400.s011 (0.16 MB PDF)

Table S4 Differentially expressed genes in N. meningitidis wild-

type B6116/77 modA12 ON versus the mutant strain B6616/77

modA12::kan. The genes listed are either downregulated or
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upregulated in the N. meningitidis B6116/77 modA12::kan mutant

strain. The identity of the gene is indicated with the gene ID in the

annotation of the N. meningitidis strain MC58 and Z2491 genome

(TIGR). The average ratio presented is the mean of B6116/77

modA12::kan mutant:wild-type B6116/77 modA12 ON from six

replicate spots on seven independent microarrays, incorporating a

dye swap. Only those genes with an expression value above 1.5-

fold were included in this study except for NMA1581and

NMB1206, which are shown in italics.

Found at: doi:10.1371/journal.ppat.1000400.s012 (0.11 MB PDF)

Table S5 Differentially expressed genes in N. gonorrhoeae wild-

type FA1090 modA13 ON versus the mutant strain FA1090

modA13::kan. The genes listed are either downregulated or

upregulated in the N. gonorrhoeae FA1090 modA13::kan mutant

strain. The identity of the gene is indicated with the gene ID in the

annotation of the N. gonorrhoeae genome (TIGR). The average ratio

presented is the mean of FA1090 modA13::kan mutant:wild-type

FA1090 modA13 ON from six replicate spots on three independent

microarrays, incorporating a dye swap. Only those genes with an

expression value above 1.5-fold were included in this study.

*Genes have been shown to be Fur regulated [56].

Found at: doi:10.1371/journal.ppat.1000400.s013 (0.12 MB PDF)

Table S6 Differentially expressed genes in N. gonorrhoeae wild-

type 96D551 modA12 ON versus the mutant strain 96D551

modA12::kan. The genes listed are either downregulated or

upregulated in the N. gonorrhoeae 96D551 modA12::kan mutant

strain. The identity of the gene is indicated with the gene ID in the

annotation of the N. gonorrhoeae genome (TIGR). The average ratio

presented is the mean of 96D551 modA12::kan mutant:wild-type

96D551 modA12 ON from six replicate spots on three independent

microarrays, incorporating a dye swap. Only those genes with an

expression value above 1.5-fold were included in this study.

Found at: doi:10.1371/journal.ppat.1000400.s014 (0.08 MB PDF)

Table S7 Primers used to synthesize probes for Southern

analysis, mod allele study, and sequencing plasmid pCmGFP.
aQRT-PCR primers used for N. meningitidismodA11 study. bQRT-

PCR Primers used for N. meningitidismodA12 and N. gonorrhoeae-

modA12 study. cQRT-PCR primers used for N. gonorrhoeaemodA13

study. QRT-PCR primers are named after their TIGR gene ID.

Found at: doi:10.1371/journal.ppat.1000400.s015 (0.06 MB PDF)

Table S8 Fragment analysis on FA1090 modA13 ON/OFF

original inoculum and 40, 50, and 60 ug/ml Triton X-100

concentrations (A) and FA1090 modA13 ON/OFF ratio Student’s

t-test results (B). Data represents genescan analysis results where

the size of the repeat tract was determined using fluorescent

primers (see Materials and Methods) and contains values

determined from three independent samples[17].

Found at: doi:10.1371/journal.ppat.1000400.s016 (0.05 MB PDF)

Table S9 Fragment analysis of O1G1370 modA13 ON/OFF

original inoculum and survival +3 h (A) and O1G1370 modA13

ON/OFF ratio student’s t-test results (B). Data represents

genescan analysis results where the size of the repeat tract was

determined using fluorescent primers (see Materials and Methods)

and contains values determined from three independent

samples[17].

Found at: doi:10.1371/journal.ppat.1000400.s017 (0.05 MB PDF)
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