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Abstract

Rac1 is a small GTPase involved in actin cytoskeleton organization and polarized cell growth in many organisms. In this
study, we investigate the biological function of MgRac1, a Rac1 homolog in Magnaporthe grisea. The Mgrac1 deletion
mutants are defective in conidial production. Among the few conidia generated, they are malformed and defective in
appressorial formation and consequently lose pathogenicity. Genetic complementation with native MgRac1 fully recovers
all these defective phenotypes. Consistently, expression of a dominant negative allele of MgRac1 exhibits the same defect as
the deletion mutants, while expression of a constitutively active allele of MgRac1 can induce abnormally large conidia with
defects in infection-related growth. Furthermore, we show the interactions between MgRac1 and its effectors, including the
PAK kinase Chm1 and NADPH oxidases (Nox1 and Nox2), by the yeast two-hybrid assay. While the Nox proteins are
important for pathogenicity, the MgRac1-Chm1 interaction is responsible for conidiogenesis. A constitutively active chm1
mutant, in which the Rac1-binding PBD domain is removed, fully restores conidiation of the Mgrac1 deletion mutants, but
these conidia do not develop appressoria normally and are not pathogenic to rice plants. Our data suggest that the
MgRac1-Chm1 pathway is responsible for conidiogenesis, but additional pathways, including the Nox pathway, are
necessary for appressorial formation and pathogenicity.

Citation: Chen J, Zheng W, Zheng S, Zhang D, Sang W, et al. (2008) Rac1 Is Required for Pathogenicity and Chm1-Dependent Conidiogenesis in Rice Fungal
Pathogen Magnaporthe grisea. PLoS Pathog 4(11): e1000202. doi:10.1371/journal.ppat.1000202

Editor: Alex Andrianopoulos, University of Melbourne, Australia

Received February 25, 2008; Accepted October 14, 2008; Published November 14, 2008

Copyright: � 2008 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by National Basic Research Program of China (2006CB1019001), National Natural Science Foundation of China (30770071,
30470066), and the Fujian Natural Science Foundation (B0520002).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zonghuaw@163.com

¤ Current address: Fuzhou Criminal Science & Technology Institute, Fuzhou, China

Introduction

Magnaporthe grisea (M. grisea) is a good model organism to study

plant pathogenic filamentous fungi [1,2]. In addition, it is closely

related to other prominent non-pathogenic model fungi, such as

Neurospora crassa and Aspergillus nidulans [3]. The fungus infects

many cereal crops such as rice, barley, and wheat, and causes rice

blast, which is one of the most severe rice fungal diseases

throughout the world [4,5]. Under field condition, the infection

starts with conidia landing on and attaching to a suitable surface of

plant tissues with the help of the mucilage in spore tips [6].

Subsequently, the conidia germinate, form appressoria and invade

the plant tissues. This is followed by invasive growth of the fungus

[7,8]. After successful colonization, many conidia are produced on

the blast lesions and disseminated to new plant tissues and initiate

a new infection cycle within 5–7 d. The severity of the rice blast

disease epidemics is proportional to the quantity of spores

produced in the lesion [9]. Therefore, many disease control

strategies try to target conidiation, especially for the chemical

control of the fungus [10]. However, the genetic basis and

molecular mechanisms of conidiation are not well understood.

Previous studies have identified several loci controlling conidiation

[11]. Disruption of con5 and con6 abolishes conidial production. A

series of other loci (con1, con2, con4, and con7), acting downstream of

con5 and con6, affect the development of conidia and sporulation.

However, other than Con7p being shown as a transcriptional

factor required for the transcription of several genes important for

infection-related morphogenesis of the fungus [12], the other loci

have yet to be characterized at the molecular level. Mgb1, a G-

protein b-subunit, is involved in cAMP signaling that regulates

conidiation, surface recognition, and appressorial formation. mgb1

null mutation reduces conidiation, but does not abolish it [13]. In

this regard, several other genes, e.g., chm1, show similar functional

phenotype to mgb1 [14]. Therefore, the mechanism governing

conidiation needs further characterization.

Rac1, a member of the Rho-family GTPases, exists in many

eukaryotes [15], regulates actin cytoskeleton organization and

cellular morphogenesis in higher eukaryotes [16]. In mammalian

cells, the formation of actin-rich cell extensions termed lamellipo-

dia is regulated by Rac [17]. In plants such as Arabidopsis, RAC/

ROP GTPases regulate diverse processes ranging from cytoskel-

etal organization to hormone and stress responses [18]. Moreover,
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rice Rac homolog, OsRac1, plays a role in disease resistance by

activating reactive oxygen intermediate (ROI) production and cell

death [19].

Unlike the other Rho GTPases (CDC42, Rho), Rac orthologs are

not found in yeast such as Saccharomyces cerevisiae and Schizosacchar-

omyces pombe. It is of great interest to study the function of Rac

homologs in the development of filamentous fungi. In Penicillium

marneffei, CflB, a Rac1 homolog, is involved in cellular polarization

during its asexual development and hyphal growth but not involved

in its yeast growth state at 37uC [20]. The cflB deletion mutants show

cell division (septation) and growth defects in both vegetative hyphal

and conidiophore cell types. In the human pathogen Candida albicans,

Rac1 is not necessary for viability or serum-induced hyphal growth,

but it is essential for filamentous growth when cells are embedded in

a matrix [21]. In Cryptococcus neoformans, however, a Rac homolog

controls haploid filamentation and high-temperature growth

downstream of Ras1 [22]. In the pathogenic fungi of plants such

as Colletotrichum trifolii, Rac1 functions downstream of Ras and can

restore the hyphal morphology of dominant Ras mutants by

regulating MAPK activation and intracellular reactive oxygen

species (ROS) generation [23]. In another phytopathogenic fungus

Ustilago maydis, Rac1 is required for pathogenicity as well as proper

cellular morphology and hyphal growth [24]. Recently, Rolke and

Tudzynski [25] reported that Rac1 interacts with Cla4, and regulates

the polarity, development and pathogenicity in Claviceps purpurea.

Thus, Rac GTPases play an important role in fungal development.

In the current study, we investigate the function of MgRac1, a

Rac1 homolog in M. grisea, and show that MgRac1, is essential for

conidiogenesis, and contributes to the formation of appressorium

and pathogenicity of M. grisea through activating its downstream

effectors: the PAK kinase Chm1 and NADPH oxidases.

Results

MgRac1 is a Rac1 homolog in M. grisea
The M. grisea genome encodes a Rac homolog in the locus

MGG_02731.5 [2]. It contains five GTP/GDP binding or

hydrolysis motifs (G1 through G5) characteristic of Rho-family

small GTPases. The conserved G4 motif has a TKLD sequence

characteristic of Rac, and is distinct from that found in Rho (T/

NKXD) and Cdc42 (TQXD) [16]. We hereafter named it as

MgRac1 (Magnaporthe grisea Rac1). The multiple alignment analysis

showed that MgRac1 is highly homologous to Rac1 homologs

from other filamentous fungi, including the plant pathogens

Colletotrichum trifolii (CtRac1, AAP89013, 94% identity), Fusarium

graminearum (FgRac1, EAA72031, 93% identity), and Stagonospora

nodorum (SnRacA, SNOG_00327.1, 88% identity).

MgRac1 is essential for conidiogenesis
To study the function of MgRac1 in the fungus, we first generated

Mgrac1 deletion mutants by replacement of the MgRac1 ORF with a

selective marker [the bacterial phosphotransferase (hph) gene],

through transformation of protoplasts of the wild-type M. grisea strain

70-15 with the deletion construct pKRA1 (Figure 1A). Deletion

transformants were screened by growing on selection media

supplemented with hygromycin and by PCR verification of genomic

DNA of the transformants. The putative deletion mutants were

further confirmed by Southern blotting (Figure 1B) and RT-PCR

(Figure 1C). Two deletion mutants DMgrac1-19, DMgrac1-21, and one

ectopic transformant (Ect), which had the marker inserted into regions

other than the MgRac1 gene, were selected for further analysis in this

study. Furthermore, we constructed a complementation strain

Mgrac1-Com by reintroducing the genome DNA sequence including

a 1.2-kb promoter region and the ORF of MgRac1.

Conidiation of the wild-type strain (70-15), Mgrac1 deletion

mutants (DMgrac1-19 and DMgrac1-21) and MgRac1 complement

strain (Mgrac1-Com) on 10-day-old oatmeal agar cultures were

determined. The most striking finding was that conidiation was

dramatically reduced by 3 orders of magnitude in Mgrac1 deletion

mutants (Table 1). In contrast, the wild-type strain 70-15 and the

complement strain were normal in sporulation under the same

conditions (Table 1). Of the few conidia that formed in DMgrac1-19

and DMgrac1-21, most exhibited abnormal, elongated morphology

(Figure 2A), which was also observed in a T-DNA insertion line by

Jeon [26]. The constriction at the base of the malformed conidia was

incompletely formed, and consequently the conidia could not detach

normally from the conidiophore as in wild type (Figure 2A). As a

result, a basal appendage (BA, Figure 2A) remained attached, similar

to that observed in the chm1 deletion mutant [14]. The data indicate

that MgRac1 is essential for the conidiogenesis of M. grisea.

We next examined the MgRac1 gene expression profiles at

different growth stages by quantitative real-time PCR. The results

showed much higher expression level of MgRac1 in conidium than in

mycelium, germ tube and appressorium (Table 2), consistent with its

important role in conidiation and conidial morphology. Interesting-

ly, the Mgrac1 deletion mutants could still form conidiophores

(Figure 2A), even though conidial production was severely reduced.

Although the few conidia from the Mgrac1 deletion mutants had

abnormal morphology, over 90% of them germinated after 24 h of

incubation at room temperature (data not shown). However,

appressorial formation from these mutant conidia was completely

blocked on the hydrophobic side of GelBond membranes by 24 h

(Figure 2B). In contrast, over 95% of germ tubes formed

appressoria in the wild-type strain 70-15 and MgRac1 complement

strain Mgrac1-Com under the same conditions (Figure 2B). Even

after prolonged incubation (over 72 h), no appressorium was

observed in the Mgrac1 deletion mutants.

Frequent branching and curly tips were observed at the terminal

mycelia of the Mgrac1 deletion mutant (DMgrac1-19). However,

Calcofluor staining of cell walls of mycelia showed that the septa

were normal except for shorter intervals (Figure 2C). Like 70-15, the

DMgrac1-19 mutant had one nucleus in each hyphal compartment,

suggesting that nuclear division and cytokinesis were normal in the

Author Summary

The fungus Magnaporthe grisea (M. grisea) is an important
pathogen in plants and has a great impact on agriculture.
Its infection of rice causes one of the most destructive
diseases, the rice blast disease, around the world. M. grisea
starts infection by producing conidia, which generate
infectious structures and determine disease epidemics.
However, the mechanism of conidial production is not
well-understood. In this study, we have employed genetic
and molecular techniques to silence the function of certain
genes in M. grisea and found that the Rac1 gene is
required for conidial production. Importantly, we have
identified the mechanism for the Rac1 requirement in
conidial production, which involves the interaction be-
tween Rac1 and its downstream effector Chm1. Further-
more, our study shows that the Rac1/Chm1-mediated
conidiation is necessary but not sufficient for the
pathogenicity of M. grisea in plants. Additional Rac1
effectors such as the Nox gene products are necessary
for M. grisea to cause disease symptoms in rice and barley.
Our study provides new insights into the mechanism of
conidiation and pathogenicity of M. grisea during its
infection in plants.

Rac1 Mediates Conidiogenesis and Pathogenicity
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Figure 1. Construction and confirmation of the Mgrac1 deletion mutant. (A) Restriction map of the MgRac1 genomic region and deletion
construct pKRA1. Thick arrows indicate orientations of the MgRac1 and hygromycin phosphotransferase (hph) genes. The restriction enzymes are
abbreviated as X (XhoI), H (HindIII), and Sa (SacI). The Mgrac1 deletion construct pKRA1 contained the homologous sequences flanking the hph gene
to replace the first 525-bp of the MgRac1 ORF. Primers 4F and 4R (Table 4) were used for screening the Mgrac1 deletion mutants. (B) Total genomic
DNA samples (5 mg per lane) isolated from WT (wild-type strain 70-15), DMgrac1-19 (Mgrac1 deletion mutant), DMgrac1-21 (Mgrac1 deletion mutant),
and Ect (Ectopic transformant) were digested with PstI and subjected to Southern blot analysis. The first probe, a 525-bp PCR fragment amplified from
the genomic DNA of wild-type strain 70-15 using primers 10F and 10R (Table 4), is exactly the MgRac1 fragment replaced by the 2.6-kb hph gene and
detects only the WT and Ect (top panel). The same blot was then stripped and re-hybridized with a 673-bp probe amplified from the 70-15 genomic
DNA by primers 11F and 11R (Table 4) and this probe detects both WT and mutant DNA fragments, with the two deletion mutants showing a larger
fragment due to the gene replacement (bottom panel). (C) Total RNA samples (approximately 1 mg per reaction) isolated from mycelia of WT,
DMgrac1-19 and Mgrac1-Com (MgRac1 complementary transformant) were subjected to RT-PCR using MgRac1 gene-specific primers 1F and 1R
(Table 4). The RT-PCR product is a 600-bp fragment in WT and Mgrac1-Com as predicted, but is missing in the deletion mutant DMgrac1-19.
doi:10.1371/journal.ppat.1000202.g001

Table 1. Phenotypic analysis of MgRac1 mutants.

Strain Saprophytic growth (mm/day)a Conidiation (*104)b Penetration (%)c Lesions on 5-cm-long rice leaf tipd

70-15 6.1860.38e 297.82616.44 70.0569.03 65.4564.76

Guy11 5.6760.62 395.83616.71 75.6467.32 72.6765.11

DMgrac1-19 5.0160.17 0.0760.03 0 0

Mgrac1-Com 5.6360.26 283.32628.83 71.1266.59 61.2568.18

MgRac1-CA 6.2760.53 154.96622.74 3.6661.42 11.7563.14

MgRac1-DN 5.2860.33 0.0560.02 0 0

PCG33 5.7560.02 308.9612.79 65.7666.85 63.8364.65

PCA19 5.7760.05 265.07610.43 5.1462.55 0

chm1 3.9360.66 0.5560.25 0 0

RCC3f 5.3460.73 5.3560.83 0 0

RCC6f 5.4660.04 5.460.74 0 0

aDiameter of hyphal radii at day 8 after incubation on complete medium agar plates at room temperature.
bNumber of conidia harvested from a 9 cm oatmeal plate at day 10 after incubation at room temperature.
cPercentage of penetration over total number of appressoria at 24 h post-inoculation on onion epidermis.
dLesion number 5 days after inoculation.
eData in all columns are the means of three independent experiments with standard deviations.
fTwo independent transformants expressing constitutively active MgRac1-CA in the chm1 null background.
doi:10.1371/journal.ppat.1000202.t001

Rac1 Mediates Conidiogenesis and Pathogenicity

PLoS Pathogens | www.plospathogens.org 3 November 2008 | Volume 4 | Issue 11 | e1000202



Mgrac1 mutant (Figure 2D). These data indicate that MgRac1 is

dispensable for septal formation in the fungus M. grisea. Furthermore,

we compared radial hyphal growth of the wild-type strain (70-15),

Mgrac1 deletion mutants (DMgrac1-19) and MgRac1 complement

strain (Mgrac1-Com) on CM agar media. The Mgrac1 deletion

mutants produced typical grayish M. grisea mycelia. But the colonies

of the Mgrac1 mutants were coralline-like and slightly smaller, due to

slower growth rate (Table 1).

Mgrac1 deletion mutants are nonpathogenic
Because the Mgrac1 deletion mutants hardly produced any

conidia, and were defective in appressorial formation, we used

mycelia plugs of the deletion mutants to inoculate wounded rice

leaves (Figure 3A), wounded barley leaves (Figure 3B), and rice

roots (Figure 3C). No disease symptoms developed either on

wounded leaves and rice roots. In contrast, the wild-type strain

(70-15), and MgRac1 complement strain (Mgrac1-Com) caused

typical rice blast lesions in the same tissues at 4–5 days post-

inoculation (dpi) (Figure 3). The data indicate that Mgrac1 deletion

mutants are nonpathogenic, and that MgRac1 GTPase is essential

for the pathogenicity of M. grisea.

Ectopic expression of dominant negative and
constitutively active MgRac1 alleles results in defects in
conidiogenesis and pathogenicity

To further investigate the function of MgRac1 GTPase, we

constructed both a dominant negative form of MgRac1 by

substituting aspartic acid at position 128 with alanine (D128A,

DN), and a constitutively active form of MgRac1 by substituting

glycine at position 17 with valine (G17V, CA). After transforming

Figure 2. Abnormal conidial morphology, appressorial formation, and hyphal branching in the Mgrac1 deletion mutant. (A)
Differential interference contrast (DIC) microscopy of conidia cultured on an oatmeal agar plate at day 10 after incubation. BA = basal appendage
where conidia attach to conidiophores. Bar = 20 mm. (B) Conidia incubated on the surface of artificial hydrophobic Gelbond films as described in
Materials and Methods. Bar = 20 mm. (C) Branching patterns of mycelia on complete media plates at day 3 after incubation. Frequent branching
occurs at the terminal mycelia of DMgrac1-19. Calcofluor staining of mycelia is used to show the distance of septa. Bar = 20 mm. (D) DAPI staining of
mycelia to show the localization of nuclei. Bar = 20 mm.
doi:10.1371/journal.ppat.1000202.g002

Rac1 Mediates Conidiogenesis and Pathogenicity

PLoS Pathogens | www.plospathogens.org 4 November 2008 | Volume 4 | Issue 11 | e1000202



the protoplasts of wild-type strain 70-15 with MgRac1-DN and

MgRac1-CA, respectively, positive transformants were identified by

Southern blot analysis and further characterized as described

above. Real-time PCR analysis indicated that there was a 8-fold

and 20-fold increase of Rac1 expression in vegetative hyphae of

MgRac1-DN and MgRac1-CA mutants compared with the wild-type

strain 70-15, respectively (Table 3), suggesting that the transfor-

mants expressed the expected dominant alleles of MgRac1.

Like the Mgrac1 deletion mutants, the MgRac1-DN mutant

produced malformed conidia (Figure 4A), failed to develop

appressoria after germination (Figure 4B) and failed to penetrate

the onion epidermis (Figure 4C), and consequently lost pathoge-

nicity on rice either by spraying (Figure 4D) or inoculating

wounded leaves (Figure 4E). MgRac1-CA produced only half

amount of conidia (Table 1) and they exhibited small but

significant (p,0.01) increase in size (Figure 4A) in comparison to

Table 2. Real-time RT-PCR quantification of MgRac1 expression in M. grisea.

RNA source MgRac1 CT
a b-tubulin CT Normalized MgRac1 level relative to b-tubulinb

Wild-type mycelium 24.4360.11 25.4260.13 1.00 (0.96–1.09)c

Wild-type conidium 21.6560.06 25.6360.09 7.88 (7.84–8.05)

Wild-type germ tube 26.2160.05 25.5860.10 0.33 (0.29–0.35)

Wild-type appressorium 22.6460.06 25.7860.08 4.41 (4.35–4.59)

aCycle number at which the fluorescence crossed the threshold. Mean and standard deviation were calculated with data from three replicates.
bRelative quantity of MgRac1 at different developmental stages of the wild-type strain 70-15.
cThe mean and range of three replicates.
doi:10.1371/journal.ppat.1000202.t002

Figure 3. The Mgrac1 deletion mutant is nonpathogenic. (A) Disease symptoms on the wounded leaf tissues of rice inoculated by mycelial
plugs from WT (70-15), DMgrac1-19, and Mgrac1-Com. Typical leaves were photographed 5 days after inoculation. (B) Disease symptoms on the
wounded leaf tissues of barley inoculated by mycelial plugs from WT, DMgrac1-19, and Mgrac1-Com. Typical leaves were photographed 4 days after
inoculation. (C) Blast symptoms on rice roots. Arrows show necrotic lesions.
doi:10.1371/journal.ppat.1000202.g003
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the conidia of wild-type strain 70-15 based on the one way

ANOVA analysis. The length and width of MgRac1-CA conidia

were 22.8760.11 mm and 10.1160.15 mm, while those of 70-15

were 21.2560.07 mm and 9.1360.03 mm, respectively, in which

the mean values and standard deviations were calculated on

measurements of 50 conidia per replicate for 3 replicates in 5

independent experiments by using program SPSS V13.0.

However, there was no change in the length and width ratio.

The conidia from MgRac1-CA were able to adhere to the surface

and germinate, but failed to form appressoria on hydrophobic

sides of Gelbond membrane (Figure 4B), and only a few

appressoria developed on onion epidermis after 48 hours

(Figure 4C). Under the same conditions, the conidia of the wild-

type strain 70-15 developed normal and well-melanized appres-

soria (Figure 4B), which penetrated onion epidermis successfully

and developed infectious hyphae (Figure 4C). The MgRac1-CA

strain failed to cause disease on rice seedlings (Figure 4D), and

wounded rice leaves (Figure 4E), probably due to the defect in

appressorial development and infectious growth. Although there

were some small brown lesions when sprayed with conidial

suspensions, these lesions did not produce any conidia even after

prolonged incubation in high moisture after detachment for two

days. In contrast, the wild-type strain efficiently generated

susceptible lesions that all produced conidia after incubation

(Figure 4D and 4E). The data indicate that although MgRac1-CA

shows opposite effect on conidiogenesis in comparison to MgRac1-

DN, their conidia are nonfunctional and defective in appressorial

formation and pathogenicity. To confirm that the phenotypes of

DN and CA mutants shown in Figure 4 are indeed due to their

constitutively active and dominant negative mutations, as opposed

to the elevation in Rac1 protein levels, we constructed over-

expression (OE) mutant of MgRac1 and compared their

phenotypes. Real-time PCR analysis indicated that there was a

23.8863.01 fold increase of Rac1 expression in vegetative hyphae

of the MgRac1-OE mutant, which also affected expression level of

Cdc42, Chm1, Nox1 and Nox2 compared with that of the wild-type

strain (Table 3). However, the over-expression of MgRac1 had no

obvious effect on conidiogenesis (data not shown) and pathoge-

nicity (Figure 4E) of M. grisea, which indicated that the phenotypes

of MgRac1-DN and MgRac1-CA mutants are due to their dominant

mutations, rather than the elevation in Rac1 expression levels.

Next we examined the effects of MgRac1-CA and MgRac1-DN on

actin organization in condia, since Rac1 was shown to play an

important role in actin organization in other organisms [27,28]. In

this case, we employed a heterologous tropomyosin-GFP (TpmA-

GFP) fusion protein that was previously shown to bind and label

actin cables in the filamentous fungus Aspergillus nidulans [29]. This

TpmA-GFP cassette was transferred to M. grisea at the background

of the wild-type strain Guy11, which had two copies of TpmA-GFP

(provided by Dr. Talbot), and the protoplasts were then

transformed with MgRac1-CA and MgRac1-DN, respectively.

Conidia were collected and examined by Zeiss LSM 510 confocal

microscopy at 1 h and 24 h post-incubation. Strong GFP

fluorescence was detected in the cytoplasm. At 1 h after the

germination began, the TpmA-GFP-labeled actin structures were

mostly distributed in the cytoplasm with some discernable actin

filaments in the wild-type strain (WT) (Figure 5). The actin

filaments were sometimes found attached to bright TpmA-GFP-

labeled spots (Figure 5), which resembled the actin bodies in

quiescent yeast cells returning to growth [30]. In the MgRac1-CA

mutant, however, the labeled actin structures accumulated at the

polarization sites and showed bipolar distribution in each of the

three cells in the conidium, with actin filaments more evident than

in WT (Figure 5). In the MgRac1-DN mutant, some actin structures

also accumulated at both ends of the conidium but most TpmA-

GFP-labeled actin filaments appeared abnormally straight and

striated in the middle of the cytoplasm (Figure 5), which could

contribute to its elongated morphology. After 24 h incubation,

most of the TpmA-GFP-labeled actin structures in WT moved from

the conidium to the appressorium, but they remained in the

conidia of the MgRac1 mutants (Figure 5). The data suggest that in

the MgRac1-DN and MgRac1-CA mutants, actin is not properly

organized and cannot be mobilized for the formation of

appressorium and pathogenicity.

MgRac1 physically interacts with Chm1 via its PBD
domain and genetically acts upstream of Chm1 to
activate conidiogenesis

To understand the mechanism of MgRac1-mediated conidio-

genesis and pathogenicity in M. grisea, we further investigated

functional relationship of MgRac1 with Chm1, which is a Cla4

homolog of the baker yeast Saccharomyces cerevisiae. Cla4 is a p21-

activated kinase (PAK), which contains a p21-Rho-binding

domain (PBD) and a kinase domain. PAK is known to directly

transmit signal from Rac/Cdc42 GTPase by acting as a Rac/

Cdc42 effector in yeast [31]. The PBD domain is also known as

the CRIB domain (Cdc42/Rac-interactive-binding domain) and

responsible for interaction with the active form of Rac/Cdc42

[32]. In chm1 deletion mutants of M. grisea, colony growth rate and

conidiation are dramatically reduced and of the few conidia

produced, most exhibited abnormal morphology and function

[14], similar to the phenotype of our Mgrac1 deletion mutants.

Moreover, the hyper-branching phenotype in the growing hyphae

of the chm1 deletion mutants is the same as that of the Mgrac1

deletion mutants. Thus we examined the relationship between

MgRac1 and Chm1. Real-time PCR analysis indicated that there

was a 7-fold increase of Chm1 expression in the MgRac1-CA mutant

and a decrease in the MgRac1-DN mutant (Table 3). When MgRac1

was deleted, Chm1 transcript was almost undetectable relative to

the wild-type 70-15 transcript (Table 3).

We further investigated whether Chm1 can act as a MgRac1

effector to control conidiogenesis and pathogenicity. If Chm1 is

MgRac1 effector, it is expected to physically interact with

activated GTP-bound MgRac1 and genetically act downstream

of MgRac1. We used the yeast two-hybrid assay to test whether

the constitutively active and the dominant negative forms of

MgRac1 can interact with either full-length Chm1 or the

Chm1DPBD mutant in which the PBD domain is removed. The

results showed that Chm1 was able to interact with the

constitutively active, but not the dominant negative form of

Table 3. Real-time RT-PCR quantification of the transcripts of
Rac1, Cdc42, Chm1, Nox1, and Nox2 in different Magnaporthe
grisea mutants.

Mutant strain Rac1a Cdc42 Chm1 Nox1 Nox2

DMgrac1-19 0 1.6160.14 0 0.1660.03 0.2360.07

MgRac1-CA 20.1561.54 0.8160.02 7.3260.84 5.3360.68 4.1660.63

MgRac1-DN 8.3361.38 1.4460.23 0.2360.03 0.1960.05 0.7960.12

MgRac1-OE 23.8863.01 0.2260.03 2.6760.35 3.3260.58 3.2160.63

aRelative quantity of the indicated transcripts in the mutant strains, relative to
that in the wild-type strain 70-15. A value of greater than 1 indicates increased
expression, while a value of smaller than 1 indicates decreased expression.
Mean and standard deviation were calculated with the data from three
replicates.

doi:10.1371/journal.ppat.1000202.t003
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MgRac1 (Figure 6A and 6B), indicating that Chm1 is an effector

of MgRac1. The results also showed that the PBD domain of

Chm1 was responsible for this interaction, since deletion of the

PBD domain abolished the Chm1-MgRac1 interaction (Figure 6A

and 6B).

We next tested whether Chm1 genetically and functionally acts

downstream of MgRac1 in conidiogenesis. As a homolog of PAK

kinase, the PBD domain of Chm1 is expected to act as an auto-

inhibitory domain to suppress the kinase activity [32]. Upon

binding to activated Rac1, the PBD domain is released leading to

Chm1 activation (Figure 6C). Thus removal of the PBD domain

should make the Chm1 PAK kinase constitutively active. To

confirm this, a CHM1DPBD construct was made under the control

of its native promoter and used for transformation of the Mgrac1

deletion mutant and the wild-type strain Guy11 to generate the

double mutants PCA19 and PCG33, respectively. Northern blot

Figure 4. Abnormal conidial morphology, appressorial formation, and pathogenicity of the MgRac1 dominant mutants. (A)
Differential interference contrast (DIC) microscopy of conidia collected from WT (70-15), MgRac1-CA (constitutively active mutant), and MgRac1-DN
(dominant negative mutant), as indicated. Bar = 20 mm. (B) Conidial suspensions of MgRac1-CA and MgRac1-DN were applied on the hydrophobic side
of Gelbond film and examined with DIC microscopy. Bar = 20 mm. (C) Conidial suspensions (about 1,000 conidia in 20 ml) of 70-15 and MgRac1
mutants were inoculated on strips of onion epidermis. Infectious hyphae were photographed 2 days after inoculation with DIC microscopy.
A = appressorium, C = conidium, H = hypha, IF = infectious hypha. Bar = 20 mm. (D) Leaves of rice cultivar CO39 were sprayed with conidial
suspensions (16105 conidia/ml) from WT, MgRac1-CA, and MgRac1-DN. Typical leaves were photographed at 7 days after inoculation. (E) Disease
symptoms on the wounded leaf tissues of rice inoculated with conidia (56104 conidia/ml) from WT and MgRac1 mutants, as indicated. And
unwounded rice leaf tissue was inoculated with the mutant of MgRac1-OE. Typical leaves were photographed 5 days after inoculation.
doi:10.1371/journal.ppat.1000202.g004
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analysis confirmed the expression of CHM1DPBD transcript in the

double mutants, which was smaller than the transcript of wild-type

CHM1 (data not shown).

We determined the PAK kinase activity in these mutants. Total

protein of vegetative hyphae was subjected to in vitro PAK kinase

assay using HTScan PAK1 kinase assay kit. As shown in Figure 6D,

PAK kinase activity in both PCA19 and PCG33 mutants was

increased by more than two-fold over endogenous PAK activity,

indicating that the expressed CHM1DPBD was active. In a series of

control experiments, we found that the DMgrac1-19 and MgRac1-DN

mutants significantly reduced the PAK activity relative to the WT

strains. In contrast, the constitutively active MgRac1-CA mutant

greatly increased the PAK kinase activity (Figure 6D). These data

demonstrate that MgRac1-DN and MgRac1-CA are effective domi-

nant negative and positive mutants, respectively.

We then focused on the double mutants to investigate the genetic

relationship of MgRac1 and Chm1. Indeed, the double mutant

PCA19 recovered in conidiation, produced normal conidia both in

morphology (Figure 7A) and in quantity like the wild-type strain

(Table 1). In addition, the PCG33 mutant showed no obvious defect

in morphology and pathogenicity (Table 1). The data indicate that

the constitutively active CHM1DPBD can fully rescue the con-

idiogenesis defect in the Mgrac1 deletion mutant, and that MgRac1

genetically acts upstream of Chm1 to activate the conidiogenesis

pathway. However, despite normal production and morphology, the

conidia of PCA19 were not functional in terms of further appressorial

development and pathogenicity (Figure 7). Although the constitu-

tively active CHM1DPBD mutant rescued the condiation defect of

the Mgrac1 deletion mutant, the constitutively active MgRac1-CA

mutant did not rescue the defect of the chm1 deletion mutant (RCC3

and RCC6 in Table 1). The data further support the assumption that

Chm1 is a downstream effector of MgRac1 to control conidiogen-

esis, but additional effectors of MgRac1 are required for pathoge-

nicity of the fungus M. grisea.

NADPH oxidases Nox1 and Nox2 are MgRac1 effectors
required for pathogenecity but not for conidiogenesis

M. grisea genome contains two superoxide-generating NADPH

oxidase genes, Nox1 and Nox2. The Nox proteins were described as

Rac1 effectors in other organisms [33] and it was shown genetically

that each was independently required for the pathogenicity of M.

grisea [34]. Thus we further investigated if MgRac1 physically

interacts with Nox1 and Nox2 and if the interactions play a role in

the conidiogenesis and pathogenicity of M. grisea. We first conducted

real-time PCR analysis to examine the relationship between

MgRac1 and Nox gene expression. There was a 5-fold increase in

the levels of Nox1 and Nox2 transcripts in the MgRac1-CA mutant over

the wild-type strain 70-15 (Table 3). In contrast, there was a 6-fold

decrease in the levels of Nox1 and Nox2 transcripts in the DMgrac1-19

and MgRac1-DN mutants (Table 3). This correlation in gene

expression between MgRac1 and Nox is similar to that between

MgRac1 and Chm1 and suggests that the NADPH oxidases are also

potential MgRac1 effectors in M. grisea.

We then tested whether Nox1 and Nox2 can physically interact

with MgRac1 and genetically act downstream of MgRac1 as

effectors to control conidiogenesis and pathogenicity. We used the

yeast two-hybrid assay to determine if the constitutively active and

dominant negative forms of MgRac1 interact with Nox1 and

Nox2. The results showed that both Nox1 and Nox2 were able to

interact with the constitutively active, but not the dominant

negative form of MgRac1 (Figure 8A), indicating that Nox1 and

Nox2 are indeed MgRac1 effectors.

To determine the effects of deletion and dominant mutations of

MgRac1 on ROS production during mycelial and conidial

Figure 5. Cellular localization of tropomyosin-GFP in MgRac1-CA and MgRac1-DN mutants. Conidia expressing heterologous tropomyosin-
GFP from WT (wild-type strain Guy11), MgRac1-CA, and MgRac1-DN were incubated on Gelbond films at 1 h and 24 h and observed by confocal
fluorescence microscopy. Arrowhead indicates TpmA-GFP-labeled actin spot, white arrows indicate actin filaments, and red arrows indicate the areas
where actin structures accumulate. Bar = 10 mm.
doi:10.1371/journal.ppat.1000202.g005
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differentiation, we determined NBT content in vegetative hyphae

and conidia of the DMgrac1-19, MgRac1-CA and MgRac1-DN

mutants, and compared with the wild-type strain 70-15. In support

of the contention that the Nox proteins are MgRac1 effectors,

there was a strong increase in superoxide production in the hyphal

tips of the MgRac1-CA mutant, while there was a significant

decrease in the DMgrac1-19 and MgRac1-DN mutants, as

quantified by a reduction in the mean pixel intensity due to the

accumulation of localized formazan precipitates [34] (Figure 8B

and 8C). These results are consistent with the real time PCR data

in which the Nox genes are up-regulated in the MgRac1-CA mutant

but down-regulated in the DMgrac1-19 and MgRac1-DN mutants

(Table 3). Superoxide production in the MgRac1 complement

strain Mgrac1-Com was similar to that of 70-15 in both hyphae and

conidia (Figure 8B, 8C, and 8D), indicating full recovery of

superoxide production. Interestingly, all mutants including

MgRac1-CA generated significantly less superoxide than 70-15 in

conidia (Figure 8B and 8D), even though MgRac1-CA produced

more superoxide in hyphae (Figure 8B and 8C). At present, it is

unclear why Nox activity undergoes such dramatic changes in

hyphae and conidia of the MgRac1-CA mutant, but the fact that the

conidia derived from the MgRac1-CA mutant are nonpathogenic is

consistent with a previous report on Nox deletion mutants, which

also produce nonpathogenic conidia [34].

Further epistasis analysis was conducted by over-expression of

Nox1 or Nox2 in the DMgrac1-19 mutant. NBT staining showed

increased superoxide production in both conidia and mycelia of

the over-expression mutants (Figure 9A, 9C, and 9D). However,

Figure 6. The interaction between MgRac1 and Chm1 or Chm1DPBD and PAK activity assay. (A) Yeast two-hybrid assay with MgRac1-CA
or MgRac1-DN as the bait and Chm1 or Chm1DPBD as the prey. Yeast transformants grown on the SD-Leu-Trp plates were assayed for b-
galactosidase activity. The interaction of pGBKT7-53 and pGADT7-T was used as the positive control. The interaction of BD-MgRac1(CA) or BD-
MgRac1(DN) and AD (pGADT7) was used as the negative control to rule out self-activation. (B) The indicated yeast transformants diluted to specified
concentrations (cell/ml) were plated onto SD-Ade-Leu-Trp-His to examine the HIS3 reporter gene expression in the yeast two-hybrid assay. The
interaction of pGBKT7-Lam and pGADT7-T was used as the negative control. (C) Model of Chm1 activation and its auto-inhibition by the PBD domain.
It involves transition between low-activity (closed) and high-activity (open) conformations. The PBD domain (grey) contains domains that bind
MgRac1 and the PAK kinase domain, as indicated. (D) PAK kinase assay showing correlation of MgRac1 and PAK activity in the hyphae of WT and
mutants. Total protein preparations were subjected to the kinase assay, which used the HTScan PAK1 kinase assay kit for direct ELISA detection of the
product at the absorbance of 450 nm. Means and standard deviation calculated from three replicates were shown on the bar chart.
doi:10.1371/journal.ppat.1000202.g006
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over-expression of Nox1 or Nox2 in the DMgrac1-19 mutant did

not rescue the defect of conidiation (data not shown) and

pathogenicity (Figure 9B), even though there was partial recovery

in conidial morphology (Figure 9D).

Discussion

The rice blast fungus M. grisea is an important pathogen, causing

rice blast disease in a staple food for half of the world’s population

[10]. In this study, we show that the Rac1 GTPase plays a critical

role in the formation of conidia and appressoria for infection of

rice. M. grisea contains one copy of the Rac1 gene (termed

MgRac1), which is highly homologous to its mammalian

counterpart [2]. We generated Mgrac1 deletion mutants of M.

grisea and found that they have severe defect in conidial

production. Of the few conidia formed, most are malformed,

elongated, and fail to form appressoria. Consequently the Mgrac1

deletion mutants cannot effectively infect rice leaves and roots,

leading to loss of pathogenicity. Furthermore, we generated M.

grisea transformants that express dominant negative and constitu-

tively active MgRac1 mutants (MgRac1-DN and MgRac1-CA). In

support of the data on Mgrac1 deletion mutants, the dominant

negative transformant is also defective in the formation of conidia

and appressoria and is nonpathogenic. The constitutively active

transformant, on the other hand, produces more conidia, with

some enlarged than DN mutants. Although these conidia can

germinate normally, they are also defective in further development

into appressorium for infection of rice leaves and onion epidermis.

Figure 7. Chm1DPBD rescues conidiation in Mgrac1 deletion mutants. (A) DIC microscopy of conidia of WT (70-15) and PCA19 (Chm1DPBD
expression in the Mgrac1 deletion mutant) collected after incubation the hydrophobic Gelbond film surface. Bar = 20 mm. (B) Conidia suspensions
(about 1,000 in 20 ml) of WT and PCA19 were inoculated on strips of onion epidermis. Infectious hyphae were examined at 1 day post-inoculation
with DIC microscopy. A = appressorium, C = conidium, H = hypha, IF = infectious hypha. Bar = 20 mm. (C) Leaves of rice cultivar CO39 were sprayed
with conidial suspensions (16105 conidia/ml) from WT and PCA19. Typical leaves were photographed 7 days after inoculation. (D) Disease symptoms
on the wounded leaf tissues of rice inoculated with mycelial plugs from WT, DMgrac1-19, and PCA19. Typical leaves were photographed 5 days after
inoculation. (E) Blast symptoms on rice roots. Arrow indicates necrotic lesions.
doi:10.1371/journal.ppat.1000202.g007
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Rac1 is a member of the Rho GTPase family and generally

functions in actin cytoskeleton organization and polarized cell

growth [16], which plays an important role in many developmen-

tal pathways of diverse organisms. Indeed in the filamentous

fungus P. marneffei, the Rac homolog CflB is required for cell

polarization during asexual development, conidiation and hyphal

growth [20]. In the phytopathogenic fungus U. maydis, Rac1 is

essential for pathogenicity [24]. These observations are consistent

with our findings that MgRac1 is essential in M. grisea development

and pathogenicity. In addition to M. grisea, other plant-infecting

ascomycetes such as C. trifolii, F. graminearum, and S. nodorum all

contain Rac homologs. Our data indicate that MgRac1 plays a

critical role in the life cycle of M. grisea, specifically in the

development of normal infectious structures that allow successful

penetration and initiation of plant infection and disease epidemics.

We further identified a Rac1 signaling pathway required for

MgRac1-mediated conidiation during the development of M.

grisea. In this pathway, active, GTP-bound MgRac1 interacts with

Chm1 via its PBD domain, leading to the activation of Chm1

kinase activity that could subsequently regulate actin organization

and polarized cell growth during the conidiogenesis process. We

provide several lines of evidence to support that Chm1 is a major

effector of MgRac1 for conidiogenesis in M. grisea. First,

constitutively active Chm1 corrects the defect of Mgrac1 deletion

mutants in conidiogenesis in terms of morphology and quantity of

conidia. However, it cannot correct the defect in appressorial

formation and pathogenicity, suggesting that these processes

require additional MgRac1 effectors. Second, constitutively active

MgRac1 cannot rescue the defect of chm1 deletion mutants,

indicating that Chm1 functions downstream of MgRac1 in the

regulation of conidiogenesis. Chm1 is a homolog of mammalian

p21-activated kinase (PAK), which is known to interact with and

phosphorylate downstream proteins involved in actin cytoskeleton

organization and polarized cell growth in mammalian cells [31].

In the dimorphic human pathogenic fungus P. marneffei, PAK is

required for conidial germination [35]. In the ergot fungus

Claviceps purpurea, Rac1 and its downstream effector Cla4 function

in fungal ROS homoeostasis which could contribute to their

Figure 8. The interaction between MgRac1 and Nox1/Nox2 and superoxide production in MgRac1 mutants. (A) Yeast two-hybrid assay
with MgRac1-CA or MgRac1-DN as the bait and Nox1 or Nox2 as the prey. Yeast transformants grown on the SD-Leu-Trp plates were assayed for b-
galactosidase activity. The interaction of pGBKT7-53 and pGADT7-T was used as the positive control. The interaction of BD-MgRac1(CA) and AD
(pGADT7) as well as BD (pGBKT7) and AD-Nox1/2 were used as negative controls to rule out self-activation. (B) Bar chart showing mean pixel intensity
in hyphal tips and conidia of WT (70-15) and MgRac1 mutants, which quantifies the results in (C) and (D). Increased staining by NBT means reduced
pixel intensity. Error bar means standard deviation based on the data of three independent experiments. (C) Detection of superoxide production by
0.6 mM NBT staining in the hyphal tips of WT and MgRac1 mutants. Bar = 10 mm. (D) Detection of superoxide production by 0.3 mM NBT staining in
the conidia of WT and MgRac1 mutants. Bar = 10 mm.
doi:10.1371/journal.ppat.1000202.g008
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drastic impact on differentiation [25]. Cla4 also works as Rac1

downstream effector essential for Rac1-induced filament forma-

tion in U. maydis [24]. The importance of the MgRac1-Chm1

signaling pathway in the conidiogenesis of M. grisea reflects an

evolutionarily conserved Rac1 pathway that controls various

developmental processes across species via regulation of actin

organization and polarized cell growth.

Chm1 is also an effector for Cdc42 in M. grisea as shown in the

yeast two-hybrid assay (data not shown). Our real-time PCR analysis

reveals a potential antagonistic interaction between Rac1 and Cdc42

in M. grisea. There is an increase in Cdc42 expression in DMgrac1-19

and MgRac1-DN mutants, while there is a small decrease in Cdc42

expression in the MgRac1-CA mutant (Table 3). However, the

conidiogenesis defect in DMgrac1-19 and MgRac1-DN mutants is

unlikely due to hyperactive Cdc42, because over-expression of

Cdc42 has no effect on conidiogenesis (data not shown).

The MgRac1-Chm1 pathway, however, is not sufficient for

pathogenesis. Although constitutively active CHM1DPBD mutant

can rescue the conidiation defect of the Mgrac1 deletion mutant,

the resulting conidia remain nonpathogenic, suggesting the

involvement of additional effectors, such as the Nox proteins that

are NADPH oxidases responsible for ROS production. The nox1

and nox2 deletion mutants of M. grisea are known to be defective in

pathogenesis [34]. In the current study, we show that MgRac1-CA

but not MgRac1-DN interacts with Nox1 and Nox2 and promotes

superoxide production in M. grisea, thus confirming that they are

MgRac1 effectors. Consistently, we find that Nox activity is up-

regulated in the hyphal tips of the MgRac1-CA mutant and down-

regulated in the MgRac1-DN mutant.

The data from real time PCR, yeast two-hybrid assay and

epistasis analysis indicate that Nox1 and Nox2 act as downstream

effectors of MgRac1. Although the Nox proteins are required for

Figure 9. Superoxide production and pathogenicity of Nox over-expression mutants. (A) Bar chart showing mean pixel intensity in hyphal
tips and conidia of 70-15 (wild-type strain), DMgrac1-19 (the Mgrac1 deletion mutant), NOR1 (NOX1 over-expressed in DMgrac1-19), and NOR2 (NOX2
over-expressed in DMgrac1-19). Error bar means standard deviation based on the data of three independent experiments. Superoxide production was
detected by NBT staining. (B) Disease symptoms on the wounded leaf tissues of rice inoculated with mycelial plugs from 70-15, DMgrac1-19, NOR1,
and NOR2. (C) Detection of superoxide by 0.6 mM NBT staining in the hyphal tips of Nox over-expression mutants. Bar = 10 mm. (D) Detection of
superoxide by 0.3 mM NBT staining in the conidia of Nox over-expression mutants. Bar = 10 mm.
doi:10.1371/journal.ppat.1000202.g009
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pathogenesis [34], our data indicate that MgRac1-Nox interaction

is not required in conidiation. Unlike Chm1, over-expression of

Nox1 or Nox2 cannot rescue the conidiation defect of the Mgrac1

deletion mutants. Thus, the two MgRac1 signaling pathways play

distinct roles in M. grisea differentiation, with MgRac1-Chm1

interaction specifically controlling conidiogenesis.

Materials and Methods

Fungal strains and growth conditions
Magnaporthe grisea (Herbert) Barr parent strains (70-15 and

Guy11) and other derivative strains described in this paper were

maintained and cultured on the complete medium plates (CM:

0.6% yeast extract, 0.6% casein hydrolysate, 1% sucrose, 1.5%

agar) at 25uC. Cultures for genomic DNA isolation, RNA isolation

and protoplast preparation were grown in the liquid starch yeast

medium (SYM: 0.2% yeast extract, 1% starch, 0.3% sucrose) in a

150-rpm shaker at 25uC for 3–4 d. Conidia were prepared from

10-day-old cultures grown on the oatmeal agar medium (5%

oatmeal, 2% sucrose, 1.5% agar) and rice-polish agar medium (2%

rice-polish, 1.5% agar, pH 6.0). The selective top agar medium

was supplemented with either 400 mg/ml of hygromycin B (Roche

Applied Science) or 300 mg/ml of glufosinate ammonium (Sigma-

Aldrich Co.), depending on the selection marker in the plasmid

vector. Mono-conidial isolation and measurement of conidiation

and growth rate were performed as previously described [36].

Isolation of MgRac1 gene and cDNA
Two PCR primers 1F and 1R (Table 4) were designed based on

Magnaporthe grisea genome database (www.broad.mit.edu/annota-

tion/genome/magnaporthe.grisea). The MgRac1 gene was ampli-

fied from the 70-15 genomic DNA by a 30-cycle PCR reaction

(94uC, 1 min; 54uC, 1 min; 72uC, 1 min), followed by 7 min

extension at 72uC. PCR products were cloned into the pGEM-T

easy vector (Promega Corp.) and confirmed by direct DNA

sequencing. The cDNA of MgRac1 was isolated by RT-PCR of

total RNA of M. grisea with primers 1F and 1R, followed by

cloning into the pGEM-T easy vector and direct DNA sequencing

(EF060241).

MgRac1 gene replacement and mutants
To replace the gene, a 0.9-kb fragment upstream of the MgRac1

ORF in the M. grisea genome was amplified with primers 2F and

2R (Table 4) and cloned into the XhoI sites on pCSN43, and the

resulting construct is named pRAC11. Then a 1.0-kb fragment

downstream of MgRac1 ORF was amplified with primers 3F and

3R (Table 4) and cloned between the HindIII and SacI sites in

pRAC11, and the resulting construct was the MgRac1 gene

replacement vector, pKRA1, which had the selective marker hph

gene flanked by the MgRac1 ORF flanking sequences. pKRA1

Table 4. Primers used in this study.

Name Sequence (59R39)

1F TAGGATCCATGGCCGCCCCTGGGGTTC

1R CGGGATCCTCACAGAATGGTGCACTTTG

2F TACTCGAGCTTTCTCCGGTCTGGTATATC

2R GCCTCGAGGGTCTGGAAATATAAGAATGTG

3F GCAAGCTTAACTACTCGGCTAGTGTTATG

3R ATGAGCTCCACCGTTACCCTGTGTTGC

4F CTCGACCCTTCTTGGAGTGG

4R GACAGACGTCGCGGTGAGTT

5F TAGGATCCGTTCCAACCTGCGTTGCAAC

5R CTGAATTCGAGTGTTCAGAGACAGGATG

6F ATGGCCGCCCCTGGGGTTCAGTCTTTGA

AGTGTGTCGTCACTGGCGACGTTGCTG

6R TCACAGAATGGTGCACTTTGACTTC

7F GAACCAAGCTCGCTCTTCGTGAAGACCCCTC

7R GAGGGGTCTTCACGAAGAGCGAGCTTGGTTC

8F GTCGAGCTCCGAAACTTTCCCAAACCGG

8R TAAGAGCTCAGAAAGACCGGCTGAGTCC

9F GGTGCCCTGGTATGGGAGACCTCACCAAGCGTAACG

9R CGTTACGCTTGGTGAGGTCTCCCATACCAGGGCACC

10F ACGCTGAACCACGCTGAACCATG

10R GTCGAATCTGTCATGGTGCGAAG

11F GAAAAGATTCAGAAGACGGAATC

11R CGCAGATAAGTGCCTGGTCGTAC

12F GCTGTCCTCGTCGATCTCGA

12R CAGAGCAGGTCAGGTAACGA

13F CGGAATTCATGGCCGCCCCTGGGG

13R GCGGATCCTCACAGAATGGTGGACTTTG

14F CACGAATTCATGAACCCTGGACCTGCC

14R TAAGAGCTCTTATTTGGCATGCTTCTTGAAGG

15F AGACGAAGAAGCCGATAGCAC

15R CGGTTTCCGACATGGTTGAC

16F CGTTCGGCACCTTACACGA

16R CCCTCCGCTGGTTCACCAA

17F GTGTGTCGTCACTGGCGA

17R ACTGTGGGGATGTACTCGC

18F ATGATCGGTGACGAGCCGT

18R GTATGATAGGGGTCGCAGC

19F GAGACTTGTCAGGGACTG

19R TGACGTTACCCCTGGCAT

20F CAACTTCTTCAATGTCGAG

20R AAGCATACACAACAGCATC

21F ATTGCCAGAGCTGCGGCG

21R AGGCGTTTGACGCGCAAGA

22F TCCGTGGAAAGGTTTCCATG

22R ATCCACTCGACGAAGTACGA

23F CCCATCGATACATGTCGGTCGGAGAGTTCTTG

23R CTCGGATCCCTAGAAATGCTCCTTCCAGAAG

24F TACGAATTCATGTCTGGATACGGCTACGG

24R TGTGGATCCCTAGAAATTCTCCTTGCCCC

25F TATCTCGAGATAAATGTAGGTATTACCTGTAC

Name Sequence (59R39)

25R GATGGATCCTTTGAAGATTGGGTTCCTAC

26F TATGGATCCATGTCGGTCGGAGAGTTCTTGG

26R CGGACGCGTCTAGAAATGCTCCTTCCAGAAGCGG

27F TATGGATCCATGTCTGGATACGGCTACGG

27R GAAACGCGTCTAGAAATTCTCCTTGCCCC

doi:10.1371/journal.ppat.1000202.t004
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was then transformed into protoplasts of the wild-type strain 70-15

as described previously [37]. Hygromycin-resistant transformants

were screened by PCR with primers 4F and 4R (Figure 1A,

Table 4) to confirm that the MgRac1 gene was deleted. These

transformants were Mgrac1 deletion mutants.

The complementation vector pCRA1 was constructed by

cloning a 2.37-kb fragment containing the native promoter and

ORF of MgRac1, amplified by PCR with primers 5F and 5R

(Table 4), into the basta-resistance vector pBARKS1. The

complementary strain Mgrac1-Com was generated by reintroduc-

tion of pCRA1 into the Mgrac1 deletion mutants, followed by

screening for basta-resistant transformants and PCR confirmation.

The constitutively active and dominant negative MgRac1 mutants

(MgRac1-CA and MgRac1-DN) were generated by site-directed

mutagenesis of wild type MgRac1 via a PCR-based approach.

Two primers including the forward primer 6F and reverse primer

6R (Table 4) were used to generate MgRac1-CA with 6F containing

the substitution of the glycine (G17) of MgRac1 with valine. The

dominant negative MgRac1 mutant (MgRac1-DN) was generated by

substitution of the aspartic acid (D123) with alanine by recombinant

PCR with two pairs of primers 1F/7R and 7F/1R, with 7F and 7R

containing the mutation (Table 4). Wild type MgRac1 cDNA was

amplified with primers 1F and 1R (Table 4) to construct over-

expression MgRac1 mutant. All the mutated and wild-type DNA

fragments were amplified with pfu polymerase (Stratagene),

confirmed by DNA sequencing, and cloned into the vector

pTE11. The expression of MgRac1-CA, MgRac1-DN and MgRac1-

OE was driven by the constitutive RP27 promoter built within

pTE11, upon transformation of protoplasts of the wild-type strain

70-15, the chm1 deletion mutant and the Guy11 strain expressing the

heterologous Aspergillus nidulans tropomyosin-GFP [29].

CHM1DPBD mutants and Nox over-expression mutants
To generate the CHM1DPBD (deletion of the PBD domain185–243

in the Chm1 ORF) construct, the genomic DNA of wild-type strain

70-15 was amplified by recombinant PCR with four primers 8F/9R

and 9F/8R (Table 4). The resulting PCR product contained the

CHM1DPBD sequence driven by the native Chm1 promoter. It was

then digested with SacI and cloned into pBARKS1, resulting in the

CHM1DPBD expression vector pBCP17. After transforming the

wild-type strain Guy11 and Mgrac1 deletion mutant with pBCP17,

basta-resistant transformants were isolated and screened by PCR

with primers 8F and 8R to confirm the CHM1DPBD sequence. The

expression of CHM1DPBD in these transformants was confirmed by

Northern blot analysis (see below).

M. grisea Nox1 and Nox2 cDNAs were amplified by RT-PCR

with primers 26F/26R and 27F/27R (Table 4) and cloned into the

XhoI/BamHI sites of pKNTP vector, which contained the

constitutive RP27 promoter and the neomycin gene as a selection

marker. The pKNTP vector was derived from pKNTG via

insertion of the RP27 promoter, which was amplified from pTE11

by PCR with the primers 25F and 25R (Table 4). The resulting

Nox1 and Nox2 expressing constructs were termed pOENO1 and

pOENO2, respectively. Upon transformation of Mgrac1 deletion

mutants with pOENO1 or pOENO2, 300 mg/ml of neomycin

sulfate (Amresco Inc.) was supplemented for selection. Neomycin-

resistant transformants were screened and Nox expression was

confirmed by NBT staining.

Southern blot and Northern blot analysis
For Southern blot analysis, genomic DNA was isolated from M.

grisea wild-type strain 70-15, putative Mgrac1 deletion mutants and

ectopic transformants, following the miniprep procedure [37].

DNA aliquots of 5 mg were digested with PstI, separated by

electrophoresis on 1% agarose gels and transferred onto a Hybond

N+ membrane (Amersham Pharmacia Biotech). Interior probe

was amplified with primers 10F and 10R (Figure 1A, Table 4),

while exterior probe was amplified with primers 11F and 11R

(Figure 1A, Table 4).

For Northern blot analysis, total RNA samples (10 mg per

sample), which were isolated from growing hyphae of M. grisea

using the RNAiso Reagent (Takara Bio Inc.), were separated by

electrophoresis on 1% formaldehyde denaturing gel and trans-

ferred onto a Hybond N+ membrane (Amersham Pharmacia

Biotech). The probe for Northern hybridization was the 0.5-kb

Chm1 exon region amplified by primers 15F and 15R (Table 4).

For internal control, a 0.73-kb PCR fragment for 18s rRNA

(AB026819) was amplified from M. grisea genomic DNA using

primers 16F and 16R (Table 4).

For both Southern and Northern blot analysis, probe labeling,

hybridization and detection were performed with DIG High

Prime DNA Labeling and Detection Starter Kit I (Roche Applied

Science), following the manufacturer’s instructions.

RT-PCR and real-time PCR analysis
First strand cDNA was synthesized with the ImProm-II Reverse

Transcription System (Promega Corp.) following the manufactur-

er’s instructions. For RT-PCR, a 2 ml aliquot of first-strand cDNA

was subjected to 30 cycles of PCR amplification with MgRac1 ORF

primers 1F and 1R. The amount of template cDNA was

normalized by PCR with a pair of b-tubulin (XP_368640) primers

12F and 12R (Table 4). Twelve microliters of PCR products were

analyzed by 1.5% agarose gel electrophoresis.

In quantitative real-time PCR, MgRac1, MgCdc42 (AF250928),

Chm1 (AY057371), Nox1 (EF667340) and Nox2 (EF667341) were

amplified by the following pairs of primers: 17F/17R, 18F/18R,

19F/19R, 20F/20R, and 21F/21R, respectively (Table 4). As an

endogenous control, an 86-bp amplicon of b-tubulin gene was

amplified with primers 22F and 22R (Table 4). Quantitative real-

time PCR was performed with the MJ Research OPTICON Real-

Time Detection System using TaKaRa SYBR Premix Ex Taq

(Perfect Real Time) (Takara, Japan). The relative quantification of

the transcripts was calculated by the 22DDCt method [38].

Analysis of conidial morphology, conidial germination,
appressorial formation and penetration

Conidia were prepared from 10-day-old oatmeal agar cultures.

For the measurement of the length and width of conidia, five

independent experiments were performed with 3 replicates each

time, and 50 conidia were observed in each replicate. Mean and

standard deviation were calculated using SPSS V13.0, and one

way ANOVA was performed on the data for significant differences

between genotypes. Aliquots (50 ml) of conidial suspensions (56104

conidia/ml) were applied on the hydrophobic side of Gelbond film

(Cambrex BioScience). The conidial droplets were incubated in a

moist chamber at 25uC. Conidial germination and appressorial

formation were examined at 0.5, 1, 2, 4, 8 and 24 h post-

incubation. Appressorial penetration on onion epidermal strips

was assayed as described previously [39]. Photographs were taken

with an Olympus BX51 universal research microscope.

Plant infection assay
Rice (Oryza sativa L.) and barley (Hordeum vulgare cv. Jinchang 1316)

seedlings (15 and 8-day-old respectively) were grown under the

conditions described previously [36]. The rice cultivar used for

infection assays was CO39 [40]. Conidial suspensions (16105

conidia/ml in 0.02% Tween solution) were prepared from oatmeal
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agar cultures for spray or wounded infection assays. Plant incubation

and inoculation were performed as described [5]. Root infection

assays were carried out as described [41]. Lesion formation was

examined at 7 days after inoculation on rice and 5 days after

inoculation on barley. The mean of lesion numbers formed on 5-cm

leaf tips was determined as described previously [42,43]. Cell walls

and septa of vegetative hyphae were visualized by Calcofluor White

(10 mg/ml, Sigma), and nuclei of vegetative hyphae were visualized

by DAPI (50 mg/ml, Sigma) as described [44].

Yeast two-hybrid assay
The MATCHMAKER GAL4 Two-Hybrid System 3 (Clon-

tech) was used to determine protein–protein interactions. The

MgRac1 cDNA was amplified with primers 13F and 13R (Table 4)

and inserted into the EcoRI and BamHI sites of the yeast vector

pGBKT7 (Clontech). MgRac1 contains the C-terminal CAAL

motif that is subject to prenylation at the cysteine residue. This

modification makes these Rho-family GTPases membrane asso-

ciated and difficult to enter the nucleus for protein interactions in

the two-hybrid assay. Thus, we constructed MgRac1:C196S

mutants that cannot be prenylated and is thus soluble. Constitu-

tively active and dominant negative mutations were generated at

the MgRac1:C196S background and the resulting double mutants

were used as the baits in the two-hybrid assay. Chm1 ORF was

amplified with primers 14F and 14R (Table 4) and cloned between

the EcoRI and SacI sites on the yeast vector pGADT7 (Clontech) as

the prey in the two-hybrid assay. The CHM1DPBD cDNA was

amplified by recombinant PCR with two pairs of primers (14F/9R

and 9F/14R) from the first-strand cDNA of wild-type 70-15,

followed by cloning into the EcoRI and SacI sites of pGADT7 as a

prey in the two-hybrid assay. Nox1 and Nox2 ORFs were amplified

with primers 23F/23R and 24F/24R, respectively (Table 4), and

cloned into the yeast vector pGADT7 (Clontech) as the preys in

the two-hybrid assay. The resulting bait and prey vectors

confirmed by sequencing were co-transformed in pairs into the

yeast strain AH109 (Clontech). The Leu+ and Trp+ transformants

were isolated and assayed by X-gal staining. Positive clones were

further confirmed by plating onto SD-Leu-Trp-His media for the

HIS3 reporter gene expression.

In all assays, the interaction of pGBKT7-53 and pGADT7-T

was used as the positive control, and the interaction of pGBKT7-

Lam and pGADT7-T as the negative control.

In vitro PAK kinase assay
Vegetative hyphae were harvested from 3-day-old CM liquid

cultures for protein isolation. About 200 mg of mycelia were

resuspended in 2 ml of extraction buffer (50 mM Tris-HCl

[pH 7.5], 100 mM NaCl, 50 mM NaF, 2 mM phenylmethylsul-

fonyl fluoride, 5 mM EDTA, 1 mM EGTA, 1% Triton X-100,

10% glycerol) and centrifuged. Protein concentration was

measured by GeneQuant pro spectrophotometer (Amersham

Biosciences), and 10 mg of total protein was applied for kinase

activity detection. PAK Kinase assay was performed by using the

HTScan PAK1 kinase assay kit, according to the manufacturer’s

instructions (Cell Signaling Technology).

ROS detection assay
For superoxide detection, hyphae of wild-type strain 70-15 and

MgRac1 mutants were collected from 3-day CM agar plates and

stained with 0.6 mM NBT (nitroblue tetrazolium) aqueous

solution for 2 h. Superoxide production in the hyphal tips was

viewed by bright-field microscopy. Conidia were collected from

10-day oatmeal agar plates and stained with 0.3 mM NBT

aqueous solution for 1 h. After incubation in NBT, the reaction

was stopped by the addition of ethanol, and the pattern of

formazan staining was observed by using Zeiss Axiovert 200 M

microscope equipped with a Zeiss LSM 510 META system. The

intensity of formazan precipitation in conidia and hyphal tips was

quantified by using Meta Imaging Series 6.1 software (Universal

Imaging Corporation) to calculate mean pixel intensity within

regions of interest fitted to the outline structure. Measurements

were made on the most intensely stained conidia and hyphae of

each strain. Pixel intensity was reduced in areas of formazan

precipitation.

Gene accession numbers
GenBank accession numbers for genes or proteins used in this

article are EF060241 (MgRac1), AF250928 (MgCdc42), AY057371

(Chm1), EF667340 (Nox1), EF667341 (Nox2), XP_368640 (b-

tubulin) and AB026819 (18s rRNA).
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