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Abstract

Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected
individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8+ T cells are
associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous
work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in
numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-
terminal region of the NS3/4A helicase, NS31629-1637, displayed multiple serial amino acid substitutions in major
histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid
substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each
mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system
and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue,
I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two
mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA
replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection,
decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable
in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being
less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging
early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between
immune evasion and fitness for replication.
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Introduction

Hepatitis C virus (HCV) currently infects an estimated 3% of

the world’s population (,170 million people) [1,2], causing a

myriad of health problems including fibrosis and cirrhosis of the

liver [3,4]. Infection considerably increases the probability of

hepatocellular carcinoma, and HCV-related hepatic disease has

become the leading cause of orthotopic liver transplantation in the

United States [5]. The majority of those infected with the virus are

unable to spontaneously resolve the infection despite the presence

of humoral and cellular immune responses that are at least

occasionally robust [6–8]. There have been many reasons

proposed as to why the immune system fails in the face of chronic

HCV infection, including early T cell exhaustion, particularly of

the CD4+ helper subset [9,10], dendritic cell (DC) dysfunction

[11,12], impairment of effector cells [6,13,14], and cytotoxic T

lymphocyte (CTL) viral epitope escape [15–18]. Like most small

RNA viruses, HCV has an extremely high replication rate

(,1010–1012 virions/d, [19]), and the highly error prone NS5B

polymerase allows for robust production of minor viral variants

that may outpace cellular immune responses [6,20,21]. These

variants are under constant immune pressure in the infected host,

and Darwinian selection processes lead to domination of the viral

quasispecies by the most fit virus that can also evade immune

recognition.

Viremia varies widely in individuals with chronic HCV

infection with steady state values that range from a few thousand

to several million genomes per milliliter of plasma. Factors that

regulate virus load in persistent HCV infection are not known but

could conceivably influence the rate and severity of progressive

liver disease. CTL mutational escape could have positive or

negative effects on virus replication depending on the site and
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nature of the amino acid substitution(s) within structural or non-

structural HCV proteins. Some substitutions might be expected to

result in loss of immune control and thus higher levels of virus

production, but it is also plausible that mutations facilitating CTL

escape have negative consequences for replication if they impair

production, assembly, or release of virions. Impaired replicative

fitness as a result of escape mutation has been associated with

reduced viremia and slower disease progression in HIV-1-infected

humans and SIV-infected rhesus macaques [22–25]. Despite the

importance of CTL epitope viral mutation for immune evasion, in

HCV infection many highly targeted epitopes have a low mutation

frequency. Epitopes such as HLA-A2 restricted NS31073–1081 are

consistently targeted by CD8+ T cells, but amino acid mutations

facilitating immune evasion are rarely observed [26,27]. Since the

NS3 protein shares both protease and NTPase-dependent helicase

functions, it has been proposed that mutations in these epitopes

may be lethal to the virus [28]. However, few studies have

examined how CTL escape directly correlates with HCV fitness.

Cell culture models of HCV replication utilizing viral replicons

have been valuable in identifying adaptive mutations that facilitate

robust replication in hepatocytes in vitro [29,30]. Using this tool

along with recently developed systems allowing actual infection

rather than just replication [31–34], we extend these models to

study the impact of CTL escape mutation on virus replication and

virion production. In this report, we assessed the evolution of a

dominant MHC class I epitope during the acute and chronic

phases of infection in a chimpanzee studied through seven years of

follow-up. A C-terminal epitope of the NS3 protein, NS31629–1637,

restricted by the chimpanzee Patr-B1701 molecule, has previously

been shown to serially acquire several distinct mutations in amino

acid residues that impair MHC binding or TCR recognition

[15,35,36]. The availability of longitudinal samples from this

chimpanzee facilitated a careful examination of epitope evolution

and an integrated assessment of the fitness of viral variants that

arose in vivo, as well as the host immune response directed against

these variants. Our results indicate that genomes encoding CTL

escape mutations that emerge early in infection are not necessarily

optimized for replication and are eventually replaced by variants

that successfully balance escape from cellular immune pressure

and replicative fitness in the chronic phase of infection. We predict

that this could be an important factor influencing virus load in

HCV-infected chimpanzees and humans, with as yet unknown

consequences for liver disease progression.

Materials and Methods

Patr-B1701 plasmid, subgenomic replicon, and full-
length chimeric genome construction

Patr-B1701 plasmid. The Patr-B1701 sequence was cloned

into the pcDNA3.1Zeo(-) plasmid (Invitrogen, Carlsbad, CA).

Briefly, the Patr-B1701 sequence was cloned from an EBV-

transformed B cell line generated from chimpanzee CH503,

linearized using SalI-EcoRI (1337 bp), and ligated to the multiple

cloning site (MCS) of pcDNA3.1Zeo(-) cut with XhoI-EcoRI.

Ligations were transformed into DH5a cells (Invitrogen, Carlsbad,

CA), plated, and colonies picked and sequenced using the T7

forward and BGH reverse priming sequences (Macrogen, Korea).

Subgenomic replicons. Subgenomic replicons have been

previously described [29,30]. The original BB7 replicon backbone

containing a neomycin cassette under the control of the 59 HCV

internal ribosomal entry site (IRES) and the NS3-NS5B genes

under the control of an EMCV IRES was modified using site-

directed PCR mutagenesis and standard cloning procedures, as

described below.

JFHxJ6 Cp7 NS3 mutants. Plasmids pJFH1 (JFH) and pGND

(GND) have been previously described [33], and plasmid pJ6CF (J6)

is an autologous genotype 2a full-length clone that has been shown to

be infectious in chimpanzees [37]. Sequence homology for NS3

between the infecting HCV 1/910 strain and BB7 is 92.2% and

between HCV 1/910 and JFH/J6 is 80%. Proper controls to assess

the effects of these differences at the epitope level were engineered

into the backbones of BB7 and Cp7, respectively. To create the full-

length chimeric JFHxJ6 Cp7 (Cp7) construct, two PCR products

were produced and fused to create junction points between Core-p7

of J6 and p7-NS5B of JFH, resulting in the JFHxJ6 Cp7 full-length

clone (described in [34]). NS31629–1637 mutations were introduced in

the Cp7 clone as follows, using standard cloning procedures. A single

forward primer ‘‘039NS3Epi Forward’’ (59-GATTCCCCTATC-

CTGCATCAAG-39) was used with four reverse primers

‘‘040NS3EpiGAVQNEITL’’ (59-GTCAGCTTGCATGCATG-

TGGCGATGTACTTCGTCCCAGGGTGTGTGAGGGTAAT-

CTCATTTTGTACAGCGCCCAAACGGTACAGGAGAGG-39),

‘‘041NS3EpiGAVQNEITP’’ (59-GTCAGCTTGCATGCATGT-

GGCGATGTACTTCGTCCCAGGGTGTGTAGGGGTAAT-

CTCATTTTGTACAGCGCCCAAACGGTACAGGAGAGG-39),

‘‘042NS3EpiGAVQNEITS’’ (59-GTCAGCTTGCATGCATGT-

GGCGATGTACTTCGTCCCAGGGTGTGTGCTGGTAAT-

CTCATTTTGTACAGCGCCCAAACGGTACAGGAGAGG-39),

and ‘‘043NS3EpiGAVQNETTL’’ (59-GTCAGCTTGCATGC-

ATGTGGCGATGTACTTCGTCCCAGGGTGTGTGAGGG-

TGGTCTCATTTTGTACAGCGCCCAAACGGTACAGGAG-

AGG-39), to amplify mutated NS31629–1637 epitopes from the

Cp7 full-length genome. PCR fragments were gel purified, NsiI-

SacI digested (819 bp fragment cut to a 737 bp fragment), and

a three-piece ligation performed; NsiI-SacI epitope fragment+
NsiI-AvrII Cp7+AvrII-SacI-BbvCI Cp7. All fragments generated

by PCR were verified by sequencing (Macrogen, Korea).

Peptides
Wild-type (GAVQNEITL) and mutant (GAVQNEITP,

GAVQNEITS, GAVQNETTL) NS31629–1637 peptides were

Author Summary

Hepatitis C virus (HCV)-associated liver disease is a leading
indication for liver transplantation in the United States.
With more than 170 million people infected with HCV
worldwide and more than 70% of those infected unable to
clear the virus, it is of paramount importance to elucidate
the factors leading to viral persistence. A well-character-
ized experimental chimpanzee chronically infected with
HCV was found to develop multiple viral sequence
variations over the course of 7 years. Serial mutations in
an HCV epitope that was originally immunogenic in the
host were observed during the course of infection, and we
sought to better understand how each mutation affected
viral persistence. We recreated the viral variants detected
in the chimpanzee and assessed the ability of each variant
to replicate, produce progeny virus, and evade the host
immune system. We found that certain HCV variants
present long after initial infection are able to avoid
recognition by host immune cells, but have reduced
replication fitness. Importantly, in the absence of immune
pressure, these viruses mutate back to variants better able
to replicate and produce new viral progeny. Our experi-
ments suggest that rapidly mutating viruses like HCV seek
a balance between replication efficiency and the ability to
evade the host immune system.

T Cell Escape Mutation and Viral Fitness
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synthesized by Genemed Biosynthesis (San Francisco, CA) and

purified by high-performance liquid chromatography (HPLC). All

peptides were stored at a concentration of 1 mg/ml at –20uC.

Cell lines and cell culture
Huh-7.5 cells were maintained in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum (FBS,

Hyclone, Logan, UT) at 37uC in 5% CO2. The Huh-7.5/B1701

cell line was generated as follows. Huh-7.5 cells were trypsinized,

washed with DMEM-10 media, and 46106 cells electroporated

with 2.5 mg pcDNA3.1Zeo(-)B1701 plasmid using the AMAXA T-

028 program (AMAXA, Gaithersburg, MD). Cells were resus-

pended in DMEM-10, plated in a p100 petri dish, and allowed to

rest for 24 h before addition of 300 mg/ml zeocin (Invitrogen,

Carlsbad, CA). Cell foci surviving selection were trypsinized,

transferred to a 24-well plate, and allowed to grow under selection

up to a p150 petri dish. Huh-7.5/B1701 cells were stained with

20 ml of anti-human pan-HLA-A, B, C FITC-conjugated antibody

(BD Biosciences, San Jose, CA) in FACS buffer (0.5% (w/v) bovine

serum albumin+1% (v/v) of 10% sodium azide in PBS) in parallel

with untransfected Huh-7.5 cells, and visualized on a Becton

Dickinson FACScalibur flow cytometer. Huh-7.5 and Huh-7.5/

B1701 were transfected with replicons harboring wild-type or

mutated NS31629–1637 epitopes as previously described [29,30].

The NS31629–1637-specific CD8+ T cell clone has been previously

described [15], and was stimulated using aCD3 mAb (Immuno-

tech, Beckman Coulter, Fullerton, CA) in a ratio of 16106 CD8+
clone to 26106 irradiated peripheral blood mononuclear feeder

cells (PBMC) and maintained in RPMI media supplemented with

10% FBS, Gentamicin (Gibco, Invitrogen, Carlsbad, CA),

Penicillin/Streptomycin (Lonza, Walkersville, MD), T-stim culture

supplement (human-no PHA, BD Biosciences, San Jose, CA) and

human recombinant IL-2 (rIL-2, Roche, Indianapolis, IN).

Autologous chimpanzee B cells were EBV-transformed following

established protocols using whole blood and conditioned medium

from the marmoset cell line B95-8 [38].

Western blots for intracellular HCV protein
Huh-7.5 cells and Huh-7.5/B1701 cells with or without

subgenomic replicons were lysed directly on 6-well plates using

150 ml lysis buffer (100 mM Tris pH 6.8, 20 mM dithiothreitol, 4%

(w/v) sodium dodecyl sulfate, 20% (v/v) glycerol, 0.2% (w/v)

bromophenol blue) and passed through a 271/2 gauge needle 3–5

times before being stored at –80uC. Lysates were denatured at 92uC
for 10 min, run on 5% stacking/8% resolving SDS-polyacrylamide

gels, and transferred to Immobilon-P membranes (Millipore

Corporation, Bedford, MA). Membranes were blocked with TBS-

T (20 mM Tris pH 7.4, 150 mM NaCl, 0.1% (v/v) Tween-20

(polyoxyethylene sorbitan monolaurate) plus 5% (w/v) non-fat dry

milk, and probed with antibodies against NS3 and NS5 (Virostat,

Portland, ME), or b-actin in the same buffer overnight at 4uC.

Membranes were washed 5 times with TBS-T, probed with HRP-

conjugated secondary antibodies for 1 h at room temperature,

washed 5 times, and detected using ECL Western detection reagents

(Amersham Biosciences, Piscataway, NJ).

Quantification of HCV RNA by real time qRT-PCR
Total RNA from 16106 infected Huh-7.5 cells was isolated

using an RNeasy Mini Kit (QIAGEN, Valencia, CA). 80 ng of

total cellular RNA was used to perform Real-Time Quantitative

Reverse Transcription PCR using TaqmanH One Step RT-PCR

Master Mix Reagents (Applied Biosystems, New Jersey, USA),

primers specific for the HCV 59 NTR (forward, 10 mM: 59-

CTTCACGCAGAAAGCGCCTA-39 and reverse, 10 mM: 59-

CAAGCGCCCTATCAGGCAGT-39), and a probe (10 mM: 6-

FAM-TATGAGTGTCGTACAGCCTC-MGB NFQ). Thermal

cycling conditions were designed as follows: 48uC for 30 min,

95uC for 10 min, and 40 cycles of 15 s at 95uC, followed by 1 min

at 60uC. All amplification reactions were carried out in duplicate.

A standard curve was similarly generated using 10-fold dilutions of

pJFH1 RNA transcripts generated by in vitro transcription,

DNAse treatment, purification by RNeasy Mini Kit and

quantification by spectrophotometry.

51Cr-release assay
To determine lysis capability of the NS31629–1637-specific CD8+

T cell clone, Huh-7.5/B1701 cells with or without subgenomic

replicons and EBV-transformed autologous B cells were spun at

1500 rpm for 5 min in a Beckman Coulter Allegra X-15R

centrifuge, media aspirated, and tubes vortexed to resuspend the

pellet. Cells were pulsed with 51Cr per standard protocol (NEN

Radiochemicals, Perkin Elmer, Waltham, MA) for 1 h, and cells not

harboring subgenomic replicons were simultaneously pulsed with

1 mg/ml wild-type NS31629–1637 peptide resuspended in a total

volume of 100 ml RPMI-10. Pulsed cells were washed 5 times to

eliminate residual radiation and exogenous peptide, and mixed at

different effector (NS31629–1637-specific CD8+ T cell clone) to target

ratios in 200 ml RPMI-10 in a 96-well round-bottom plate. Lysis was

allowed to occur for 4 h at 37uC in 5% CO2 before transferring

100 ml of supernatant to a flat-bottom 96-well plate. Supernatants

were frozen at –80uC for at least 1 h to eliminate cellular carryover

before being counted using a 1450 Microbeta Wallac Trilux liquid

scintillation counter (Perkin Elmer, Waltham, MA).

Transfection and infection of human hepatoma cell lines
To transfect viral RNA, 20 mg of full-length JFHxJ6 Cp7

genomes with or without NS31629–1637 mutations were linearized

by 4 h digestion with XbaI and subsequently blunt end-digested

with Mung Bean Nuclease (New England Biolabs, Ipswich, MA).

Linearized DNA was extracted twice with 25:24:1 phenol:chor-

oform:isoamyl alcohol pH5.260.2 and once with chloroform,

quantified by spectrophotometry, and 2 mg of purified product was

RNA transcribed using a MEGAscript T7 High Yield Transcrip-

tion Kit (Ambion, Austin, TX). RNA was purified again using

phenol:chloroform:isoamyl alcohol followed by chloroform, and

integrity was checked on an agarose gel. After RNA quantification

by spectrophotometry, Huh-7.5 or Huh-7.5/B1701 cells were

trypsinized for exactly 3 min, washed twice with ice cold PBS, and

resuspended at 26107 cells/ml. 10 mg of purified RNA was

electroporated into 86106 cells with 5 pulses of 99 ms at 820 V

over 1.1 s in an ECM 830 electroporator using a 2 mm-gap

electroporation cuvette (BTX Genomics, Harvard Apparatus,

Holliston, MA). Cells were resuspended in DMEM-10 and plated

in 6-well plates. To infect Huh-7.5 or Huh-7.5/B1701 cells using

whole virus, cells were plated at 10–20% confluency in six-well

plates. Media was aspirated, and viral supernatants harvested from

transfected cells were added to the plates in a volume of at least

200 ml. Plates were placed on a rocker at 37uC and 5% CO2 for

4 h before readdition of media.

Huh-7.5/B1701 cells as APCs and intracellular IFNc
release assay

Huh-7.5 and Huh-7.5/B1701 that had not been electroporated

(either with subgenomic replicons or full-length viral RNA) or

infected with whole virus were pulsed for 1 h with wild-type or

mutated NS31629–1637 peptides at decreasing concentrations as in

the 51Cr-release experiments. Cells harboring sugenomic replicons

T Cell Escape Mutation and Viral Fitness
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were harvested and used directly. Cells that had been transfected

with full-length viral RNA were harvested 4 d post-transfection,

and cells that had been infected with whole virus were harvested

5 d post-infection. Cocultures were established in a 24-well plate

using a 1:1 ratio of NS31629–1637-specific CD8+ T cells to APCs,

and allowed to incubate overnight at 37uC in 5% CO2 in the

presence of GolgiStop (BD Pharmingen, San Jose, CA) at a

concentration of 1 ml/ml. After incubation, cells were harvested,

washed once in FACS buffer, and permeabilized using BD FACS

Permeabilizing Solution 2 (BD Biosciences, San Jose, CA). Cells

were stained with mouse anti-human monoclonal antibodies to

CD3 (APC-conjugated, BD Pharmingen, San Jose, CA), CD8

(PerCP-conjugated, BD Biosciences, San Jose, CA), and IFNc
(FITC-conjugated, BD Pharmingen, San Jose, CA), and visualized

on a Becton Dickinson FACScalibur flow cytometer. Data were

analyzed using FlowJo software (Tree Star, Inc).

Viral titration and immunohistochemical staining
96-well plates were coated with collagen for 1 h and allowed to

dry before plating 66103 naı̈ve Huh-7.5 cells/well. Viral

supernatants from transfected or infected Huh-7.5 or Huh-7.5/

B1701 cells were collected, passaged through a 0.22 mm filter, and

used to inoculate cells at 10-fold dilutions. At 3 d post-infection,

cells were immunostained for NS5A as previously described [32].

Briefly, the inoculum was removed, and cells were washed twice

with PBS before fixation with methanol at –20uC. Cells were then

washed twice with PBS, once with PBS+0.1% (v/v) Tween-20

(PBS-T) (normal wash), and blocked for 30 min at room

temperature with PBS-T+1% (w/v) BSA+0.2% non-fat dry milk,

followed by an endogenous peroxidase blocking step (3% H2O2

(v/v) in PBS) for 5 min at room temperature. Cells were washed

normally and stained overnight at 4uC with an anti-NS5A

antibody (9E10). Cells were washed normally, and incubated for

30 min at room temperature with a 1:3 dilution of ImmPRESS

goat anti-mouse HRP-conjugated antibody (Vector Laboratories,

Burlingame, CA). Cells were washed normally once more before

being developed using DAB substrate (Vector Laboratories,

Burlingame, CA). Titers were determined by calculating the tissue

culture infection dose at which 50% of wells were positive for

NS5A antigen [39].

Sequencing of viral clones
Huh-7.5/B1701 cells were infected using viral supernatants

from day 4 transfected cells. Post-infection, media was aspirated,

cells were washed twice with PBS and lysed using Buffer RLT

(QIAGEN, Valencia, CA)+1% 2-mercaptoethanol (Fisher

Scientific, Pittsburgh, PA). Lysates were placed directly onto

QIAshredder columns, and total RNA isolated and purified

using an RNeasy kit (QIAGEN, Valencia, CA). RNA integrity

was quantified using a spectrophotometer, checked on an

agarose gel, and 2 mg used in a first-strand cDNA synthesis

reaction as follows. Briefly, RNA was incubated with random

hexamer primers and 10mM dNTPs at 65uC for 5 min, then

placed on ice. First-strand reverse transcriptase buffer, 0.1mM

DTT and RNase H (Invitrogen, Carlsbad, CA) were added to

each reaction and allowed to incubate at room temperature for

2 min before the addition of superscript II reverse transcriptase

(Invitrogen, Carlsbad, CA). The reaction was allowed to proceed

at 42uC for 2 h, and first-strand cDNA was used directly in an

NS31629–1637 epitope-specific PCR reaction using primers

‘‘211NS3EpiSeqInF’’ (59-TCGCGTACCTAGTAGCCTAC-

CAAGC-39) and ‘‘212NS3EpiSeqInR’’ (59-GCTGGTTGACG-

TGCAAGCGGCCGA-39) to generate a 323bp fragment con-

taining the epitope. PCR products were cleaned using a PCR

cleanup kit (QIAGEN, Valencia, CA), cloned into Top10

chemically competent cells using a TOPO TA kit (Invitrogen,

Carlsbad, CA), and individual clones were sent for sequencing

(Macrogen, Rockville, MD).

Polyclonal antigen-specific expansion of T cells and
intracellular cytokine staining

CD8+ T cells were positively isolated from frozen PBMC using

the Dynal CD8+ Positive Isolation Kit (Invitrogen Dynal AS,

Oslo, Norway) according to manufacturer instructions. Approx-

imately 360,000 CD8+ T cells were plated in one well of a 24-well

plate in 1 ml complete medium (RPMI 1640 containing 10% AB

human serum and 1% penicillin/streptomycin). To serve as APCs,

6 million irradiated autologous PBMC were pulsed for 2 h with

5 mg/ml of the GAVQNETTL peptide. After three washes, APCs

were resuspended in 1 ml complete medium and mixed with the

CD8+ T cells. Cells were incubated at 37uC in 7% CO2. Every

3 d, 1 ml of the culture medium was replaced with 1 ml of

complete medium containing 50 U/ml rIL-2. On day 20, CD8+ T

cells were plated in a 96-well plate in AIM-V medium (Aim-V

(Invitrogen, Carlsbad, CA) supplemented with 2% AB human

serum) and allowed to rest for 8 h. Irradiated EBV-transformed

autologous B cells were pulsed for 2 h with 10 mg/ml of peptide

for use as APCs. After three washes, APCs were resuspended in

Aim-V medium and mixed with CD8+ T cells at a 1:1 ratio with

1 mg/mL of anti-CD28 and anti-CD49d antibodies (BD Pharmin-

gen, San Jose, CA). After 1 h, GolgiStop (BD Pharmingen, San

Jose, CA) was added at a concentration of 1 ml/ml and cells were

further incubated 16 h at 37uC in 7% CO2. After incubation, cells

were harvested and washed once in FACS buffer. Cells were

blocked with PBS-20% human serum and then stained with mouse

monoclonal antibodies to CD8 (APC-conjugated, BD Pharmin-

gen, San Jose, CA) and CD4 (Pacific Blue-conjugated, BioLegend).

After two washes with FACS buffer, cells were stained with Live/

Dead Fixable Blue Stain Kit (Invitrogen, Carlsbad, CA). Cells

were washed twice with FACS buffer and permeabilized using BD

Cytofix/Cytoperm solution (BD Biosciences, San Jose, CA). Cells

were then stained with mouse monoclonal antibodies to CD3

(PerCP-conjugated, BD Pharmingen, San Jose, CA) and IFNc
(PE-conjugated, BD Pharmingen, San Jose, CA) and visualized on

a Becton Dickinson LSR flow cytometer. Data were analyzed

using FlowJo software (Tree Star, Inc).

Results

CTL escape mutations affect subgenomic transduction
efficiency

It is well established that the Patr-B1701 restricted NS31629–1637

epitope is a dominant target of CD8+ T cells during HCV

infection in chimpanzees [15,36]. This epitope displayed a

complex pattern of evolution throughout the acute and chronic

phases of infection in the chimpanzee, and thus is valuable for the

study of viral epitope escape and fitness costs associated with

increased immune pressure. In chimpanzee CH503 infected with a

known inoculum of HCV1/910, sequence analysis over seven

years showed three distinct mutations at three separate timepoints

tested in the NS31629–1637 epitope [15]. The wild-type amino acid

sequence of this epitope in the input HCV1/910 inoculum was

GAVQNEITL (and from here on referred to as the ‘‘parent’’

epitope, NS31629–1637), and three months post-infection a L1637P

variant was found in the animal. Ten months post-infection, this

variant had been replaced by two dominant species, I1635T and

L1637S, at P7 and P9 respectively. Eventually, L1637S became

fixed in this chimpanzee, and was the only variant recovered up to

T Cell Escape Mutation and Viral Fitness
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82 months post-infection (Figure 1A). There is one nucleotide

change from leucine to proline and one nucleotide change from

proline to serine and hence two changes to occur to change leucine

to serine; this perhaps provides mechanistic insight into the early

appearance of L1637P and its later replacement by L1637S. We

set out to test directly the fitness cost associated with the mutating

NS31629–1637 variants by modeling the in vivo infection using the

HCV subgenomic replicon system [29,30]. Using site-directed

PCR mutagenesis, we engineered the mutants in the NS31629–1637

region that had previously been observed in chimpanzees, starting

with the original HCV1/910 parental epitope sequence. The

mutated replicons on the BB7 backbone were transfected into

Figure 1. Construction of subgenomic replicons and HCV protein expression in transfected Huh-7.5 cells. (A) Schematic representation
of subgenomic (SG) replicons and their replication efficiency. Huh-7.5 cells were transfected with the indicated constructs and plated at decreasing
cell number concentrations under neomycin selection to determine transduction efficiency of each construct, with GDD2 serving as a negative
control. NS31629–1637 epitopes are listed by month(s) first detected in an in vivo chimpanzee CH503 infection model. (B) Replication of SG HCV RNA
inside Huh-7.5 cells. Huh-7.5 cells were transfected with subgenomic replicons as in (A), and assayed for RNA replication 6 d post-transfection using a
real time qRT-PCR Taqman assay as described in Materials and Methods. The minimum sensitivity of detection was 1,000 HCV copies/mg RNA). (C)
Western blot of replicon-transfected Huh-7.5 cell lysates. The expression of HCV proteins NS3 and NS5A were detected post-transfection using anti-
NS3/anti-NS5A monoclonal Abs. Lysates from Huh-7.5 cells transfected with replicons containing the BB7 epitope served as a positive control,
untransfected Huh-7.5 cells were used as a negative control, and b-actin served as a positive control for input protein.
doi:10.1371/journal.ppat.1000143.g001
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Huh-7.5 cells, which were then plated under neomycin selection at

decreasing cell numbers to determine transduction efficiency

(Figure 1A). It is important to note that the original amino acid

sequence of NS31629–1637 epitope present in the BB7 subgenomic

replicon is GAVQNEVTT, and was modified to insert the

parental NS31629–1637 epitope of HCV1/910. Substitution of the

parental HCV1/910 NS31629–1637 epitope resulted in a slight

decrease of transduction efficiency in this replicon. The P9

mutations GAVQNEITP (L1637P) and GAVQNEITS (L1637S),

which show a 400-fold decrease in B1701 binding capacity [15],

showed increased susceptibility to neomycin, with L1637P

growing the least efficiently. The P7 GAVQNETTL (I1635T)

mutation was more resistant to selection than the HCV1/910

parental GAVQNEITL NS31629–1637 sequence. These results

suggest that mutations in this epitope at P9 severely hinder the

replicative capacity of the virus, while an isoleucine to threonine

substitution at P7 (I1635T) has no apparent effect. Additionally, a

GND clone containing a mutation in the NS5B RNA-dependent

RNA polymerase GDD motif thus ablating HCV RNA replication

was used as a negative control. A real-time quantitative RT-PCR

assay was used to quantify the level of HCV RNA replication 6 d

post-transfection of Huh-7.5 cells using relevant transcribed

RNAs. As shown in Figure 1B, levels of viral RNA replication

correlated identically with the transduction efficiencies observed

between the different constructs shown in Figure 1A. NS3 and

NS5A protein expression for all constructs, including the original

HCV replicon BB7 epitope GAVQNEVTT, was similar when

assayed by Western blot (Figure 1C). Similar non-structural

protein expression suggests that the NS31629–1637 mutations may

affect initiation of replication, with a steady-state accumulation of

protein expression occurring once replication has been established.

It has been shown that replicons under drug-induced selective

pressure, such as G418, display high levels of HCV replication

(1000–5000 positive strand RNA molecules), and therefore may

show similar levels of protein expression [40]. However, under

non-selective conditions, replicons having lower transduction

efficiencies are lost more rapidly than those with high transduction

efficiencies, and these differences may be reflected in viral protein

levels. Although the P9 L1637S mutation resulted in partially

reduced replicative capacity, the intermediate phenotype (between

L1637P and I1635T) suggests that this mutation represents a

balance between replicative fitness and CTL escape. This

observation is interesting as the P9 L1637S mutation became a

fixed quasispecies through 7 years of persistent replication in

animal CH503. It is also important to note that cells harboring

HCV replicons were additionally sequenced to ensure fidelity of

previously inserted mutations. Sequencing of at least six clones

from each subgenomic-bearing Huh-7.5/B1701 cell line (six, nine,

ten, and six clones for NS31629–1637, L1637P, L1637S, and

I1635T, respectively) showed no variation from expected amino

acid sequences. This sequencing was carried out on PCR

fragments spanning the inserted NS31629–1637 epitope from total

cellular RNA.

Wild-type but not mutant NS31629–1637 epitope is
presented to NS31629–1637-specific CTL on class I MHC
Patr-B1701

We next sought to determine the ability of parental or mutated

NS31629–1637 epitope to be presented by a cell line expressing the

appropriate chimpanzee MHC molecule. Patr-B1701 is a MHC

class I molecule expressed in CH503, and previous data

demonstrated that mutations at critical anchor residues in the

NS31629–1637 epitope (including P9) hindered peptide binding to

Patr-B1701 [15]. We first examined pan-class I surface expression

on Huh-7.5 cells, and compared those levels to Huh-7.5 cells that

had been transfected with a plasmid containing Patr-B1701 under

zeocin selection (Huh-7.5/B1701, Figure 2A). It is important to

note that we are not able to specifically stain for the Patr-B1701

molecule since specific antibodies to this protein do not currently

exist. However, overall class I expression was similar in both cell

types when compared to the isotype control, which led us to test

the ability of Patr-B1701 expression to mediate wild-type NS31629–

1637 epitope-directed killing by a B1701-restricted CTL clone, 4A,

that had been previously isolated from CH503 11 weeks post-

infection with the HCV-1/910 virus stock [15]. When EBV-

transformed autologous B cells (B1701T) or Huh-7.5/B1701 cells

were pulsed with exogenous wild-type NS31629–1637 peptide (1 mg/

ml) in a standard 51Cr-release assay, the NS31629–1637-specific

CTL clone was able to lyse both antigen presenting target cell

populations with similar efficiency (Figure 2B). In contrast,

peptide-pulsed Huh-7.5 cells lacking the Patr-B1701 molecule

were not recognized by the CTL clone. In addition, we further

determined the magnitude of the T cell interferon response to both

the wild-type and mutated epitopes. To do so, we performed an

intracellular IFNc FACS analysis on the CTL clone cocultured

with various APCs that had been pulsed with various peptide

concentrations (Figure 2C). Huh-7.5/B1701 cells that had been

pulsed for 1 h with wild-type NS31629–1637 peptide elicited a robust

IFNc response from the CTL clone. This response was not elicited

by the three mutant epitopes at concentrations up to 0.5 mg/ml.

Responses to each epitope could be seen at very high

concentrations indicating that the CD8+ T cell clone could be

stimulated to produce IFNc even with mutants that had previously

been shown to have lowered MHC-binding capacity [15] if the

mutant was present at high (but not biologically significant)

concentrations. These data collectively show that Huh-7.5 cells

stably transfected with the Patr-B1701 molecule efficiently present

exogenous wild-type peptide in vitro, and that an antigen-specific

T cell clone is able to respond by secreting IFNc and exerting its

cytotoxic effect. Conversely, this CTL clone is unable to efficiently

respond when Huh-7.5/B1701 cells present mutated exogenous

NS31629–1637 peptides reflective of in vivo viral species, containing

a threonine substitution at P7 or a proline or serine substitution at

P9, at physiologically relevant concentrations.

Huh-7.5/B1701 cells harboring subgenomic HCV
replicons present the NS31629–1637 epitope to NS31629–

1637-specific CTL
To determine whether Huh-7.5 cells expressing the Patr-B1701

expressed in CH503 could adequately process and present the

NS31629–1637 epitope during active viral replication for T cell

recognition, Huh-7.5/B1701 cells were stably transfected with

various HCV replicons containing the appropriate mutations

under neomycin selection as before (see Figure 1A). Cells

exhibiting zeocin resistance (confirming Patr-B1701 expression)

and neomycin resistance (confirming presence of replicons) were

used to determine protein expression as well as NS31629–1637-

specific CTL lysis and IFNc production. Huh-7.5/B1701 cells

harboring HCV replicons showed relatively similar levels of

protein expression post-transfection and G418 selection

(Figure 3A). Small differences in HCV protein expression were

likely due to the stringency of dual selection (zeocin and G418)

placed on these cells to maintain both the Patr-B1701 plasmid and

the subgenomic construct. Protein expression was monitored to

ensure that the replicons containing the parental HCV 1/910

NS31629–1637 epitope and the mutants were able to produce,

process and present similar levels of viral peptides to the CTL

clone. Huh-7.5/B1701 cells harboring subgenomic HCV replicons
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Figure 2. Expression and recognition of the chimpanzee Patr-B1701 molecule on the surface of Huh-7.5 cells. (A) Surface expression of
MHC class I on Huh-7.5 cells transfected with a plasmid containing the Patr-B1701 molecule and zeocin selection marker. No difference in surface
expression was observed when compared to untransfected Huh-7.5 cells. Isotype control is depicted in grey. (B) CTL lysis of transfected Huh-7.5 cells.
Huh-7.5 cells expressing the Patr-B1701 (Huh-7.5/B1701) molecule were pulsed with wild-type peptide and incubated with increasing amounts of CTL
clone 4A specific for the NS31629–1637 wild-type epitope. Cells presenting this peptide on the Patr-B1701 molecule are lysed by CTLs as efficiently as

T Cell Escape Mutation and Viral Fitness

PLoS Pathogens | www.plospathogens.org 7 September 2008 | Volume 4 | Issue 9 | e1000143



were labeled with 51Cr, and cocultured with the NS31629–1637-

specific CTL clone to determine the ability of these cells to elicit

epitope-directed lysis. Cells replicating the wild-type NS31629–1637

replicon were lysed by the CTL clone, with ,3-fold less efficiency

than that seen using Huh-7.5/B1701 cells loaded with exogenous

peptide (Figure 3B), reflective of lower levels of physiologic peptide

generated in the replicon system. Cells harboring mutated

NS31629–1637 replicons elicited very low to undetectable levels of

lysis, even at the highest effector to target ratios. Additionally, we

assessed whether Huh-7.5/B1701 subgenomic cell lines replicating

HCV RNA could elicit an IFNc response from the NS31629–1637-

specific CTL clone. Similar to the pulsing experiment using low

amounts of exogenous peptide shown in Figure 2C, only Huh-7.5/

B1701 harboring the wild-type subgenomic replicon stimulated

the CTL clone to produce IFNc (Figure 3C).

Infectious HCV harboring the wild-type NS31629–1637

epitope but not escape mutants stimulate a functional T
cell response

To test the replication fitness and infectivity costs associated

with the mutations observed in the in vivo chimpanzee infection,

we utilized the Huh-7.5/B1701 cell lines in both transfection and

infection studies using full-length HCV constructs capable of

producing infectious virus. The full-length genotype 2a JFH isolate

has previously been shown to both replicate RNA and produce

infectious virus in Huh-7 cells without acquiring adaptive

mutations [33,40]. To study robust replication and virion

production in vitro, a recombinant clone was created by

exchanging the core to p7 region of the genotype 2a JFH virus

with the genotype 2a J6 virus, and the resulting JFHxJ6 Cp7 (Cp7)

recombinant genome produces high titers of virus when used to

transfect naı̈ve Huh-7.5 cells (Figure 4C). As in the BB7 replicon

system, the corresponding NS31629–1637 epitope present in the JFH

sequence of Cp7 was exchanged (using single-site PCR mutagen-

esis) with that of the parental HCV1/910, as well as the respective

mutations seen in CH503 at 3, 10, and 82 months post-infection

(Figure 5A). When RNA from parental NS31629–1637 epitope and

mutant viruses was transfected into Huh-7.5/B1701 cells, no

major difference in protein expression was seen after 4 d as

compared to the Cp7 backbone recombinant construct (Figure 5B).

The GND transfected RNA expectedly did not produce any

protein. These results are consistent with other experiments

performed in both Huh-7.5/B1701 cells and Huh-7.5 cells in that

these mutations do not affect overall expression of NS3 protein,

but may affect initiation of replication (Figure 1C, 3A, 4A, 5B). To

determine the efficiency of viral epitope processing and presen-

tation by cells replicating full-length infectious HCV, the

NS31629–1637-specific CD8+ T cell clone was co-cultured with

Huh-7.5/B1701 cells transfected with the Cp7 backbone, parental

HCV1/910 NS31629–1637, and individual mutant infectious clones.

These T cells were then analyzed by flow cytometry to determine

levels of IFNc produced by the CD8+ T cell clone 4A. CD8+ T

cells that had been stimulated by Huh-7.5/B1701 cells transfected

with full-length infectious virus containing the wild-type NS31629–

1637 epitope had a robust intracellular IFNc response, while those

containing infectious virus with mutant epitopes were unable to

elicit a T cell response (Figure 5C). To determine the level of

NS31629–1637 epitope presentation during actual viral infection,

supernatants from transfected Huh-7.5/B1701 cells were harvest-

ed after 4 d, passed through a 0.22 mm filter, and used to infect

naı̈ve Huh-7.5/B1701 cells for 5 d. These cells were then

cocultured with the NS31629–1637-specific CD8+ T cell clone

overnight, and examined via flow cytometry for IFNc release. As

previously shown with transfected cells, only Huh-7.5/B1701 cells

infected with virus containing the wild-type NS31629–1637 epitope

were able to stimulate a response from the CD8+ T cell clone

(Figure 5D).

L1637P and L1637S mutations in the P9 anchor residue
of NS31629–1637 epitope impair viral fitness

Having previously established that mutations in the P7 and P9

residues of HCV NS31629–1637 epitope ablate CD8+ T cell

responses, we sought to determine the effect of each mutation on

virion production. Cp7 backbone virus along with the parental

HCV1/910 NS31629–1637 and mutant viruses were transfected into

Huh-7.5 cells, and protein expression assessed via Western blotting

and virion production assessed using a TCID50/ml reinfection

assay up to 4 d post-tranfection. There was little difference in

protein expression between mutant, HCV1/910 NS31629–1637,

and Cp7 backbone infectious viruses (Figure 4A). At the level of

RNA replication, as detected by a sensitive qRT-PCR Taqman

assay, the viral variant L1637P replicated 1–1.5 logs less efficiently

than parental virus (Figure 4B). Interestingly, L1637S replicated

with similar efficiency to parental virus, indicating that this variant

was competent in replication. However, several differences in

virion production were observed. The leucine to proline switch in

P9 of NS31629–1637 epitope (L1637P) had a marked effect on the

amount of virus secreted into the supernatant. This virus

consistently produced 1.5–2 logs less virus than parental HCV1/

910 NS31629–1637 and Cp7 backbone virus (Figure 4C). The P7

isoleucine to threonine substitution (I1635T) produced similar

levels of virus to the wild-type and Cp7 backbone, all secreting

approximately 105 TCID50/ml. However, the leucine to serine P9

substitution (L1637S) displayed increased virion production

compared to the L1637P mutation, producing approximately

104 TCID50/ml. The L1637S substitution of the parental HCV1/

910 NS31629–1637 epitope was found fixed in CH503 from month

10 post-infection up to 82 months post-infection (Figure 1A), and

the recovered virion production phenotype seen in vitro suggests

that L1637S is a more fit clone than L1637P, able to survive with

intermediate fitness but efficient escape from immune elimination.

L1637P reverts to the parental NS31629–1637 epitope
sequence while L1637S is stable in the absence of CD8+
T cell pressure

Having established the relative fitness of each full-length viral

clone, we wanted to determine what, if any, mutations arise in the

NS31629–1637 epitope during prolonged in vitro viral infection and

replication. Huh-7.5/B1701 cells were infected with parental

HCV1/910 NS31629–1637 and mutant viruses, and cell lysates were

used to obtain total cellular RNA up to 1 month post-infection.

After first-strand cDNA synthesis and viral epitope-specific PCR,

EBV-transformed autologous B cells presenting peptide (B1701T). Untransfected Huh-7.5 cells served as a negative control. (C) CD8+ T cell clone IFNc
response to Huh-7.5/B1701 cells presenting exogenous peptide. Huh-7.5/B1701 cells were loaded with parent HCV1/910 NS31629–1637 or mutant
NS31629–1637 peptide as in (B) and cocultured with a CD8+ T cell clone targeting the NS31629–1637 epitope. Huh-7.5/B1701 cells presenting parent
HCV1/910 NS31629–1637 but not mutant peptide at concentrations of 0.5 mg/ml and lower could elicit an IFNc response from the CD8+ T clone.
Cocultures were stimulated with PHA as a positive control, and unpulsed Huh-7.5/B1701 cells or Huh-7.5 cells pulsed with parent HCV1/910 NS31629–

1637 peptide served as negative controls. Plots depicted are gated on CD3+ T cells.
doi:10.1371/journal.ppat.1000143.g002

T Cell Escape Mutation and Viral Fitness

PLoS Pathogens | www.plospathogens.org 8 September 2008 | Volume 4 | Issue 9 | e1000143



Figure 3. Mutations in the NS31629–1637 epitope abrogate CTL recognition in the replicon system. (A) Western blots of replicon-
transfected Patr-B1701-expressing Huh-7.5 cells. The expression of HCV proteins NS3 and NS5A were detected in Huh-7.5/B1701 cells harboring
subgenomic replicons. Lysates from Huh-7.5/B1701 cells transfected with replicons containing the BB7 epitope served as a positive control,
untransfected Huh-7.5/B1701 cells were used as a negative control, and b-actin served as a positive control for input protein. (B) CTLs are unable to
lyse Huh-7.5/B1701 cells transfected with subgenomic mutant replicons with the same efficiency as the parent HCV1/910 NS31629–1637 subgenomic
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individual clones were sequenced. In the absence of CD8+ T cell

selection pressure, we observed several amino acid mutations in

the NS31629–1637 epitope 3 d post-infection. For the parental

NS31629–1637 virus, one out of eight clones possessed a glutamic

acid to glycine (E1634G) mutation at position 6 (Figure 6). This

identical mutation was also found in the L1637S mutant virus 3 d

post-infection. However, the E1634G mutation was absent in both

the parental and L1637S viruses 23 d post-infection, indicating

that this clone perhaps was not dominant or stable (Figure 6). Four

out of eleven parental NS31629–1637 clones harbored an A1630D

mutation 23 d post-infection, which was unusual given the absence

of CD8+ T cell pressure and the fitness of this virus in both the

replicon (Figure 1A) and cell culture (Figure 4B,C) models. The

I1635T mutant virus was stable over the infection course,

exhibiting no mutations on both 3 and 23 d post-infection.

Similarly, the L1637S mutant virus remained fixed 23 d post-

infection, demonstrating the stability of this viral variant in our in

vitro cell culture model. The stability of the L1637S mutant virus

in vitro mirrors that which was observed in vivo with a serine at P9

stable 7 years post infection. Interestingly, the L1637P mutant

virus was unchanged 3 d post-infection, but two variants were

found 23 d post-infection (Figure 6). One variant, V1631A, was

present at low frequency (1/15), while the other, P1637L,

represented a significant fraction of the total population (5/15

clones). The P1637L mutation is particularly interesting because it

represents reversion at position 9 in an unstable in vivo variant to

the parental NS31629–1637 epitope sequence in the absence of in

vitro CD8+ T cell selection pressure. These results demonstrate

that in vitro mutation of a CD8+ T cell epitope in hepatitis C virus

can occur, that particular amino acid substitutions are not

maintained over the course of in vitro infection, and that reversion

of less fit viral variants to parental HCV sequence can occur when

CD8+ T cell pressure is absent.

An antigen-specific memory CD8+ T cell response
prevents I1635T from becoming fixed in the viral
population

Variant I1635T was replication competent, escaped CTL

recognition, and did not revert to the parental NS31629–1637

sequence in the absence of selective pressure. Because the I1635T

variant possesses a mutation in a TCR-contact residue (P7) and

not an MHC-binding residue, we hypothesized that it may have

stimulated a novel CD8+ T cell response in vivo, resulting in

immune pressure preventing I1635T from becoming fixed in the

viral population. To test this hypothesis, CD8+ T cells were

isolated from frozen CH503 PBMC samples taken more than 7

years post-infection and stimulated with the I1635T peptide. Upon

stimulation with autologous EBV-transformed B cells pulsed with

I1635T peptide, CD8+ T cells secreted IFNc (Figure 7). The

I1635T antigen-specific CD8+ T cells did not respond to an

irrelevant (SIINFEKL) control peptide, or the parental NS31629–

1637 peptide (Figure 7). These results support the hypothesis that

although the I1635T variant replicated efficiently and escaped

from NS31629–1637-specific T cells, its persistence was hindered by

a de novo T cell response.

Discussion

Growing evidence has shown that CD8+ T cell epitope

mutation and subsequent viral escape are associated with

persistence of viruses like HIV, SIV, and HCV [17,18,26,41–

47]. Indeed, the rate of non-synonymous mutation leading to

amino acid substitutions is statistically higher in MHC class I

restricted epitopes than in non-restricted epitopes or flanking

regions, indicating that they are subject to Darwinian selection

pressure by CD8+ T cells [18,26,45,48–53]. With the develop-

ment of cell culture models that support HCV infection and

replication, it is now possible to model how changes to the genome

influence the rate of viral reproduction. In this study we have

exploited these in vitro replication models to better understand

how the potentially oppositional forces of immune evasion and

efficient viral replication shaped evolution of a well-characterized

dominant MHC class I epitope that displayed iterative adaptive

mutations during establishment of HCV persistence in a

chimpanzee. Mutational analyses in the currently available in

vitro systems are limited by the necessity to study viral fitness and

virion production in the context of genotype 1b and 2a backbones,

respectively. However, even with the caveat that unpredictable

coordinated effects of introducing epitopes from varying isolates

may occur, the ability to study the consequences of single epitope

serial sequence mutation on viral fitness and virion production is

extremely valuable.

Generation of Huh-7.5 cells harboring subgenomic replicons

allowed for primary analysis of viral RNA replication, and helped

establish the initial fitness characteristics of each NS3 mutation

that had been observed in vivo (Figure 1A and 1B). Even single

amino acid changes in this epitope hindered transduction

efficiency, with functional consequences of mutation on specific

T cell responses. Interestingly, these changes did not seem to

greatly affect protein expression, either in the replicon system or in

the cell culture model (Figures 1C, 3A, 4A, and 5B). Similar non-

structural protein expression implies that the NS31629–1637

mutations may affect initiation of replication (fewer G418 resistant

colonies per mg of RNA), but that once replication has been

established similar levels of steady-state replication/protein

accumulation would be observed. Similar protein expression levels

should result in similar levels of viral peptide production.

The inability of P9 mutations to generate a T cell response

could be overcome by high amounts of exogenous peptide but not

by more physiologic concentrations generated by replicating

subgenomic or full-length infectious viruses (Figures 3 and 5). By

engineering the NS31629–1637 epitope mutations into both a

subgenomic replicon system and a recombinant full-length clone

of Cp7 capable of robust virion production, a correlation between

viral fitness and immune escape was established. CD8+ T cell

recognition in transfected and infected Huh-7.5/B1701 cells

occurred only with HCV1/910 parental NS31629–1637 epitope

(Figures 3B, 3C, 5C, and 5D), indicating that single amino acid

changes in this epitope abrogate T cell recognition. Each of the

single substitutions at P9 decreased virion production while the

virus containing the observed mutation at P7 (I1635T) was

unimpaired in virus production. Together with the observation

replicon. Huh-7.5/B1701 cells with or without parent HCV1/910 NS31629–1637 peptide were used as a positive and negative control, respectively. (C)
CD8+ T cell IFNc response to the mutated NS31629–1637 epitope in the subgenomic system. CD8+ T cells specific for the wild-type NS31629–1637 epitope
were incubated with Huh-7.5/B1701 cells transfected with either the parent HCV1/910 NS31629–1637 subgenomic replicon or the mutant subgenomic
replicons, stained for CD8 and IFNc, and analyzed by flow cytometry. CD8+ T cells secrete IFNc in response to the parent HCV1/910 NS31629–1637

subgenomic-transfected Huh-7.5/B1701 cells, but are unable to secrete IFNc when incubated with Huh-7.5/B1701 cells harboring the subgenomic
mutant replicons. Huh-7.5/B1701 cells were incubated with or without the parent HCV1/910 NS31629–1637 peptide as a positive and negative control,
respectively.
doi:10.1371/journal.ppat.1000143.g003
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Figure 4. In vitro analysis of the mutated NS31629–1637 epitope in a full-length viral genome system. (A) Short-term transfection Western
blots. Expression of NS3 protein in transfected Huh-7.5 cells is similar among the mutant constructs. Fl-neo cell lysates harboring the full-length HCV
genotype 1b replicon were used as a positive control, along with lysates from Huh-7.5 cells transfected with the Cp7 backbone construct.
Untransfected Huh-7.5 cells and Huh-7.5 cells transfected with the replication-defective GND construct were used as negative controls. (B) Infection of
naı̈ve Huh-7.5 cells and quantitation of HCV RNA replication. Supernatants of transfected Huh-7.5 cells were harvested and normalized to infect naı̈ve
Huh-7.5 cells over a 5-d period with identical multiplicity of infection doses. Every 24 h, total RNA was harvested from cells and HCV RNA levels were
measured using a qRT-PCR Taqman assay. Results are displayed as HCV copies/mg input RNA. The minimum sensitivity of detection (1,000 HCV
copies/mg RNA) is displayed as a dashed line. (C) Short-term transfection viral titers. Supernatants of transfected Huh-7.5 cells were harvested up to
4 d post-transfection, and used to infect naı̈ve Huh-7.5 cells. NS5A monoclonal antibody (9E10) was used in an immunohistochemical assay to
determine TCID50/mL viral titers. Mean standard error bars from 4 separate experiments are displayed.
doi:10.1371/journal.ppat.1000143.g004
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Figure 5. CD8+ T cell response to the mutated NS31629–1637 epitope in an infectious system. (A) Schematic representation of the full-
length HCV genome used to produce infectious virus in vitro. The core to p7 region of the JFH backbone was replaced by the corresponding region
of the autologous genotype 2a J6 strain to create JFHxJ6 Cp7 (Cp7), and single-site PCR mutagenesis was used to alter the NS31629-1637 epitope. (B)
Western blot confirmation of NS3 protein expression 4 d post-transfection in the Huh-7.5/B1701 cell line. b-actin served as a control for input protein.
(C) Transfection and recognition of Huh-7.5/B1701 cells by 4A CD8+ T cell clone. Huh-7.5/B1701 cells were transfected with parent HCV1/910 NS31629–1637

or mutant full-length constructs, and cocultured (as in Figures 2C and 3C) with the NS31629–1637 epitope-specific CD8+ T cell clone. The CD8+ clone was
only able to secrete IFNc in response to Huh-7.5/B1701 cells transfected with the parent HCV1/910 NS31629–1637 construct. Huh-7.5/B1701 cells pulsed with
parent HCV1/910 NS31629–1637 peptide served as a positive control (not shown). (D) Infection of naı̈ve Huh-7.5/B1701 cells with parent HCV1/910 NS31629–

1637 but not mutant full-length constructs elicits an IFNc response. Supernatants were harvested from Huh-7.5/B1701 cells that had been transfected 4 d
earlier and used to infect naı̈ve Huh-7.5/B1701 cells. At 5 d post-infection, cells were harvested and cocultured with the CD8+ T cell clone to determine the
level of IFNc production produced by the 4A CD8+ T cell clone.
doi:10.1371/journal.ppat.1000143.g005

T Cell Escape Mutation and Viral Fitness

PLoS Pathogens | www.plospathogens.org 12 September 2008 | Volume 4 | Issue 9 | e1000143



Figure 6. NS31629–1637 epitope evolution during in vitro viral infection. At indicated times post-infection, cells were harvested and the
nucleotide sequence of the viral NS31629–1637 epitope was cloned and examined. Input sequence is listed above each timepoint, and ‘‘# of clones’’
denotes the number of individual colonies with the displayed sequence. Dashes represent no amino acid change from the listed input sequence.
doi:10.1371/journal.ppat.1000143.g006

Figure 7. I1635T-specific CD8+ T cells are present in PBMCs from CH503 more than 7 y after infection. At 20 d post-expansion, 56104

CD8+ T cells were cultured with 56104 autologous EBV-transformed B cells pulsed with the indicated peptide, and the presence of peptide-specific
IFNc-secreting CD8+ T cells was assessed by intracellular cytokine staining. Cells are gated on live, CD3+ lymphocytes. The percent of CD8+ T cells
that stained positively for intracellular IFNc is displayed.
doi:10.1371/journal.ppat.1000143.g007
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that mutant L1637S was maintained over 7 years despite I1635T

having better viral fitness, these results suggest a balance between

efficient immune escape and virion production attained by

L1637S mutant virus. That is, since the mutant epitope I1635T,

with a threonine at T cell receptor contact residue P7, was

detected at month 10 but not later in infection it is possible that its

higher fitness and virion production allowed an additional T cell

response to be generated against the new epitope. The I1635T

mutation has been shown to bind well to Patr-B1701 [15], so that

generation of novel CD8+ T cell clones targeting the I1635T

epitope in vivo is plausible. In contrast, mutant L1637S, which

abrogates MHC binding [15], may not select for a new T cell

response to develop while still producing sufficient levels of virions.

In fact in this study, using frozen PBMCs from CH503 from more

than seven years after infection, we were able to isolate T cells

specific for I1635T indicating that indeed, this otherwise ‘‘perfect’’

mutation was subject to new immune pressure in vivo (Figure 7).

This de novo T cell response most likely prevented the I1635T

variant from becoming stable in the population. Additionally, it is

also possible that the P7 I1635T mutant isolated in vivo had fewer

compensatory mutations in other highly targeted epitopes,

allowing for recognition of the other epitopes by CD8+ T cells.

Our data are consistent with a previous human study demon-

strating that the variability of HCV sequences within immuno-

logical epitopes is limited by viral fitness [28], but extend these

observations by assessing the long-term longitudinal evolutionary

pattern of an immunologically and virologically important NS3

epitope.

It is noteworthy that the L1637P variant that appeared within 3

months of infection was least fit for replication in our cell culture

models and was replaced in the plasma of the chimpanzee seven

months later by two more fit variants. These results indicate that

escaped viruses (like L1637P) may readily revert to a more fit

sequence when transmitted from a recently infected donor to an

HLA-mismatched recipient. In HIV-1, a CD8+ T cell-mediated

escape mutation in the dominant HLA-B57 TW10 epitope

(TSTLQEQIGW) within the capsid protein p24 has been shown

to impair viral replication in vitro [23]. Reversion of this mutation

following transmission to an HLA-mismatched host provided

evidence for the impaired fitness cost that was incurred in vivo

while escaping from CTL pressure [54]. Another study utilizing a

clonal SIV virus (SIVmac239) harboring CTL escape mutations

showed that escape can exact a severe replicative fitness cost, and

that many of these variant sequences would be unlikely to

propagate in HLA-diverse populations [51]. To date there are

only two published examples of apparent reversion of escaped

HCV epitopes in human subjects, and both involved viruses

transmitted from donors during the acute phase of infection

[18,46]. Ray et al. followed a group of women infected with a

common virus from a single acutely infected donor. When HCV

genomes from the recipients were compared with a consensus

HCV genome assembled from published sequences, mutations

trending away from consensus were observed in HLA-restricted

epitopes (representing possible emergence of recipient escape

variants) and toward consensus in non-restricted epitopes

(representing possible reversion of donor escape variants) [46].

That acute phase escape variants might revert to a more fit

sequence is also supported by a second detailed study of CD8+ T

cell immunity in a donor-recipient pair [18]. A CD8+ T cell

escape mutation that arose during the acute phase of infection in

the virus donor was quickly lost from the quasispecies upon

transmission to an HLA class I disparate recipient [18]. Our

results suggest that this reversion may be less common when

mutations are optimized for immune escape and replication over

long periods of chronic infection. We hypothesize that variants like

L1637S that have been fine tuned by a process of iterative

mutation during months of persistent replication might be

considerably more stable upon transmission. We predict that

these amino acid substitutions will not readily revert upon

infection of a new host once escape from immunity has been

carefully balanced against replicative fitness, particularly if HCV

has a wide (though not limitless) tolerance for substitutions that

alter replication. In vitro, we infected naı̈ve Huh-7.5/B1701 cells

with parental NS31629–1637 and mutant viruses, and studied the

epitope evolution of individual clones. Interestingly, we found

mutations in numerous (5/15) clones of L1637P 23 d post-

infection, with the P9 proline mutating back to the parental

leucine (Figure 6). These results strengthen the hypothesis that the

L1637P mutant virus has diminished replicative fitness in vitro as

well as in vivo. Additionally, the absence of CD8+ T cell pressure

in these experiments suggests that transiently less fit viruses may

trend towards input parental sequence in HLA-diverse popula-

tions or upon transmission to HLA-mismatched hosts. Important-

ly, the L1637S and I1635T viruses were relatively stable,

confirming replication and virion production data (Figures 1A,

1B, 4B, and 4C). The stability of L1637S suggests that this virus

has indeed struck a balance between replicative fitness and

immune pressure, and would not likely revert back to the parental

sequence upon transmission to a new host. These data correlate

with long term NS31629–1637 epitope evolution in chimpanzees

with L1637S stable over a 7-year period, and demonstrate that

mutants arising in vivo can be recapitulated in vitro. We predict

that the L1637S sequence represents a viral variant that has

achieved balance between replicative capacity and immune

evasion and would be stable upon transfer to naı̈ve hosts regardless

of whether they express MHC molecules required for presentation

to CD8+ T cells.

The work reported here highlights the competing forces

influencing the interplay between the virus and the immune

system and the multiple varied effects of a single amino acid

change on T cell function and virus production. These

observations elucidate potential mechanisms by which viral

persistence is established. Consequences of stable integration of

escape mutations into viral genomes are not clear, but it is formally

possible that epitopes presented by the most prevalent MHC class

I molecules in human populations will eventually be lost or

become less dominant, an outcome that could have implications

for vaccine development. In light of the knowledge that HCV

mutates nearly one nucleotide per replication cycle, this work

provides sobering evidence that the anti-HCV CD8+ T cell

response faces daunting challenges for efficient and lasting control

of HCV.
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