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Abstract

Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method
to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the
lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis
viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be
genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be
refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of
infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of
interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral
paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent
protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An.
gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body
and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV
could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-
specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory
tool for transient gene expression or RNAi in An. gambiae.
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Introduction

Transmitted by Anopheles mosquitoes, malaria is a disease

responsible for inordinate mortality, morbidity and economic loss

worldwide [1]. Failure of traditional control methodologies has

stimulated efforts to develop novel genetic strategies to control the

mosquito vectors, particularly An. gambiae. Transgenic manipula-

tion of An. gambiae has proven to be especially challenging, with few

published successes [2–3]. Paratransgenesis, the genetic manipu-

lation of insect symbiotic microorganisms, is being considered as

an alternative to traditional transgenic strategies [4–5]. Microor-

ganisms associated with Anopheles could be manipulated to alter the

mosquito’s ability to become infected with and transmit the

malaria parasites, or reduce mosquito fecundity or lifespan. A

suitable microbial candidate for paratransgenic malaria control

would have a symbiotic (mutualistic, commensal or parasitic)

relationship with the vector, be readily propagated and stably

engineered to express the gene(s) of interest without compromising

microorganism fitness, and be easily delivered to wild mosquito

populations [4]. Ideally, the engineered microbe would also be

maintained in the environment, be passed to subsequent mosquito

generations and have limited effects on non-target species.

Densonucleosis viruses, or ‘‘densoviruses’’ (DNVs), are non-

enveloped single-stranded DNA icosahedral viruses in the family

Parvoviridae (subfamily Densovirinae) that infect arthropods such

as mosquitoes. Mosquito DNVs have narrow host ranges and are

maintained in natural populations by a cycle that includes both

horizontal and vertical transmission from infected adults to larvae.

DNVs possess some of the smallest known viral genomes (4–6 kb),

a trait that makes them highly amenable as molecular tools

because the entire genome can be placed into an infectious

plasmid, manipulated by standard cloning techniques, and used to

express foreign genes (i.e. anti-parasite or toxin) upon infection in

cell cultures or live mosquitoes [6]. DNV infectious clones,

expression systems, and lethal biocontrol agents (based on the Aedes

aegypti densovirus; AeDNV) have been developed and show

promise for Aedes mosquitoes [6–8]. When injected into larvae,

AeDNV virions can infect An. gambiae [9], but when infection by

larval exposure to virions is attempted, AeDNV does not

disseminate in An. gambiae [8]. Similar results were observed when

researchers could only infect An. gambiae with TaDNV (isolated

from a Toxorhynchites amboinensis cell line) by adult injection but not

larval exposure [10]. Thus, DNVs have previously not been

considered useful for paratransgenic manipulation or control of

An. gambiae.

We serendipitously discovered a novel DNV capable of

infection and dissemination in An. gambiae larvae (AgDNV) while

investigating a PCR artifact in an unrelated experiment. AgDNV

is highly infectious to An. gambiae larvae, disseminates to adult

tissues, and is passed on to subsequent generations. Recombinant
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AgDNV genomes were able to transduce expression of an

exogenous transgene (enhanced green fluorescent protein; EGFP)

in cultured An. gambiae cells and mosquitoes and were transmitted

to subsequent mosquito generations. AgDNV will form the

foundation for the development of much-needed tools for routine

manipulation of An. gambiae and paratransgenic malaria control.

Results/Discussion

In the course of verifying Wolbachia infection of An. gambiae cell

line Sua5B [11], we observed a weak band at approximately

400 bp instead of the expected ,600 bp fragment using the

putatively Wolbachia-specific primers 81F and 691R [12]. We

isolated the band from the gel for cloning and sequencing. We

compared the 358 bp sequence to the BLAST database where it

hit with high homology (87%) to a portion of the NS1 gene of the

Aedes aegypti densovirus (AeDNV) (GenBank #M37899) [13],

indicating that there was a DNV present in our Anopheles cell

culture which we termed AgDNV. We used a densovirus-specific

immunofluorescence assay (IFA) to visualize AgDNV infection in

Sua5B cells, which confirmed localized AgDNV infection in cell

nuclei [6] (Figure 1A). We then determined that AgDNV virions

isolated from Sua5B cells were highly infectious to An. gambiae

larvae in vivo. In order to evaluate both viral infection efficiency

and lethality, we infected naı̈ve first instar larvae (Keele strain) by

either allowing larvae to feed on infected Sua5B cell cultures or by

adding filtered infected Sua5B cell lysate to the larval rearing

water. Both methods resulted in similarly high infection levels in

emerging adults as determined by PCR (whole cells: 62%, N = 39;

lysate: 57%, N = 53; Fishers Exact P = 0.67). Quantitative PCR

indicated that larvae were exposed to approximately

2.16101160.9761011 viral genome equivalents per ml, which is

well within the range that causes significant mortality for other

DNV isolates [14]. However, we observed no difference in survival

to adulthood between the controls and either infection treatment

(control: 34%, N = 50; whole cells: 26%, N = 150, lysate: 35%,

N = 150, chi-square = 3.27, d.f. = 2, P = 0.195), possibly due to

adaptation of the virus to cell culture conditions.

To test for transtadial transmission and dissemination of

AgDNV in adult mosquitoes, we infected first-instar An. gambiae

larvae, transferring them to clean virus-free water after 2 days.

Uninfected control larvae were exposed to culture media. After

adult emergence, we dissected adult tissues and performed

densovirus-specific immunofluorescence microscopy. AgDNV

clearly disseminates and infects adult midgut and ovary

(Figure 2). We then assessed whether AgDNV could be

transmitted to subsequent generations. We treated mosquitoes

for 24 hours as larvae with AgDNV, which were reared to

adulthood, bloodfed, allowed to oviposit, and their offspring

reared to adulthood and assayed for AgDNV by PCR. Fifty

percent of treated mosquitoes were positive for virus by PCR

(N = 42). Twenty-eight percent (N = 71) of their offspring were

positive for infection, indicating that AgDNV was transmitted

between generations, either by vertical transmission or by

horizontal transmission from adults to larvae.

To purify AgDNV particles for microscopy and isolation of the

viral genome, we fractionated crude Sua5B cell lysates in a cesium

chloride gradient and examined fractions for viral particles by

negative-stain transmission electron microscopy. We isolated

numerous icosahedral, non-enveloped particles of the expected

Figure 1. Visualization of densovirus infections in cultured An.
gambiae cells. In IFA’s, cells were counterstained with Evan’s Blue (red
fluorescence) to visualize cell morphology. A: wild-type AgDNV
visualized in Sua5B cells by IFA (IFA positive control); B: Negative-stain
TEM of AgDNV particles purified from Sua5B cell. Arrow denotes
unpackaged virion. Bar = 20 mm. C: Lack of natural densovirus infection
in Moss55 cells (IFA negative control); D: densovirus visualized in
Moss55 cells by IFA after transfection with pBAg; E: live-cell
epifluorescence showing no fluorescence in untransfected Moss55 cells
(epifluorescence negative control); F: live-cell epifluorescence showing
cytoplasmic EGFP expression in Moss55 cells transfected with pBAg and
pAgActinGFP.
doi:10.1371/journal.ppat.1000135.g001

Author Summary

Paratransgenesis, the genetic manipulation of mosquito
symbiotic microorganisms, is being considered as a
potential strategy to control malaria. Microorganisms
associated with Anopheles mosquitoes could be manipu-
lated to alter the mosquito’s ability to become infected
with and transmit the malaria parasites, or reduce
mosquito fecundity or lifespan. We identified the first
potential microorganism (An. gambiae densovirus; AgDNV)
for paratransgenesis of the major malaria vector Anopheles
gambiae. AgDNV is highly infectious to An. gambiae larvae,
disseminates to adult tissues and is transmitted vertically
to subsequent generations. Recombinant AgDNV was able
to transduce expression of an exogenous gene (EGFP) in
An. gambiae cells and mosquitoes. EGFP-transducing
virions infected mosquitoes, expressed EGFP in epidemi-
ologically relevant tissues and were transmitted to
offspring in a similar manner to wild-type virus. AgDNV
could be used as part of a paratransgenic malaria control
strategy by transduction of anti-Plasmodium genes or
insect-specific toxins in Anopheles mosquitoes, as well as
an easy-to-use system for transient gene expression and
RNAi for basic laboratory research.

Anopheles gambiae Densonucleosis Virus
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size (20 nm) (Figure 1B). We extracted the viral DNA from this

gradient fraction and cloned the entire viral genome into the

pBluescript S/K(-) cloning vector (denoted pBAg; Figure 3, Text

S1). The cloned AgDNV genome is typical of mosquito DNVs. It

is 4139 nt (GenBank #EU233812) in length and has 3

overlapping reading frames: the viral capsid and 2 non-structural

(NS) proteins. The 5-prime and 3-prime ends of the genome

consist of inverted hairpin repeats and are predicted to fold into

perfect Y-shaped hairpin structures (Figure 4). Phylogenetic

analysis of the entire AgDNV genome indicated that AgDNV

falls within the ‘‘Asian’’ clade of known mosquito densoviruses [6].

Within the coding region, it is most closely related to a recently-

described cluster of DNVs isolated from Culex pipiens pallens

(CppDNV) in China [15] (Figure 5).

To confirm infectiousness of pBAg to An. gambiae cells, we

transfected it into the An. gambiae cell line Moss55 (which lacks

endogenous densovirus infection; Figure 1C) and observed DNV-

specific signal in transfected cell nuclei by IFA (Figure 1D). However,

when purified from the cell culture, virions produced from pBAg

were unable to infect An. gambiae larvae in vivo. By sequencing

fragments of directly-cloned viral DNA isolated from Sua5B cells, we

identified multiple clones with point mutations in the 5-prime UTR

and non-synonymous point mutations in the NS1 and NS2 genes

(Table 1), suggesting that AgDNV was not homogeneous within

Sua5B cells, but rather exists as a heterogeneous population of viral

genomes that may differ in their ability to infect Anopheles larvae. To

select for the viral genotype(s) that were infectious to An. gambiae

larvae, we infected larvae as first-instars with virus isolated from

Sua5B cells, reared them to adulthood and sequenced most of the

coding portion of the AgDNV genome (nucleotides 403–3709) from

5 infected females. All 5 sequences were identical, indicating that

within the viral population in Sua5B cells only one genotype was

infectious to larvae. This genotype differed from pBAg at 3 sites:

A636G (Lys to Glu in NS1), A1174C (Asp to Ala in NS1 and Ile to

Leu in NS2) and A3399T, (Asn to Ile in capsid) (no synonymous

mutations were detected). We used site-directed mutagenesis to

reproduce these three mutations in pBAg (denoted pBAga). Virions

produced from pBAga in Moss55 cells had similar infectivity to An.

gambiae larvae as wild-type AgDNV from Sua5B cells as determined

by both PCR and IFA.

We used pBAg to create a flexible gene transduction construct

by deleting most of the viral genome between the hairpin

sequences and inserting a multiple cloning site (pBAgMCS;

Figure 3, Text S1). Using pBAgMCS, we can easily construct

viral transducing genomes carrying any gene-promoter combina-

tion of interest, and by supplying the missing viral proteins in trans

with pBAga or wild-type virus, we can express the gene in An.

gambiae mosquitoes simply by adding the virions to the larval

rearing water. As proof-of-concept, we inserted the enhanced

green fluorescent protein (EGFP) under control of the constitutive

Drosophila actin5C promoter into the multiple cloning site of

pBAgMCS (pAgActinGFP; Figure 3, Text S1). When pBAga and

pAgActinGFP were simultaneously transfected into Moss55 cells,

we observed cytoplasmic EGFP expression 24–48 hours post-

infection (Figure 1E, F). We observed fluorescent cells in the

culture even after 10 passages (approximately 2 months),

indicating that the helper and transducing virions were replicating

in the cells. We do not believe that these results are due to

integration of the viral genome into the host genomic DNA, as

integration is not known to occur for DNVs in the genus

Brevidensovirus (the genus AgDNV belongs to), although

integration does occur for other DNV genera [6].

We purified helper and EGFP-transducer virions from trans-

fected Moss55 cells, exposed first-instar An. gambiae larvae to them

and assayed emerged adults for EGFP expression by fluorescence

microscopy. EGFP expression was observed in approximately

50% of adults (N.100). We observed similar results when virus

from Sua5B cells rather than pBAga was used as helper. EGFP

expression was first observed in the fat body, later disseminating to

other tissues such as the eye, midgut, hindgut, malpighian tubules

and ovaries (Figures 6 and 7).

EGFP-positive mosquitoes were allowed to reproduce. We

observed EGFP expression in approximately 20% of F1 offspring

(N.50, Figure 8) and detected EGFP DNA by PCR and sequencing

from EGFP-expressing F1 mosquitoes (N = 8). We continued to

breed the offspring and again assessed EGFP expression in the F3

generation, where 20% of the mosquitoes had observable EGFP

fluorescence (N = 20). These data indicate that AgDNV can be used

to drive expression of exogenous transgenes in An. gambiae and that

transducing virions are transmitted to subsequent generations,

similar to wild-type virus. While it is not clear at this point whether

offspring are infected by transovarial transmission or horizontal

transmission from adults to larvae, we detected EGFP in both

developing ovarioles and in mature oocytes (Figure 7) suggesting that

transovarial transmission may be involved.

The development of novel, efficacious malaria control methods

is critical to reduce the enormous public health and economic

burdens experienced in affected areas. Densovirus-based tools for

control of Anopheles mosquitoes are very attractive for this purpose

due to their specificity, stability, ease in engineering, ability to

spread horizontally and vertically and accumulate in natural

environments, and recent advances in large-scale production and

purification methods [16–17]. Recombinant AgDNV could

potentially be used to control malaria by transduction in An.

gambiae of anti-Plasmodium peptides to block parasite transmission

or insect-specific toxins to reduce mosquito population density or

mosquito lifespan. AgDNV will also be extremely valuable as an

effective and easy to use laboratory tool for transient gene

expression or RNAi [6] in An. gambiae.

Figure 2. IFA detection of AgDNV infection of dissected adult
tissues. Mosquitoes were infected as first-instar larvae with AgDNV
purified from Sua5B cells. A, B: midgut; C, D: ovary. A, C: infected with
AgDNV; B, D: control. Blue: cell nuclei stained with DAPI, green:
densovirus.
doi:10.1371/journal.ppat.1000135.g002

Anopheles gambiae Densonucleosis Virus
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Figure 3. Simplified plasmid schematics for cloned AgDNV genome (pBAg), expression vector (pBAgMCS) and reporter
(pAgActinGFP). HP: hairpin; VP: viral capsid protein; NS1, NS2: non-structural proteins 1 and 2; AmpR: ampicillin resistance. Full plasmid sequences
are available as supplementary material (Text S1).
doi:10.1371/journal.ppat.1000135.g003

Figure 4. AgDNV genome organization. Top: AgDNV predicted open reading frames. ORF’s overlap one another and each is in a different
reading frame. Bottom: predicted 5-prime and 3-prime AgDNV terminal hairpin structures.
doi:10.1371/journal.ppat.1000135.g004

Anopheles gambiae Densonucleosis Virus
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Materials and Methods

Mosquito rearing
The Anopheles gambiae Keele strain was used for experiments in

30 cm cube cages kept in a walk-in insectary at 28uC and 80%

relative humidity. Mosquitoes were allowed access to a cotton wick

soaked in 20% sucrose as a carbohydrate source. Adults were

allowed to bloodfeed on an anesthetized mouse 5 days post-

emergence. Two days after bloodfeeding, an oviposition substrate

(consisting of a filter paper cone inside a 50 ml beaker half-filled

with water) was introduced into cages and filter papers containing

eggs removed the next day, placed into a 4163466 cm rearing

tray half-filled with distilled water and one pellet dry cat food, with

one additional food pellet added daily after day 3. Pupae were

picked with an eye-dropper, placed in a cup and introduced into

cages (,200 pupae/cage) to begin the next generation.

Mosquito cell maintenance and transfection
The Anopheles gambiae cell lines Sua5B and Moss55 were grown

at room temperature in Schneider’s medium (Sigma) supplement-

ed with 10% fetal bovine serum. DNAs used for transfection were

prepared using a QIAGEN Plasmid Purification Kit (Qiagen,

Valencia, CA) according to the manufacturer’s protocol. For the

transfection of cells with different plasmids, one mg of total plasmid

DNA (0.5 mg vector and 0.5 mg helper) was used with EffecteneH
Transfection Reagent (QIAGEN) according to the manufacturers

suggested protocol.

PCR amplification of AgDNV DNA
Genomic DNA was extracted from Sua5B cells using DNEasy

kits (QIAGEN, Valencia, CA) according to the manufacturer’s

suggested protocol. Unexpected PCR amplification of an approx-

imately 400-bp fragment of AgDNV was amplified using Wolbachia

primers wsp81F (59-TGG-TCC-AAT-AAG-TGA-TGA-AGA-

AAC-39) and wsp691R (59-AAA-AAT-TAA-ACG-CTA-CTC-

CA-39) [12]. PCR amplicons were separated by 1% agarose gel

electrophoresis, stained with ethidium bromide, and visualized

Figure 5. Maximum parsimony phylogenetic tree of DNVs based on complete viral genome sequences (CI = 0.92, RI = 0.84). Tree was
generated using MEGA v.4. Taxon codes represent GenBank accession numbers. Numbers at nodes represent bootstrap support values (500
replicates). Scale bar represents number of nucleotide differences.
doi:10.1371/journal.ppat.1000135.g005

Table 1. Additional AgDNV SNPs identified from directly-
cloned and sequenced fragments of AgDNV DNA isolated
from Sua5B cells.

59 UTR SNPs Non-synonymous SNPs

Site 201 269 283 458 1045 1094 1395

Clone C A G A G C A

55 T G

57 T G

58 T2

104 G1

105 T4

106 A3

119 G A

120 G A

125 T G

12 additional clones were identified with the same sequence as pBAg.
1N to S in NS2.
2A to V in NS2.
3S to N in NS1; A to T in NS2.
4Q to L in NS1.
doi:10.1371/journal.ppat.1000135.t001

Figure 6. Fully-disseminated EGFP expression in An. gambiae
adult infected as larvae with a mix of wild-type (pBAga) and
EGFP-transducing (pAgActinGFP) virions.
doi:10.1371/journal.ppat.1000135.g006

Anopheles gambiae Densonucleosis Virus
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with UV light. PCR fragments were cloned into the pCR4-TOPO

vector and sequenced. We detected AgDNV infection in infected

mosquitoes using primers DensoVF (59-CAG-AAG-GAT-CAG-

GTG-CAG-39) and DensoVR (59-GCT-ACT-CCA-AGA-GCT-

ACT-C-39) using Sua5B as a positive control and water as a

negative control.

Immunofluorescence assay
Cells were grown overnight in 8-well chamber slides, then fixed

with 4% paraformaldehyde. Fixed cells were washed 3 times with

PBS, permeabilized with 0.01% Triton X-100 in PBS, and washed

3 times in PBS. Cells were incubated in 1% BSA, PBS pH 7.4 for

30 min to block non-specific antibody binding. Cells were

incubated with primary antibody (1:1000) in 1% BSA, PBS

pH 7.4 for 60 min and washed for 10 minutes three times with

PBS pH 7.4. Cells were incubated with goat anti-rabbit IgG FITC

conjugate (Sigma) (1:500), Evans Blue (1:1000), in 1% BSA, PBS

pH 7.4 for 60 min at RT, then washed for 10 minutes three times

with PBS pH 7.4. Cells were stained with DAPI, mounted and

visualized by epifluorescent microscopy.

Infection of mosquito larvae with AgDNV
First-instar larvae were either introduced directly into culture

flasks containing Sua5B cells or were infected by adding Sua5B

cell lysate to the rearing water. In this case, Sua5B cells were

pelleted in a 50 ml conical tube by centrifuging for 10 minutes at

2,500 G, 4uC. The pellet was resuspended in 20 ml PBS. Cells

were lysed by vortexing with sterile 3 mm borosilicate glass beads

for 5 minutes. Approximately 20 ml cell lysate was added to 20 ml

ddH20 with approximately 50 first-instar An. gambiae larvae Keele

strain (4 replicates). Larvae were exposed to virus for 24 hours,

then were transferred to clean water with larval food.

Intergenerational transfer of AgDNV
First-instar larvae were infected with Sua5B lysate, reared to

adulthood, allowed to bloodfed on an anesthetized mouse

approximately one week post-emergence, and offspring produced

as described above. Adults and offspring were tested for AgDNV

by PCR using primers DensoVF and DensoVR, using Sua5B as a

positive control and water as a negative control.

Purification of AgDNV particles
Sua5B cells were pelleted and lysed as described above. The

supernatant was removed to a new tube and cellular debris pelleted

by centrifuging for 20 minutes at 10,000 G, 4uC. The supernatant

was centrifuged at 35,000 rpm for 75 minutes, 4uC to pellet virion

particles. The virion pellet was removed and further purified by 1 M

sucrose cushion centrifugation for 120 minutes at 39,000 rpm, 4uC.

The final pellet was fractionated in a CsCl (0.3 g/ml) gradient at

60,000 rpm overnight at 8uC. The virion band was removed from

the gradient for DNA extraction and TEM.

Figure 7. EGFP expression in dissected tissues of adult An.
gambiae female. Fluorescence is observable in the midgut, hindgut,
ovaries and malpighian tubules. Inset: EGFP-positive inclusion in mature
oocyte (arrow).
doi:10.1371/journal.ppat.1000135.g007

Figure 8. EGFP expression in An. gambiae F1 adults infected with wild-type AgDNV (from pBAga) and EGFP-transducing virions
(from pAgActinGFP), which demonstrates transmission of transducing virions between mosquito generations. A–C: EGFP expression
in abdomen, D: EGFP expression in head, E: EGFP expression in maxillary palp.
doi:10.1371/journal.ppat.1000135.g008

Anopheles gambiae Densonucleosis Virus
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TEM
Purified virus particles were applied to glow-discharged carbon-

coated grids and negatively stained with 2% (w/v) uranyl acetate.

Electron micrographs were recorded on Kodak SO-163 film using

a Philips CM12 electron microscope at nominal magnifications of

37,0006 to 52,0006.

Isolation of AgDNV DNA
Pure virion particles isolated from the gradient were incubated

in 300 ml buffer (100 mM EDTA, 10 mM Tris-HCl, 0.1% SDS,

100 mg/ml proteinase K, pH 8.0) overnight at 55uC. The next

day, the mixture was centrifuged at 14,000 rpm for 2 minutes to

pellet debris. DNA was extracted from the supernatant twice using

1 volume of phenol:chloroform (1:1). One tenth volume of 3 M

sodium acetate and 2.5 volumes of cold ethanol were added to

precipitate viral DNA. DNA was pelleted by centrifugation at

14,000 G for 20 minutes, washed with 70% cold ethanol, air dried

and resuspended in 5 ml 10 mM Tris-HCl (pH 8.5).

Cloning the AgDNV genome (pBAg)
600 ng AgDNV genomic DNA was blunt-ended by incubating for

15 minutes at room temperature with 10 units Klenow fragment.

Viral DNA was ethanol precipitated, cloned into the EcoRV site of

plasmid pBluescript S/K(-) and transformed into SUREH competent

cells (Stratagene). 20 clones were selected and sequenced to confirm

viral inserts. We were unable to clone the entire AgDNV genome in

one step, and thus assembled the genome from two clones that,

together, contained the entire AgDNV genome. These clones were

digested with NcoI and XbaI and ligated together to build a full-

length infectious clone (pBAg). pBAg infectivity in Moss55 cells was

confirmed by transfection and IFA as described.

qPCR for virus quantification
pBAg plasmid was used as a copy-number standard for viral

genome quantification as previously described [14]. The plasmid has

an estimated mass of 7.78610218 g/copy. Plasmid concentrations

were determined using an ND-1000 NanoDrop spectrophotometer

(Thermo Fisher Scientific), and serial dilutions were made from

50 mM to 561028 mM to generate a standard curve that ranged

from 6.461010 viral genome equivalents/mL (geq/mL) to 6.46100

geq/mL in ten-fold increments. Primers were designed based on

regions within the overlapping NS1 and NS2 genes that were highly

conserved amongst all known mosquito densovirus isolates, as

previously described [14]. The forward primer (59-CAT-ACT-ACA-

CAT-TCG-TCC-TCC-ACA-A-39) and reverse primer (59-CTT-

GGT-GAT-TCT-GGT-TCT-GAC-TCT-39) produce an 183 bp

amplicon. The Quantitect SYBR Green Kit (Qiagen) was used in a

25 mL reaction containing 0.3 mM of each primer, and 5 mL of a 1/

100 dilution of the Sua5B viral infection prep. Real-time PCR was

performed on an ABI Prism model 7300 using 96-well reaction-

plates (ABI) and MicroAmp Optical Adhesive Film (ABI) with a

program of: (1) 50uC for 2 min, (2) 95uC for 15 min, (3) 45 cycles of i)

94uC for 15 sec, ii) 55uC for 30 sec , iii) 72uC for 30 sec. Data was

collected each cycle at step 3iii, and the 45th cycle was followed by a

dissociation program to verify specific amplification.

Constructing an infectious cloned AgDNV genome
(pBAga)

Virions produced by pBAg were not infectious to An. gambiae

larvae. We infected larvae with virus isolated from Sua5B cells,

reared larvae to adulthood and screened for infected mosquitoes by

PCR as described. We selected 5 individual infected mosquitoes,

sequenced the coding region of the virus that infected them and

identified 3 mutations that all had in common as described in the

text. We reproduced these mutations in pBAg by site-directed

mutagenesis using the QuikChange Multi-Site Directed Mutagenesis

Kit (Stratagene) with the manufacturer’s protocol.

AgDNV-based expression vector (pBAgMCS)
pBAgMCS carries a multiple cloning site (MCS) flanked by the 5-

prime and 3-prime AgDNV hairpin sequences. The MCS possesses 5

common unique cloning sites: NsiI, NcoI, MluI, EcoRV and BglII

(and several other less common cut sites, Figure 5). NsiI, NcoI, MluI,

and BglII produce sticky ends for directional subcloning, while EcoRV

produces blunt ends for blunt-end ligation procedures. We used pBAg

as template for PCR using primers MCSF3 (59- CCC-AAA-CCT-

ATA-TAA-GGC-AAC-TGG-AAT-CGA-AGG-A -39) and MCSR2

(59- CCA-ATG-CAT-CCA-TGG-ACG-CGT-GAT-ATC-AGA-

TCT-TGT-ATT-GTC-TCG-GTG-CA-39) to amplify part of the

3-prime UTR, adding the MCS to the amplicon as part of the primer.

The resultant product and pBAg were double-digested with NsiI and

EcoNI. The digested pBAg was CIP-treated to prevent autoligation,

and the 2 products ligated together with T4 ligase. The construct was

transformed into SURE Competent cells (Stratagene), clones screened

and proper vector construction confirmed by sequencing.

EGFP transducing vector (pAgActinGFP)
The actin5C-EGFP-SV40 cassette was PCR-amplified from

pHermes[act5C:EGFP] using primers Actin5CegfpF (59-CCC-

AAA-GAT-ATC-CGA-TCG-CTC-CAT-TCT-TG-39) and Ac-

tin5CegfpR (59-CCC-AAA-GAT-ATC-CGC-TTA-CAA-TTT-

ACG-CC-39) using pfuUltra II Fusion HS DNA Polymerase

(Stratagene) with the manufacturers suggested protocol. The

PCR product was digested with EcoRV. pBAgMCS was digested

with EcoRV, and CIP-treated to prevent autoligation. The 2

products were ligated together with T4 ligase and the construct

transformed into SURE competent cells. Clones were screened

and proper insert confirmed by sequencing.

EGFP transduction in Anopheles gambiae cells and
mosquitoes

A combination of pBAga and pAgActinGFP were transfected

into Moss55 cells (or pAgActinGFP into Sua5B cells) as described.

EGFP expression was monitored by fluorescence microscopy daily

beginning 24 hours post-transfection. For mosquito infections,

virion particles were purified from cells 1–2 weeks post-

transfection by glass bead lysis/filtration and first-instar larvae

infected directly as described above. EGFP expression in cells,

dissected tissues and mosquitoes was monitored using an Olympus

BX41 epifluorescent compound microscope. Images were cap-

tured using a Macrofire monochrome digital camera (Optronics).

Intergenerational transfer of EGFP-transducing AgDNV
Mosquitoes which had observable EGFP expression were

allowed to oviposit, offspring reared and EGFP expression in

offspring assessed as described above. DNA was extracted from

positive offspring and EGFP DNA detected using primers egfpF2

(59-TGA-AGT-TCA-TCT-GCA-CCA -39) and egfpR2 (59-CAG-

CAG-GAC-CAT-GTG-ATC-39). PCR was conduced using

pAgActinGFP as a positive control and water as negative control.

Amplicons were gel purified and directly sequenced.

Supporting Information

Text S1 Full sequences for constructs outlined in manuscript

Found at: doi:10.1371/journal.ppat.1000135.s001 (0.04 MB

DOC)
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