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Abstract

Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat
Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome
display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins
derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their
capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins
with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent
(subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the
CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with
CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique
characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block
HIV entry, rendering them promising candidates for microbicide development.

Citation: Schweizer A, Rusert P, Berlinger L, Ruprecht CR, Mann A, et al. (2008) CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry
Inhibitors with Unique Characteristics. PLoS Pathog 4(7): e1000109. doi:10.1371/journal.ppat.1000109

Editor: Michael Farzan, Harvard Medical School, United States of America

Received February 29, 2008; Accepted June 24, 2008; Published July 25, 2008

Copyright: � 2008 Schweizer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support was provided by the Swiss National Science Foundation (PP00B-102647 to AT), by a research grant of the Kanton Zürich, and by research
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Introduction

The increasing need for a vaccine to control the HIV pandemic is

undoubted, but recent failures of vaccine programs have made clear

that it will be years to decades before a successful vaccination

program can be installed [1]. In the meantime, drug based

intervention strategies must be found to fill the gap and put the

continuous spread of HIV at halt, particularly in resource poor

settings where 90% of the estimated 33 million HIV infected

individuals live [2].

HIV infection is predominantly acquired via heterosexual

transmission across mucosal surfaces [3]. Strategies that prevent

mucosal transmission are therefore considered to significantly impact

on diminishing viral spread [4]. Microbicides, agents that by topical

application on mucosal surfaces protect from HIV infection, are

regarded as one of the most promising preventive intervention

strategies in the absence of effective vaccination programs [2,4,5].

The sought for microbicides against HIV have to fulfill highly specific

requirements: Besides promoting strong and reliable protection from

HIV infection, these compounds have to be inexpensive, readily

available, stable, well tolerated and easy to apply to allow a wide

spread use. Recent efforts in microbicide research have mainly

focused on chemical compounds of relatively simple composition that

provide protection from HIV infection by largely nonspecific (non

HIV specific) mechanisms as for instance charge-charge interactions

[6]. Although in vivo efficacy of two such candidate microbicides,

nonoxynol-9 [7] and cellulose sulfate [8], could not be established [9–

12] several other pan-reactive molecules are in development that

show promise [4,6,13]. As for all drug interventions against HIV,

combination therapy will likely also be necessary in microbicide

application to reach potent and broad efficacy. Thus microbicides

that target HIV specifically and potentially can be used in

combination with pan-reactive molecules are urgently sought for.

Prime targets for microbicide attack are the virus and cellular

proteins involved in the early events in infection: the entry

receptors CD4, CCR5 and CXCR4, the viral envelope proteins

and compounds that interfere post entry with reverse transcription

and integration of HIV into the host cell. Application of specific

HIV inhibitors targeting these events as topical microbicides has

proven effective in blocking mucosal HIV transmission in the

SHIV macaque infection model underlining their potential in HIV

prevention [4,14–18].
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To date only few small molecules that inhibit HIV entry have

been defined [4]. While protein-based inhibitors are commonly

more expensive in production, they can have functional

advantages. Most importantly, they provide outstanding target

specificity since the contact area between agent and target protein

is formed by comparatively large surface patches as for instance in

antibody-antigen interactions.

The aim of our study was to derive inhibitors of HIV entry that

achieve the desired specificity and potency together with the high

physical stability and low production costs required for the

application as microbicide. To this end, we made use of the

recently established Designed Ankyrin Repeat Protein (DARPin)

technology which is based on the principle of naturally occurring

ankyrin repeat proteins, a ubiquitously expressed family of

proteins mediating specific protein-protein interactions across

species [19]. DARPins were designed as an alternative to

antibodies: they share the antibodies’ ability to be selected and

to bind any given target with high affinity and specificity but are

clearly superior in terms of physical stability and production costs

[20,21]. Highly diverse DARPin DNA libraries, comprising at

least 1011 different sequences per reaction, have successfully been

employed to identify enzyme inhibitors and specific binding

proteins in diverse biological systems [22–29].

The specificity and high affinity achieved in DARPin-target

interactions, paired with the fact that the 12 to 19 kDa DARPin

proteins have a remarkable physical stability and are expressed in

prokaryotic systems, allowing large scale production at relatively

low costs, renders DARPins promising candidates for the selection

of HIV inhibitors. Here, we report the successful selection and

characterization of CD4-specific DARPins and their function as

broadly active inhibitors of HIV entry, which underlines the

potential of this novel type of inhibitor molecules in HIV infection.

Methods

Ribosome display and selection for binders with
improved affinities

An introduction into the DARPin technology and ribosome

display is provided as Supporting Information (Protocol S1 and

Figures S1 and S2). Detailed specifics on the use and generation of

DARPin libraries has been described previously [20]. Here, N2C

and N3C libraries encoding for DARPins consisting of an N- and a

C-terminal capping repeat, and either two (N2C) or three (N3C)

internal ankyrin repeat modules containing randomized amino acid

residues, were used. The theoretical diversity of the N3C library is

3.861023. Ligated library DNA used in the selection described here

encoded for a minimum of 1011 individual members [20]. The

diversity of the library is further increased by introducing errors

through the polymerase used in subsequent PCR cycles. Library

selections were performed against the tetrameric CD4 fusion protein

CD4-IgG2 (kindly provided by Bill Olson, Progenics Pharmaceuti-

cals; [30]) which was immobilized via a Fab-specific anti human

IgG-antibody (Sigma). For selections, PCR-amplified libraries were

transcribed and three standard ribosome-display selection rounds

were performed as described [23,31,32]. Two alternate approaches

were probed in the fourth selection round to achieve highly specific

binders: i) a standard ribosome display selection round with more

extensive washing (3 h in total) and ii) the use of purified gp120 of the

R5-tropic virus JR-FL (1 mM; kindly provided by W. Olson

Progenics Pharmaceuticals) to elute binders that compete with viral

glycoprotein for binding to CD4. The RT-PCR products of the

genes obtained after both fourth cycles were combined in a pool

(termed 1st series binders) and then used for a single clone analysis as

described below.

In a separate line of experiments we aimed to select binders with

improved affinities for CD4. To this end, all round 3 and round 4

sublibraries were transcribed and translated in vitro as described

[33]. Then the ternary complexes of ribosome, mRNA, and

displayed proteins were equilibrated with 1 nM biotinylated CD4-

IgG2 at 4uC for 1 h before 1 mM non-biotinylated CD4-IgG2 was

added. The aliquots were incubated for 3 h at 4uC and the

complexes were recovered by binding to streptavidin-coated

magnetic beads (Roche Applied Science) for 30 min. The beads

were washed five times, and the RNA was eluted and purified as

described [33]. The pool of binders derived from this affinity

selection was termed 2nd series binders and characterized as

described below.

Detection of selected binders by ELISA
CD4-IgG2 was immobilized via a Fab-specific anti-IgG capture

antibody (Sigma) on Maxisorp 96-well plates (Nunc). To screen for

CD4 binders, 100 ml each of crude Escherichia coli extracts containing

DARPins or purified DARPins were applied to wells containing

immobilized CD4-IgG2 and to wells containing the capture antibody

alone. Bound DARPins were detected upon incubation with anti-

RGS-His antibody (Qiagen), anti-mouse-IgG-alkaline phosphatase

conjugate (Sigma) and p-nitrophenylphosphate (Sigma) as substrate.

Wells without CD4-IgG2 were used as negative controls to verify the

binding specificity of the tested DARPins.

Competition ELISA
For the gp120 competition ELISA the same setup as described

above was employed. CD4-IgG2 coated plates were incubated with

JR-FL gp120 (0–800 nM; kindly provided by Progenics Pharma-

ceuticals) for 1 h at 25uC before pure DARPins (200 nM) were

added. Detection and readout was carried out as described above.

For the competition ELISA using CD4-directed monoclonal

antibodies (mAbs) as competitors, soluble CD4 (20 nM, Progenics

Pharmaceuticals) was biotinylated using EZ-link sulfo-NHS-LC-

biotin (Pierce) according to the manufacturer’s instructions and

immobilized via neutravidin (Pierce, 66 nM) on Maxisorp 96-well

plates (Nunc). mAbs L222, Q4120, 13B82 [34,35] and 5A8 [36]

were kindly provided by Q. Sattentau. DARPin (20 nM) plus

different CD4-antibodies (66 nM) were added and incubated at

Author Summary

There is an increasing need to develop inhibitors of HIV
entry into target cells for both application in therapy and
prevention. The development of specific HIV inhibitors as
microbicides, agents that by topical application prevent
infection, is considered particularly important in limiting
the spread of HIV in the absence of effective vaccines. To
derive highly potent and specific inhibitors of HIV entry for
potential use as microbicide, we employed the recently
developed Designed Ankyrin Repeat Protein technology.
Using this technique, Designed Ankyrin Repeat Proteins
can be evolved that bind their target molecules as
specifically and efficiently as antibodies. In the present
study, we generated a panel of Designed Ankyrin Repeat
Proteins that bind specifically to the cellular CD4 receptor,
the main entry receptor of HIV. The obtained proteins are
very potent and highly specific inhibitors of HIV entry and
provide a broad reactivity against genetically different
virus strains. Due to the high physical stability of Designed
Ankyrin Repeat Proteins and their low cost production,
these novel HIV entry inhibitors represent promising
candidates for microbicide development.
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25uC for 1 h. Bound DARPins were detected by ELISA using an

anti-poly-His-alkaline phosphatase conjugate (Sigma) as described

above. Wells without added antibody where included as control

and defined as 0% competition. Competition was rated as follows:

2, +, ++, and +++ for signal decreases of 0–25%, 25–50%, 50–

75% and 75–100%, respectively.

Protein purification and endotoxin removal
DARPins were produced in soluble form in E. coli and purified

using Ni-NTA affinity chromatography as described [37].

Endotoxins (lipopolysaccharides) were removed using 0.1% Triton

X-114 as described [38] and the DARPins were further purified

using EndoTrap red columns (Profos) according to the manufac-

turer’s recommendations. The remaining endotoxin content was

determined using the kinetic chromogenic limulus amebocyte

lysate assay (Endotell) according to the manufacturer’s instruc-

tions. All DARPin preparations used for investigation of cellular

activation had endotoxin levels below 0.5 EU/mg.

Surface plasmon resonance (SPR)
All SPR measurements were performed at 25uC using a Biacore

3000 instrument and a SA sensor chip (Biacore). To immobilize

CD4-IgG2, the protein was first chemically biotinylated using EZ-

Link sulfo-NHS-LC-biotin (Pierce). The individual DARPins were

applied in various concentrations (0.25–1’000 nM, depending on

affinity) to a flow-cell with immobilized CD4-IgG2 for 180 s at

50 ml/min, followed by washing with buffer. The signal of an

uncoated reference cell was subtracted from the measurements.

The kinetic data of the interactions were evaluated with a global fit

using the BIAevaluation 3.0 software (Biacore).

Generation of human mouse CD4 domain 1 chimera
A chimeric construct coding for human CD4, where the human

domain 1 sequence is replaced by its murine homologue sequence,

was constructed as follows: in pEYFP-N1-hCD4 (a kind gift from

Jun-ichi Fujisawa [39]), an expression vector for human CD4, a ScaI

restriction site was introduced at position 10 in CD4-domain 1 by

two conservative nucleotide exchanges via site directed mutagenesis

(QuikChange XL, Stratagene), resulting in plasmid pEYFP-N1-

hcD4-Sca. The murine CD4-D1 domain was amplified by PCR

from the plasmid pCMV-Sport6-mCD4 with primers mD1_fw:

gtcactcaagggaagacgctagtactggggaaggaaggg and mD1_rev:

ggtcaggctctgcccctgcagcaggtgggtacccggactgaagg. The PCR product

and pEYFP-N1-hCD4-Sca, which harbour unique ScaI and AarI

restriction sites, were digested with these two enzymes and the PCR-

derived insert encoding the murine CD4-domain 1 was ligated into

the human CD4 plasmid finally resulting in pEYFP-N1-hCD4mD1.

Immunofluorescent staining and analysis
Cells (100’000/well) were incubated with DARPins (200 nM)

for 20 min at 25uC. Bound DARPin was detected using anti-RGS-

His antibody (Qiagen) and goat-anti-mouse phycoerythrin labeled

antibody (Caltag). Binding of DARPins to CD4+ A3.01 cells,

CD42 A2.01 cells (NIH AIDS Research & Reference Reagent

Program, No. 2059 and 166), CEM5.25luc.gfp (CD4+; provided

by N. Landau) and TZM-bl cells (CD4+; [40]) was investigated.

Cells were washed three times between all incubation steps using

PBS containing 0.1% azide and 1% BSA. After the last step, cells

were fixed (in PBS, 0.1% azide, 1.25% formaldehyde) and

subjected to flow cytometry using a FACSCalibur flow cytometer

(BD Biosciences) and Flowjo software (Tree Star).

To measure the effect of DARPin on cellular CD4 expression,

untouched CD4+ T cells were isolated from CD8-depleted

peripheral blood mononuclear cells (PBMC) of healthy donors

using the CD4+ T cell isolation kit II (Miltenyi Biotech) according

to the manufacturer’s instructions. Purity of the isolated CD4+ T

cells was routinely .97%. CD4+ T cells were cultured in the

presence or absence of the indicated DARPins at 200 nM for 1 h,

3 h, or 18 h. Thereafter, CD4+ T cells were washed twice, stained

with PE-labeled anti-CD4 (Caltag) and analyzed for CD4

expression by flow cytometry.

To analyze overlapping binding patterns amongst the selected

CD4 specific DARPins, competition of DARPins to bind to

cellular CD4 was investigated. To this end, DARPins 29.2 and

57.2 were chemically modified with the HLX633 fluorescent dye

(Invitrogen) according to the manufacturer’s recommendations

and purified by size exclusion using NAP5 columns (GE

Healthcare). CD4+ A3.01 cells were incubated with the fluores-

cently labeled DARPins at 20 nM (109, 25uC) followed by addition

of the unlabeled DARPins (1 mM, 209, 25uC). Cells were washed

thereafter and analyzed by flow cytometry.

To define the domain-specificity of selected DARPins, 293T

cells were transiently transfected with plasmids pEYFP-N1-hCD4

(see above), pCMV-Sport6-mCD4 (obtained from RZPD) or the

newly created chimeric construct pEYFP-N1-hCD4mD1 (see

above) with 25 kD polyethylenimine (Polysciences) as described

[41] and stained 48 h post transfection with fluorescently labeled

DARPins at a concentration of 5 to 50 nM and subsequently

analyzed by flow cytomtery.

Stimulated primary CD8-depleted PBMC
CD8+ T-cell depleted (Rosette Sep cocktail, StemCell Technol-

ogies Inc.) PBMC were isolated by Ficoll-Hypaque centrifugation

of buffy coats obtained from three healthy blood donors. Cells

were adjusted to 46106/ml in culture medium (RPMI 1640

medium, 10% fetal calf serum, 10 U/ml interleukin-2, glutamine,

and antibiotics), divided into three parts, and stimulated with

5 mg/ml phytohemagglutinin (Sigma), 0.5 mg/ml phytohemagglu-

tinin, or anti-CD3 mAb OKT3 as previously described [42]. After

72 h, cells from all three stimulations were combined (referred to

as three-way-stimulated PBMC) and used as a source of stimulated

CD4+ T cells for infection and virus isolation experiments.

Replication competent viruses
Replication competent viruses were produced by infection of

three-way stimulated PBMC. The 50% tissue culture infectious

dose (TCID50) was determined by end point dilution. Infections

were detected by p24 ELISA. In sum 10 subtype B viruses,

including 7 R5 users (JR-FL, SF-162, Pat 17, Pat 020, Pat 111, Pat

114, Pat 120) and 3 X4 users (NL4-3, 2044 and Pat 19) were

probed. Pat 17 is a R5 tropic primary isolate derived from plasma

of a chronically HIV infected individual as described [43]. The

origin of the other viruses has been described previously [42,43].

Env-pseudotyped HIV
Env-pseudotyped HIV was generated by transfection of 293T

cells with plasmids encoding the reporter gene expressing virus

backbone, pNLluc [44] (kindly provided by A. Marozsan and J. P.

Moore) and the respective functional envelope clone using 25 kD

polyethylenimine as described [41]. Viral supernatants were

harvested 2 days post transfection and the TCID50 was

determined by end point dilution. Infections were measured by

firefly luciferase activity (Bright-Glo Luciferase Assay System,

Promega). Plasmids encoding envelopes of R5 using viruses of

subtype B (AC10.0.29, PVO.4, QHO692.42, REJO4541.67,

RHPA4259.7, SC422661.8, TRJO4551.58, TRO.11,

WITO4160.33) and subtype C (DU123.4, DU151.2, DU156.2,

DARPins as Specific HIV Entry Inhibitors
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DU422.1) were kindly provided by D. Montefiori [45,46].

Plasmids encoding envelopes of JR-FL and NL4-3 were provided

by N. Landau and the plasmid encoding the envelope of SF162

was provided by L. Stamatatos.

Neutralization assays using env-pseudotyped virions on
TZM-bl cells

Neutralization assays on TZM-bl cells using pseudotype viruses

were performed as described [40]. Briefly, TZM-bl cells (10’000/

well; 96well format) were preincubated for 1 h at 37uC with serial

dilutions of DARPins and were then infected with aliquots of the

viruses (100 TCID50) together with DEAE dextran (10 mg/ml) in a

total infection volume of 200 ml. After three days, the cells were

lysed using Glo lysis buffer (Promega) and luciferase activity

determined upon addition of Glo substrate (Promega) on a Dynex

Technologies Luminometer. The DARPin concentration causing

50, 70, 90% reduction in luciferase reporter gene production after

48 h was determined by regression analysis.

Potential synergistic effects of combinations of the CD4-specific

DARPin 25.2 with other entry inhibitors were investigated with

JR-FL pseudotyped virus on the TZM-bl reporter cell line.

Combination indices [CI] were calculated using the Loewe

additivity formula [47–49]:

DA ABj Ið Þ
DA Ið Þ z

DB ABj Ið Þ
DB Ið Þ ~CIAB Ið Þ

DA (I) is the dose of drug A alone required to result in inhibition I

and DA|AB (I) the dose of drug A in the combination of A+B

required to give the inhibition I. CI of 1 indicates additivity, ,1

synergy and .1 antagonism.

PBMC based neutralization assay
Inhibition of replication-competent virus infection of primary

human CD4 T cells was assessed essentially as described [50].

Briefly, stimulated CD8 depleted PBMC (100’000/well) were

preincubated for 1 h with DARPins at 37uC, followed by infection

with the respective replication-competent virus (100 TCID50). After

incubation for 6 to 8 days, p24 antigen production was determined

in cellular supernatant by ELISA as described [49,51]. The DARPin

concentration causing 70% reduction in p24 antigen production was

determined by regression analysis as described [42].

For macaque PBMC based neutralization assays, macaque

PBMC were cultured with 5 mg/ml of PHA-P (Sigma) for 3 days,

before being plated at 26105 cells per well of a 96 well plate

(Becton Dickinson) in medium with 50 U/ml IL-2. Graded doses

of the CD4-specific DARPin 25.2 or the control E3_5 DARPin

were added to each well (duplicates per dose) and incubated for

1 h at 37uC. After the incubation, 1000 TCID50 of SIVmac239

was added to each well (with 50 U/ml IL-2). The cells were

cultured for 7 days (adding more IL-2 every other day), after which

the cells were collected and lysed for PCR. SIV infection was

measured using a Q-PCR assay for SIV gag DNA [52,53]. The

DARPin concentration causing 90% reduction in SIV gag DNA

was determined by regression analysis.

Effects of DARPins on dendritic cells (DC)
Monocytes were isolated from PBMC by positive selection with

CD14 microbeads (Miltenyi). Purified monocytes were cultured

for 4 days in RPMI-10% FCS containing 1000 U/ml GM-CSF

and 1’000 U/ml IL-4 (both from Immunotools). Monocyte-

derived DC were then washed twice, seeded at 16106/ml and

treated with the purified DARPin preparations (375 nM) for 24 h.

E. coli lipopolysaccharide (2.5 EU/ml; Charles River Endosafe)

was used as control. Finally, to assess the activation status of the

cells, DC were stained with PE-labeled anti-CD80 (BD Bioscienc-

es) and with propidium iodide (BD PharMingen) and CD80

expression levels were quantified by flow cytometry.

Assessment of T cell proliferation
Labeling of PBMC with CFSE (carboxy-fluorescein succinimi-

dyl ester) was performed as described [54]. Briefly, CD8-depleted

PBMC from a single donor were stained 8 min at room

temperature with 3 mM CFSE (Molecular Probes). Staining was

stopped by addition of an equal amount of FCS and cells washed

three times with PBS containing 1% FCS. CFSE-labeled cells were

incubated with 500 nM endotoxin purified DARPin (1 h at 37uC)

and cultured for 4 days in RPMI 1640 containing 10% FCS,

antibiotics, 100 U/ml interleukin-2 and anti-CD3 mAb OKT3.

The cells were analyzed by flow cytometry using anti-CD3-PE and

propidium iodide for gating. Proliferation of cells was assessed on

the basis of the shifts in the CFSE- labeling intensity using the

FlowJo software as described [54].

Assessment of T helper memory cell function in presence
of CD4 specific DARPin

To assess whether CD4-specific DARPins interfere with T

helper memory cell functions, activation of antigen-specific T cells

in presence and absence of DARPin 55.2 and the control E3_5

using a standard interferon-c ELISpot assay was assessed [55].

Briefly, 96-well membrane plates (MAIP S45, Millipore) were

coated overnight with anti-human IFN-c antibody (1-D1K,

MAbtech). CD8-depleted PBMC were isolated one day prior to

the experiment and cultured in RPMI 1640 containing 10% FCS

and antibiotics overnight. The next day cells were preincubated

with 200 nM (streptokinase/streptodornase experiment) or

250 nM (cytomegalovirus experiment) endotoxin free DARPins

55.2 and E3_5 for 1 h at 37uC. Cells (26105) were then seeded

into wells of the coated 96-well membrane plates and stimulated

with either streptokinase/streptodornase (400 U/ml) or cytomeg-

alovirus (CMV)-lysate (10 mg/ml) overnight at 37uC. Phytohaem-

agglutinin (10 mg/ml) was used as positive control. IFN-c
production was detected by sequential addition of a detection

antibody cocktail containing a biotinylated anti-human IFN-c
antibody (7-B6-1, MAbtech), streptavidin alkaline phosphatase

(MAbtech), followed by washing. AP (alkaline phosphatase)

conjugate substrate kit (Biorad) was used and the resulting colored

spots were quantified using an ELISpot reader (AID). Background

reactivity observed in cultures without stimulation was subtracted

and results are expressed as specific spot forming cells (SFC) per

106 CD8-depleted PBMC.

Interference of DARPins with CD4:MHC class II interaction
To study if CD4 specific DARPins interfere with CD4:MHC

class II interaction directly, we performed a cell based binding

assay based on rosette formation between CD4 and MHC class II

expressing cells [56]. Briefly COS-7 cells (ATTC CRL-1651;

cultivated in DMEM, 10% FCS) were seeded at a density of

200’000 cells per 6-well, and one day later transfected with the

CD4 encoding plasmid pEYFP-N1-hCD4 ([39]) using the Ca-

phosphate transfection system (Promega) according to the

manufacturer’s instructions. Transfection medium was replaced

8 h later and two days post transfection cells were utilized in the

rosette assay. To this end CD4 expressing and control COS-7 cells

were treated with CD4 specific DARPins (23.2, 25.2, 27.2, 29.2,

55.2, 57.2), and a control DARPin (E3_5), buffer or the anti-CD4

DARPins as Specific HIV Entry Inhibitors
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antibody Q4120 specific for domain 1 (Sigma; 100 nM), which is

known to block CD4 binding to MHC II, for 30 min at 37uC at a

concentration of 50 nM or 200 nM. Subsequently, medium was

removed, and cells incubated with 16107/well Raji B cells (NIH

AIDS Research & Reference Reagent Program, No. 9944)

cultivated in RPMI1640, 10% FCS) containing identical concen-

trations of inhibitors. After 1 h incubation at 37uC non-adherent

cells were removed by washing the wells gently seven times with

medium. Cells were then fixed with 1.5% paraformaldehyde (PFA)

and rosette formation assessed microscopically.

Crossreactivity with macaque CD4
Crossreactivity with rhesus CD4 was investigated using PBMC

from adult male and female chinese rhesus macaques (Macaca

mulatta) which were housed at the Tulane National Primate

Research Center (TNPRC; Covington, USA). Animals were

anesthetized with ketamine-HCl (10 mg/kg) prior to heparinized

blood samples being taken (no more than 10 ml/kg/month/

animal). Protocols were reviewed and approved by the Institu-

tional Animal Care and Use Committee of the TNPRC. Animal

care procedures were in compliance with the regulations detailed

in the Animal Welfare Act and in the ‘‘Guide for the Care and Use

of Laboratory Animals’’. PBMC were isolated using Ficoll-

Hypaque density gradient centrifugation (GE Healthcare). Cells

were washed twice in 16 PBS and resuspended in FACS wash

(FW) buffer (16 PBS supplemented with 1% human serum and

1 mM EDTA, both from Sigma). For DARPin staining, 46105

macaque PBMC were resuspended in 50 ml FW buffer in a 96 well

plate (BD Biosciences). DARPins, 2 ml of each (5 mM), were added

to the cells and incubated for 20 min at 4uC. Cells were washed

twice in FW buffer and CD4 T cells were identified using a 1/25

dilution of FITC-conjugated anti-CD3 (clone Sp34, BD PharMin-

gen) and PE-conjugated anti-CD4 (clone L200, BD PharMingen).

PE- and FITC-conjugated isotype Ig controls were included in all

experiments and typically gave signals ,1 log of fluorescence. To

detect DARPin binding, cells were incubated with a 1/100

dilution of the anti-Penta-His Alexa Fluor 647 conjugate (Qiagen).

The DARPin negative control was no DARPin with anti-Penta-

His Alexa Fluor 647. Gates were set to include all mononuclear

leukocytes based on the forward- and side-scatter characteristics

(excluding any contaminating neutrophils). The gates used to

define the CD3/CD4 cells were determined based on the isotype

controls. All samples were acquired on a FACSCalibur (BD

Biosciences) and analyzed using FlowJo software (Tree Star, Inc).

Mean fluorescent intensities (MFI) of DARPin staining in the

CD3/CD4 population were adjusted by subtracting the MFI of

the negative DARPin control. Standard deviations represent n = 4

animals, processed and stained in parallel.

Results

Selection and biochemical characterization of CD4-
specific DARPins

DARPins specific for human CD4 were selected using N2C and

N3C DARPin libraries, which harbor two and three randomized

ankyrin repeats, respectively. Specific DARPins were isolated from

these libraries by performing ribosome-display selection rounds

[31,32] against the tetrameric CD4-immunoglobulin molecule,

CD4-IgG2, expressing domains D1 (encompassing the binding site

for the HIV envelope protein gp120; [57]) and D2 of human CD4

[30]. Although an enrichment of binders was observed already

after the second ribosome-display selection round (data not

shown), four selection rounds were performed to increase

specificity before the selected library members were further

analyzed. This pool of DARPins obtained after four rounds

(referred to as 1st series pool) was screened for CD4 specificity

directly from crude bacterial lysates by ELISA (Figure 1A). More

than 50% of the examined candidate DARPins showed specific

binding (signal/background $2), whereas unselected DARPins

showed no interaction with immobilized CD4-IgG2 (data not

shown). Out of this pool of CD4-specific DARPins, six candidate

proteins with the most favorable binding properties in the ELISA

screen were chosen (referred to as 1st series binders) and purified to

homogeneity for further investigations. The six selected proteins

were purified and their capacity to bind to CD4 in presence and

absence of gp120 assessed (Figure 1B). Notably, all six selected

DARPins interfered with gp120 binding to CD4. We further

analyzed the ability of DARPins to interact with the native CD4

receptor in a cellular context. All probed selected DARPins bound to

CD4+ cell lines and to primary CD4+ T cells but not to CD42 cell

lines, whereas the unselected control DARPin, E3_5, did not interact

with any of the tested cell lines (Figure 1C and data not shown).

As affinity and kinetics of the interaction with CD4 are

anticipated to steer the efficacy of the DARPins as inhibitors of

HIV entry, we investigated the interaction of one candidate from

the 1st series pool, DARPin 3.1, with CD4 by kinetic SPR

measurements. Association and dissociation experiments at

various concentrations of DARPin 3.1 with immobilized CD4-

IgG2 yielded a dissociation constant (KD value) of 8.9 nM, which is

in the range of high affinity antibodies (Table 1).

CD4-specific DARPins are potent HIV entry inhibitors
To explore the effect of CD4-specific DARPins on HIV entry

we evaluated the inhibitory activity of our panel of CD4-DARPins

in vitro using a standardized assay system based on infection of

TZM-bl reporter cells with envelope pseudotyped HIV particles

[58]. All tested DARPins inhibited HIV entry of JR-FL, SF-162

and NL4-3 env-pseudotype viruses in a dose-dependent manner

with IC50 values ranging from 67.8 nM to 820 nM (Supporting

Table S1). Importantly, none of the CD4-selected DARPins had

an effect on CD4-independent virus entry as demonstrated by

their inability to block entry of murine leukemia virus (data not

shown). Equally, an unselected DARPin (E3_5) had no effect on

HIV entry (Figure 2B and data not shown).

When we further explored the effects of the DARPins against a

panel of 10 replication-competent R5 or X4 virus isolates of

subtype B on primary lymphocytes (Figure 2A) we confirmed that

all selected DARPins inhibited replication of the tested virus

isolates, even over multiple rounds of replication. Notably though,

we observed a considerable variability in the sensitivity of different

viruses with IC70 values ranging from ,24 nM up to .1 mM,

with a relatively high resistance of the three probed X4 isolates to

the DARPin inhibitors.

Selection for improved affinities results in higher
inhibition potencies

This relatively high variability in suppressing virus replication

on primary CD4+ T cells suggested that DARPins with superior

activity are needed to achieve potent and broad inhibition of

genetically diverse isolates in vivo. We reasoned that increasing the

affinity of the DARPins to CD4 is the most feasible strategy to

boost their potency in inhibiting HIV entry. To enrich for

DARPins with high affinity for CD4 we performed off-rate

selections during ribosome display to specifically select for proteins

with low dissociation rates [59]. To that end, we combined the

DNA-sublibraries generated during the first selection rounds and

performed a single round of off-rate selection where dissociation of

DARPins with low affinity was induced by addition of excess CD4

DARPins as Specific HIV Entry Inhibitors
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Figure 1. DARPins interact specifically with CD4 and compete with gp120 for binding to CD4. (A) Binding of DARPins, in the form of
crude bacterial lysates, to CD4-IgG2 (black) is determined by ELISA and compared with binding to the capture antibody alone (gray). DARPins A–F
show specific binding to CD4-IgG2, a property that was confirmed by further tests using the purified proteins. DARPins G and H reveal nonspecific
binding whereas I and J are examples of library members that do not recognize the target protein. (B) Competition ELISA using soluble gp120 as
competing ligand. Shown is binding of 200 nM of the CD4-specific DARPins 1.1 to 6.1 in competition with 0 nM, 50 nM and 800 nM gp120. Binding
of DARPins alone was defined as 100% and background binding as 0%. (C) Binding of the DARPins to cellular CD4 was tested using A2.01 cells
(CD42), the CD4 expressing lines A3.01 cells, TZM-bl cells, CEM 5.25 cells and CD8-depleted PBMC as source of primary CD4 T cells. CD4-specific
DARPins D3.1 (blue), D23.2 (red), and of a control DARPin, E3_5 (black), an unselected library member binding to the various cell types are shown. PE-
labeled CD4-antibody (clone Q4120, Sigma) (green) was used as positive control and a PE-labeled goat-anti-mouse antibody (shaded in gray) as
negative control. The shifts in fluorescence intensity correspond to the differences in affinities of the DARPins for CD4 (see Supporting Table S1).
Representative data from 2–4 independent experiments are shown.
doi:10.1371/journal.ppat.1000109.g001

Table 1. Dissociation constants of CD4 specific DAPRins as determined by surface plasmon resonance (SPR).

Binder kon 1 [1/Ms]; kon 2 [1/s] koff 1 [1/s]; koff 2 [1/s] KD [M] fitting model Chi2/Rmax

D3.1 9.43E+05 1.03E-01 8.93E-09 two state1 2.26%

3.47E203 3.09E-04

kon [1/Ms] koff [1/s]

D23.2 2.96E+06 7.66E-04 2.59E-10 1:12 3.40%

D27.2 1.39E+06 2.44E-03 1.75E-09 1:12 0.48%

D29.2 1.11E+06 1.66E-03 1.49E-09 1:12 4.70%

D55.2 1.43E+06 1.20E-03 8.39E-10 1:12 1.64%

D57.2 1.39E+06 2.44E-03 1.75E-09 1:12 0.48%

1Data required use of the two state model, which assumes a conformational change upon binding, for fitting.
2Data gave best fits using the standard 1:1 langmuir binding model.
doi:10.1371/journal.ppat.1000109.t001
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in solution. From this pool of binders we chose a panel of six

DARPins, D23.2, D25.2, D27.2, D29.2, D55.2 and D57.2

(referred to as 2nd series binders), for further analysis.

When we assessed this panel of 2nd series binders using kinetic

SPR measurements we found that off-rate selection had indeed

resulted in selection of binders with dissociation constants (KD) that

were almost exclusively in the subnanomolar range (Table 1).

When compared to DARPin 3.1, the most potent inhibitor of the

1st series, this represents a 5 to 10-fold decrease in KD values.

Importantly, this substantial increase in affinity was also reflected

by a dramatic increase in HIV entry inhibition potency of the 2nd

series over the 1st series binders (Figure 2B). The IC50 values of

the six affinity improved binders against the reference strains JR-

FL, SF162 and NL4-3 in the TZM-bl based assay were in the

range of 1.1 to 5.1 nM, 1.2 to 7.7 nM, and 2.7 to 10.5 nM,

respectively (Supporting Table S1). In sum, this represents about a

70-fold reduction in inhibitory concentrations (p,0.0001, un-

paired t test) over the 1st series DARPin inhibitors and renders the

2nd series inhibitors equal in potency to the clinically approved

entry inhibitor T-20 [60–62], which was probed alongside and

inhibited replication of JR-FL, SF-162 and NL4-3 pseudotyped

viruses with IC50 values of 1.1 nM, 3.1 nM and 8.1 nM,

respectively.

While the 1st series DARPins displayed a relatively wide

variability in their potency to inhibit infection of PBMC by

replication-competent viruses (Figure 2A, Table S1), the 2nd series

DARPins were significantly improved and blocked virus replica-

tion at IC70s in the very low nanomolar range (2.1 nM-30.9 nM;

Figure 2B and Table S1). The most potent inhibitors of this pool,

DARPins 55.2 and 57.2 blocked HIV replication of the three

probed viruses, JR-FL, SF-162 and NL4-3, with IC70 values

between 2.1 and 7.8 nM.

Potency and breadth of CD4-specific DARPins
To obtain more detailed information on potency and breadth of

the CD4-specific DARPins we analyzed the activity of DARPin

Figure 2. The selected CD4-specific DARPins potently inhibit HIV entry. (A) Effect of the six selected CD4-specific DARPins of the 1st series
(D1.1–D6.1) on the entry of replication-competent viruses (7 R5 and 3 X4 users) on PBMC. 70% inhibitory concentrations (IC70) derived in
representative individual experiments are reported. (B) Inhibition of HIV entry by 1st and 2nd series DARPins: CD4-specific DARPins of the 2nd series
(red to yellow) are more potent inhibitors of HIV entry as DARPins of the 1st series (dark blue to light blue). Inhibition of JR-FL, SF-162 and NL4-3
infection in a pseudotyped virus entry assay on TZM-bl cells (upper panels) and the respective replication competent viruses in a PBMC based assay
(lower panels) was probed in parallel. The unselected DARPin E3_5 (gray) was used as control in the TZM-bl based assay. Data points are means of
virus replication measured in two replicate wells. See Supporting Table S1 for a summary of the derived IC50 and IC70 values in these assays.
doi:10.1371/journal.ppat.1000109.g002
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3.1, the most potent inhibitor of the 1st series pool, and DARPin

55.2, as representative of the 2nd series, against a reference panel

of nine subtype B and four subtype C env-pseudotyped R5 viruses

(Figure 3A). Notably, D3.1 only reached IC50 values between 20.2

and 144.8 nM (median: 67 nM) against clade B viruses and 11.3

to 52.5 nM (median: 28 nM) against clade C viruses while

DARPin 55.2 inhibited both subtype B and C viruses very

potently with IC50 values of 0.4–4.1 nM for subtype B (median:

1.3 nM) and 0.3–1.6 nM for subtype C viruses (median: 0.7 nM).

The latter confirmed the result of the initial screen and verified

that the 2nd series DARPins have a markedly improved capacity to

inhibit HIV, irrespective of the genetic background of the virus.

As with all inhibitors against HIV, effective application of CD4-

specific DARPins for prevention or therapy will require their use

in combination with other types of inhibitors. To probe potential

effects of CD4-DARPins in drug cocktails, DARPin 25.2 was

tested for its efficacy in inhibiting HIV entry in combination with a

series of entry inhibitors: the neutralizing mAbs IgG-b12 [63], 2F5

[64], 4E10 [65] and 2G12 [66], the fusion inhibitor T-20 [60], the

anti-CCR5-mAb PRO140 [67] and CD4-IgG2 [30].

The results showed a clear pattern: DARPin 25.2 acted in

synergy (CI 70: 0.42–0.77, CI 90: 0.25–0.54) with all anti-cell and

anti-viral inhibitors with the exception of CD4-IgG2 for which -

consistent with the CD4-specificity of the DARPins - antagonism

was observed (CI 70: 2.31, CI 90: 2.05; Figure 3B and C). The

precise mechanisms by which blocking of CD4 promotes

synergistic effects in combination with anti-envelope targeting

inhibitors remain to be determined. Synergistic effects could, for

example, arise when thresholds of receptor levels required for

successful entry are not met. In summary, our data underline the

potential of CD4-specific DARPin inhibitors, as they promote

higher inhibitory activity in conjunction with entry inhibitors

directed to different targets.

Specificity of selected DARPins
To derive further information on their target specificity, we

studied binding of a selection of 2nd series DARPins to CD4 in

competition with a panel of CD4-binding mAbs. In general, strong

competition with the three D1 binding mAbs (L222, Q4120,

13B82 [34,35]) was observed, while less interference was found

with 5A8 [36], a D2 binding antibody (Table 2). Notably, this

competition by mAb 5A8 was not observed with DARPin 23.2,

but with all other tested DARPins.

In summary these experiments suggest that the selected DARPins

have overlapping specificities mainly directed against D1. We

confirmed these experiments in competition experiments in which

binding of fluorescently labeled DARPin 29.2 or 57.2 to CD4

expressing cells was probed in presence of unlabeled competitor

DARPins (Figure 4A). Both sets of experiments gave identical results:

the labeled DARPin was competed off by all other CD4 specific but

not the control DARPin E3_5, indicating that the probed CD4-

specific DARPins have closely overlapping epitopes.

To more specifically define the binding domain of the DARPins

we generated a chimeric CD4 molecule in which domain 1 of

human CD4 was exchanged by the corresponding domain of

mouse CD4. The chimeric CD4 molecule expressed well upon

transfection in 293-T cells, and had the required specificities, as

antibody S3.5, specific for human D1, failed to bind, whereas mAb

GK1.5, specific for mouse D1, bound the chimeric molecule but

not wild type human CD4 (data not shown). Likewise mAb

OKT4, specific for human CD4 D3, bound equally well to both

wildtype human CD4 and the chimeric molecule (Figure 4B).

Binding studies with the CD4 specific DARPins revealed that

while all DARPins bound wildtype human CD4, they failed to

bind the chimeric mouse domain 1 molecule mirroring the

Figure 3. CD4-specific DARPins efficiently inhibit entry of both subtype B and C viruses. (A) Graphical representation of the IC50 values of
a 1st series DARPin, D3.1, and a 2nd series DARPin, D55.2, tested using env-pseudotyped viruses of subtype B (n = 9) and subtype C (n = 4) on TZM-bl
cells. The following median IC50 values were determined: 45.4 nM for DARPin 3.1 (67.1 nM and 28.2 nM for clade B and C viruses, respectively) and
1.3 nM for DARPin 55.2 (1.3 nM and 0.7 nM for clade B and C viruses, respectively). (B) Inhibition curves of JR-FL pseudovirus used to assess synergy
by analyzing combination indices (CI) in Figure 3C. Equipotent stocks of inhibitors were used to obtain comparable inhibition curves. Inhibitory
effects of DARPin 25.2 (gray square) and the 2F5 mAb (gray triangle) alone are shown aside by side with the calculated (light gray, open triangle) and
the actual observed inhibitory effect (black circles) of a 1:1 mixture of the two inhibitor stocks. (C) DARPin 25.2 shows potent synergy in JR-FL
pseudovirus inhibition in combination with neutralizing mAbs or entry inhibitors. CI for the inhibitory concentrations 70% and 90% (CI70, CI90) are
represented for DARPin 25.2 in combination with mAbs IgG-b12, 2F5, 2G12, 4E10, the fusion inhibitor T-20, the anti-CCR5 mAb Pro140 and CD4-IgG2.
Means from three independent experiments are shown. Error bars indicate the standard error of the mean.
doi:10.1371/journal.ppat.1000109.g003

Table 2. Competition between DARPins and CD4-specific
antibodies for binding to CD4.

mAb/DARPin 2 E3_5 23.2 27.2 29.2 55.2 57.2

2 2 2 2 2 2 2 2

5A8 2 2 2 + ++ + +

L222 2 2 +++ +++ +++ ++ ++

Q4120 2 2 +++ +++ +++ +++ ++

13B82 2 2 ++ + ++ ++ +

a-Flag 2 2 2 2 2 2 2

doi:10.1371/journal.ppat.1000109.t002
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binding pattern of mAb S3.5 and thus confirming their specificity

for CD4 domain 1 (Figure 4B).

Probing the effect of CD4-specific DARPins on cell function
Since the action of CD4-specific DARPins is directed against the

host cell, particular care has to be taken to assess their effect on cell

function before these agents can be considered for further

development as HIV inhibitors. In a first step, we investigated

whether CD4-specific DARPins interfere with CD4 T cell

proliferation, by probing the effect of a candidate CD4-specific

DARPin (D55.2) and a nonspecific control DARPin (E3_5) on

primary CD4+ T cell proliferation over a four day period. As

Figure 5A shows, addition of the CD4-binding DARPin had no

noticeable impact on cell proliferation compared to the untreated

control.

To explore the effects of CD4 engagement by DARPins on

dendritic cells (DC), we assessed whether treatment of immature

monocyte-derived DC with DARPin 55.2 for 24 h induced

activation and maturation of these cells, which is reflected by

increased expression of the costimulatory molecule CD80. Neither

the CD4-specific DARPin 55.2 nor the control DARPin induced

DC maturation (Figure 5B), whereas E. coli lipopolysaccharide

(LPS), known to induce DC maturation via TLR-4, gave rise to a

pronounced shift in CD80 expression (data not shown).

Notably, the DARPins did not reveal any cytotoxic effects:

prolonged incubation of primary cells with DARPin - CD4-

specific or unselected - did not result in increased cell death as

measured by uptake of propidium iodide: Both the CD3+ T cells

(incubated with DARPins, 500 nM, for 4 days) and the dendritic

cells (incubated with DARPins, 375 nM, for 24 h) remained

unaffected (Figure 5C).

Effect on CD4 receptor density
As our competition binding experiments with gp120 indicate

(Figure 1B), CD4-specific DARPins most likely act by blocking

viral attachment to the receptor. Theoretically, binding of the

DARPin to CD4 could also induce receptor internalization and

DARPins thus may exhibit their antiviral activity through

decreasing CD4 receptor density on the target cells. To probe

this, we explored the effect of DARPin binding on surface CD4

receptor levels of primary CD4 T cells. Treatment of CD4 T cells

from healthy donors with DARPin for 0, 1, 3 and 18 h at 37uC (to

Figure 4. Characterization of the binding domain of CD4 specific DARPins. (A) Competition between the fluorescently labeled DARPins
D29.2HLX and D57.2HLX with unlabeled DARPins was analyzed by flow cytometry using CD4+ A3.01 cells. Compared to the control with no
competitor (shaded in gray) competitive binding was observed for all CD4-specific DARPins (E3_5: blue; D23.2: light blue; D25.2 red; D27.2: orange;
D29.2: brown; D55.2: green; D57.2: purple). The autofluorescence control is shown as dotted line (B) Binding of the same DARPins to human CD4
(hCD), murine CD4 (mCD4) and chimeric human CD4 containing murine D1 domain in the human CD4 context (hCD4mD1), indicating that all tested
DARPins bind to the D1 domain of human CD4. The same coloring scheme for DARPins as in Figure 4A was used. MAb OKT4, specific for human CD4-
D3, is shown as black dotted line.
doi:10.1371/journal.ppat.1000109.g004

Figure 5. Interaction of DARPins with CD4 has no detectable effect on cell viability and stimulation. (A) PBMC stimulation with IL-2 and
OKT3 to induce proliferation was not altered in presence of the CD4-specific DARPin 55.2 (red), the non-binding DARPin E3_5 (blue) or absence of
DARPin (gray) over a 4 day period. Proliferation was monitored by flow cytometry by determining CFSE dilution as a result of cell division. One
representative experiment out of two is shown. (B) Activation of dendritic cells (DC) as determined by CD80 expression. Neither addition of DARPin
55.2 (red), nor of control DARPin E3_5 (blue), resulted in detectable upregulation of CD80 on DC over a 24 h period. One out of two independent
experiments is depicted. (C) Prolonged treatment of T lymphocytes (4 days) and immature monocyte derived DC (24 h) with DARPin 55.2 (CD4
specific) and E3_5 (unselected control DARPin) has no effect on cell viability. Viability was determined by propidium iodide staining. DARPin
concentration in the lymphocytes and DC cultures were 500 nM and 375 nM, respectively. (D) Interaction of DARPins with CD4 does not result in
downregulation of surface CD4. Untouched peripheral blood CD4+ T cells were cultured in presence or absence of the indicated DARPins for 1 h, 3 h
or 18 h at either 37uC (red line) or 4uC (blue line). Cells were stained for CD4 and the expression of surface CD4 was analyzed by flow cytometry.
Shown is one representative experiment out of four.
doi:10.1371/journal.ppat.1000109.g005
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allow receptor internalization) or at 4uC (to limit internalization)

yielded identical results: Neither treatment with the CD4 specific

nor the unspecific DARPin resulted in down- or upregulation of

CD4 (Figure 5D). Recognition of CD4 by the CD4 mAb used in

these FACS analyses was not impaired in the presence of CD4

specific DARPin. Most importantly, CD4 staining in presence of

CD4 specific DARPin remained stable independently whether

DARPin and mAb were added simultaneously or cells were

pretreated with DARPin for extended time periods (Figure 5D).

Effect of CD4 specific DARPins on CD4 interaction with
MHC class II

In the absence of T cell receptor interaction the binding of CD4

to MHC class II is of extremely low affinity (KD = 200 mM; [68]).

Using a previously established assay that allows to study this weak

interaction based on rosette formation between CD4 and MHC-II

expressing cells [56], we were able to show that all tested

DARPins, 23.2, 25.2, 29.2, 55.2 and 57.2, as well as the CD4-D1

specific antibody Q4120 blocked rosette formation efficiently

(Figure 6A and data not shown). Hence, in the absence of cognate

T cell receptor (TCR) and peptide, the CD4 specific DARPins

interfered with CD4 binding to MHCII.

To probe the effect on specific T cell functions, we assessed if

the CD4-specific DARPin 55.2 affects activation of memory T

helper cells specific for either streptokinase/streptodornase or

cytomegalovirus antigens. When we quantified antigen specific

IFN-c producing cells that were stimulated in presence or absence

of 200 nM of D55.2 or the non-binding control DARPin E3_5 we

observed in both cases no inhibition of the T cell functions

(Figure 6B). This indicates that, at least for the CD4-specific

DARPin probed, even at high dosing of the molecule specific

memory T helper responses are activated.

Efficacy of DARPins in blocking rhesus macaque CD4
To evaluate the potential of using these binders directly in non-

human models, crossreactivity of the DARPins with CD4 from

rhesus macaques was investigated. The sequence identity between

human and macaque CD4 is 91% on the amino acid level, as

opposed to 54% between human and murine CD4. Experiments

using PBMC from macaques revealed that 4 out of 7 tested

DARPins recognize also rhesus CD4 (Figure 7A), while none of

them interacts with murine CD4 (data not shown and Figure 4B).

This finding is intriguing as it opens the possibility to probe the

potential of DARPins as candidate microbicides in the macaque

infection model. To obtain an initial insight into the potential of

these DARPins in inhibiting SIV infection, we probed the efficacy

of DARPin 25.2 in blocking SIVmac239 infection of primary

rhesus macaque cells. Results obtained in infection experiments

with cells from three individual donors depicted in Figure 7B

indicate that DARPin 25.2 potently inhibit SIV infection of these

cells.

Discussion

Making use of the recently developed DARPin technology [19–

21,23], we investigated here DARPins as HIV-specific inhibitors

since they can be engineered to fulfill many of the sought for

properties of a microbicide, namely high target specificity and

affinity, high physical stability and comparatively low production

costs. As proof of concept, we aimed to derive DARPin-based

inhibitors that target CD4, the primary receptor for HIV. The

technology employs highly diverse DARPin DNA libraries

combined with ribosome display as selection technology, which

allowed the selection of binders with specificity for the CD4

receptor in a relatively short time. The resulting DARPins

interacted with very high affinity with human CD4 as reflected

by dissociation constants in the lower nanomolar range, which

upon off-rate selection even reached subnanomolar values. This

high affinity has proven a common characteristic of DARPins:

although monovalent binders, they routinely achieve affinities that

are equal if not superior to most antibodies [23,26,28,59]. We

subjected the derived CD4-specific DARPins to a careful

assessment of the HIV inhibitory capacity. Notably, all probed

CD4-specific DARPins from the 1st and the 2nd, affinity improved

series inhibited HIV entry both in cell line and primary cell based

infection systems. Inhibition was achieved over both single round

and multiple rounds of infection proving the stability of this effect.

Particularly notable was the potency of the 2nd series DARPins,

which were specifically selected for low dissociation rates. They

exhibited potent and broad neutralization of HIV across subtypes

Figure 6. Effect of DARPin on T cell function and MHC class II interaction. (A) The effect of the DARPin:CD4 interaction was assessed in a
binding assay based on rosette formation between CD4 and MHC class II expressing cells. Rosette formation was blocked by all tested CD4 specific
DARPins (200 nM, shown are D25.2 and D55.2) or by the CD4-specific mAb Q4120 but not by the control DARPin E3_5. One out of two representative
experiments is shown. (B) ELISpot assay to detect IFN-c production by activated T cells showed no interference of DARPin 55.2 with CD4+ T cell
activation. The response of two donors against CMV or streptokinase/streptodornase (SKSD) antigen was tested without DARPin (gray) and with
nonspecific (blue) or CD4-specific DARPin (red) at 200 or 250 nM. One out of two independent experiments is depicted.
doi:10.1371/journal.ppat.1000109.g006
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B and C at IC50 values in the low nanomolar range. The latter

proved them to be at least equally potent as the licensed entry

inhibitor T-20 (Enfuvirtide; [69,70]).

We used a truncated CD4 molecule, expressing only the apical

D1 and the adjacent D2 domain of CD4 as target in the ribosome

display selection, as these domains are involved in the interaction

with the virus and targeting of these regions by specific antibodies

have been shown to interfere with HIV infection [71–75]. D1

harbors the binding site for gp120 and interference is expected to

abrogate this interaction. The role of D2 in the infection process

appears to be more indirect, nevertheless important: the D2

specific antibody 5A8 blocks HIV infection efficiently and its

humanized derivative TNX-355 is now under clinical investigation

[69,76,77]. Notably, all tested DARPins selected against D1 and

D2 of CD4 in our screen inhibited HIV entry. The most obvious

concept of inhibiting HIV entry is blocking of the gp120 binding

site within the D1 domain of CD4 and thus direct interference

with viral attachment. Competition between virus and inhibitor

could likewise arise from binding to an epitope on D1 that is

different from the gp120 binding site, resulting in either

conformational changes or in stabilization of an incompatible

conformation of the entire domain.

Our screening strategy should enrich for DARPins specific for

D1, as competitive displacement from CD4 by gp120 was applied

in the final ribosome display rounds. It also has to be considered

that the D2 domain is probably less exposed in the tetrameric form

of CD4-IgG2 and therefore likely not as accessible for DARPin

binding during the screening. More detailed epitope mapping

using mouse human CD4 chimera showed that indeed all selected

DARPins bind to domain 1 of human CD4.

Notably though, we observed a partial competition between the

D2 specific mAb 5A8 and several of the DARPins for CD4 binding,

indicating that the epitopes of these DARPins may also involve

regions in D2 or are dependent on a D2 steered conformation.

We further found that engagement of CD4 by the DARPins

27.2, 29.2, 55.2, and 57.2 did not induce downregulation of CD4

(Figure 5D and data not shown), supporting the notion that direct

interference with gp120 binding to CD4 is their mode of action

(Figure 1B).

Although we developed the DARPin inhibitors with topical

application as a microbicide in mind, where comparatively low

systemic exposure is expected, it is nevertheless critical to carefully

assess their potential side effects on immune function. Despite

targeting a cellular receptor, we found the actions of the selected

CD4-specific DARPins to be highly HIV specific. No effect on CD4-

independent virus entry was detected using murine leukemia virus.

Equally important, we did not observe effects on cell viability,

proliferation of T-cells, or activation of immature DC for the

individual DARPins probed in these assay systems, indicating that

these monovalent binders did not activate the receptor and initiated

downstream signaling events. Moreover, although DARPins can

interfere with the low affinity interaction between CD4 and MHC

class II which occurs in the absence of cognate TCR and peptide

(Figure 6A; [68]), DARPin treatment did not disturb activation of

specific memory T helper responses (Figure 6B). The latter supports

previous observations that CD4/MHC class II interaction is

tightened on TCR engagement [68,78], which may explain why

the inhibitory effect of the DARPin is overcome in this context.

The fact that targeting of CD4 by the high affinity DARPins

can occur without loss of CD4 T cell function and unwanted side

effects, holds great promise of their in vivo application. This is

further underlined by our finding that CD4-specific DARPins act

in synergy with several other HIV entry inhibitors directed to

different targets on the virus or host cell. The DARPin technology

is a relative young invention and the potential in vivo applications

of DARPins still await proof. This notwithstanding, our in vitro

analysis strongly suggests that DARPins have unique properties

that render them promising candidates for microbicide develop-

ment. Further assessment of their application as microbicides is

clearly feasible, particularly as we selected several molecules that

are specific for human and rhesus macaque CD4, which will allow

future study of their efficacy in the macaque infection model.

Accession numbers
The nucleotide and the amino acid sequences of the 12

DARPins described here were deposited in the EMBL Nucleotide

Sequence Data Base (www.ebi.ac.uk/embl) and are available

under the accession numbers AM997259–AM997270.

Supporting Information

Protocol S1 Designed Ankyrin Repeat Proteins (DARPins) and

ribosome display.

Found at: doi:10.1371/journal.ppat.1000109.s001 (0.07 MB

DOC)

Figure S1 Repeat sequence motif of a DARPin repeat and X-

ray structure of a randomly selected member of the N3C DARPin

library, E3_5.

Figure 7. Human CD4 specific DARPins can crossreact with macaque CD4 and inhibit entry of SIV. (A) PBMC from rhesus macaques were
incubated with the indicated DARPins at 4uC, labeled with an anti-His-tag antibody and detected by flow cytometry. MFI (mean fluorescence
intensity) of DARPin staining on CD3+ cells, corrected for the negative control is shown. Standard deviations are indicated and represent n = 4
animals. (B) DARPin 25.2 potently inhibits entry of SIVmac239 in macaque PBMC. Shown are the IC90 values which were derived from neutralization
assays performed using DARPin 25.2 and the control E3_5 on PBMC from three different animals.
doi:10.1371/journal.ppat.1000109.g007
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Found at: doi:10.1371/journal.ppat.1000109.s002 (0.82 MB TIF)

Figure S2 Schematic representation of ribosome display selec-

tions.

Found at: doi:10.1371/journal.ppat.1000109.s003 (0.10 MB TIF)

Table S1 Inhibitory concentrations of 1st and 2nd series

DARPins.

Found at: doi:10.1371/journal.ppat.1000109.s004 (0.07 MB

DOC)
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