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Abstract

Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based
immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh
autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIVmac251

replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a
booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag
peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced
following immunization, both during antiretroviral cover and without. Virus levels were durably ,10-fold lower for 1 year in
immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity
resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in
comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV
proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective
immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy.
Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.
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Introduction

Several attempts at immunotherapy of HIV using more

conventional vaccines have thus far been poorly immunogenic

and weakly efficacious in human trials [1,2,3,4]. The use of

professional antigen-presenting cells such as dendritic cells to

deliver HIV immunotherapies has shown strong immunogenicity

efficacy in macaques and pilot humans studies but is limited to

highly specialized facilities [5,6,7]. A simple intermittent immu-

notherapy that reduces the need for long-term antiretroviral

therapy (ART) would be a quantum advance in treating HIV.

We recently reported the robust T-cell immunogenicity of

treating unfractionated whole blood or peripheral blood mono-

nuclear cells (PBMC) with overlapping peptides of SIV, HIV-1 or

hepatitis C virus in outbred pigtail monkeys [8,9]. We termed this

simple immunotherapy OPAL (Overlapping Peptide-pulsed

Autologous ceLls). This technique is attractive since there is no

prolonged ex vivo culture of antigen-presenting cells, robust CD4

and CD8 T-cell responses to both structural and regulatory

proteins can be induced, and peptide antigens are simple to

manufacture to high purity. This study assessed whether OPAL

vaccination improves the outcome of SIV-infected monkeys.

Considerable debate exists regarding the most effective antigens

to target for T-cell based therapeutic HIV vaccination. It has been

widely believed that broader immunity to multiple proteins would

be more efficacious [10,11]. In contrast, recent studies highlight

the effectiveness of Gag-specific T cell immunity in comparison to

T cell immunity to other antigens. We therefore also assessed

whether narrower responses induced only to SIV Gag are as

effective as more broadly targeting all 9 SIV proteins.

Materials and Methods

Animals
Juvenile pigtail macaques (Macaca nemestrina) free from Simian

retrovirus type D were studied in protocols approved by
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institutional animal ethics committees and cared for in accordance

with Australian National Health and Medical Research Council

guidelines. All pigtail macaques were typed for MHC class I alleles

by reference strand mediated conformational analysis and the

presence of Mane-A*10 confirmed by sequence specific primer

PCR as described [12,13]. 36 macaques were injected intrave-

nously with 40 tissue culture infectious doses of SIVmac251 (kindly

provided by R. Pal, Advanced Biosciences, Kensington, MD) as

described previously [14,15] and randomized into 3 groups of 12

animals (OPAL-Gag, OPAL-All, Controls) 3 weeks later. Ran-

domization was stratified for peak SIV viral load at week 2, weight,

gender and the MHC I gene Mane-A*10 (which is known to

enhance immune control of SIV) [15]. Animals received

subcutaneous injections of dual anti-retroviral therapy with

tenofovir and emtricitibine (kindly donated by Gilead, Foster

City, CA; both 30 mg/kg/animal) for 7 weeks from week 3: daily

from weeks 3–5 post-infection and three times per week from

weeks 6–10. This dual ART controls viremia in the majority of

SIV-infected macaques [16,17,18,19,20].

Immunizations
Two animal groups (OPAL-Gag and OPAL-All) were immu-

nized with OPAL immunotherapy using PBMC as previously

described [8]. Briefly, peripheral blood mononuclear cells (PBMC)

were isolated over Ficoll-paque from 18 ml of blood (anticoagu-

lated with Na+-Heparain). All isolated PBMC (on average 24

million cells) were suspended in 0.5 ml of normal saline to which

either a pool of 125 SIVmac239 Gag peptides or 823 peptides

spanning all SIVmac239 proteins (Gag, Pol, Env, Nef, Vif, Tat, Rev,

Vpr, Vpx) were added at 10 mg/ml of each peptide within the

pool. Peptides were 15mers overlapping by 11 amino acids at

.80% purity kindly provided by the NIH AIDS reagent

repository program (catalog numbers 6204, 6443, 6883, 6448-

50, 6407, 8762, 6205). To pool the peptides, each 1 mg vial of

lyophilised 15mer peptide was solubilized in 10–50 ml of pure

DMSO and added together. The concentration of the SIV Gag

and All peptide pools was 629 and 72 mg/ml/peptide respectively,

although each peptide was pulsed onto cells at 10 mg/ml

regardless of vaccine type. The peptide-pulsed PBMC were held

for 1 hr in a 37uC waterbath, gently vortexed every 15 minutes

and then, without washing, reinfused IV into the autologous

animal. Peptide concentrations and timing of incubation were

adapted from effective stimulation of T cell responses in vitro.

Control macaques did not receive vaccine treatment. This was

done since (a) we had not previously observed any significant VL

changes with non HIV/SIV peptide sets ([8,9] and unpublished

data), (b) reinfusion of blood cells pulsed with irrelevant sets of

peptides would result in some level of immune activation and drive

higher viral loads in controls, artificially magnifying any reductions

in the active treatment groups, (c) reinfusion of control peptide

pulsed cells might have obscured any unexpected safety problems

of the procedure.

Immunology assays
SIV-specific CD4 and CD8 T-cell immune responses were

analysed by expression of intracellular IFNc as previously

described [21]. Briefly, 200 ml whole blood was incubated at

37uC with 1 mg/ml/peptide overlapping 15mer SIV peptide pools

(described above) or DMSO alone and the co-stimulatory

antibodies anti-CD28 and anti-CD49d (BD Biosciences/Pharmin-

gen San Diego CA) and Brefeldin A (10 mg/ml, Sigma) for 6 h.

Anti-CD3-PE, anti-CD4-FITC and anti-CD8-PerCP (BD, clones

SP34, M-T477 and SK1 respectively) antibodies were added for

30 min. Red blood cells were lysed (FACS lysing solution, BD) and

the remaining leukocytes permeabilized (FACS Permeabilizing

Solution 2, BD) and incubated with anti-human IFNc-APC

antibody (BD, clone B27) prior to fixation and acquisition (LSRII,

BD). Acquisition data were analyzed using Flowjo version 6.3.2

(Tree Star, Ashland, OR). The percentage of antigen-specific

gated lymphocytes expressing IFNc was assessed in both

CD3+CD4+ and CD3+CD8+ lymphocyte subsets. Responses to

the immunodominant SIV Gag CD8 T-cell epitope KP9 in Mane-

A*10+ animals were assessed by a Mane-A*10/KP9 tetramer as

described [13]. Total peripheral CD4 T-cells were measured as a

proportion of lymphocytes by flow cytometry on fresh blood.

Virology assays
Plasma SIV RNA was quantitated by real time PCR on 140 ml

of plasma at the University of Melbourne (lower limit of

quantitation 3.1 log10 copies/ml) at all time-points using a

TaqMan probe as previously described [21,22] and, to validate

these results with a more sensitive assay, on pelleted virions from

1.0 mL of plasma at the National Cancer Institute (lower limit of

quantitation 1.5 log10 copies/ml) as previously described [23].

Endpoints/statistical analyses
The primary endpoint was the reduction in plasma SIV RNA in

OPAL-immunized animals compared to controls by time-

weighted area-under-the-curve (TWAUC) for 10 weeks following

withdrawal of ART (i.e. samples from weeks 12 to 20). This

summary statistical approach is recommended for studies such as

these involving serial measurements [24]. We compared both

active treatment groups (OPAL-Gag and OPAL-All) to controls

separately and together. The primary analysis was restricted to

animals that controlled viremia on the ART at week 10 (VL,3.1

log10 copies/ml), since control of VL is an important predictor of

the ability of animals to respond to immunotherapies [8,25]. A

pre-planned secondary virologic endpoint was studying all live

animals adjusting for both VL at the end of ART (week 10) and

Mane-A*10 status. Group comparisons used two-sample t-tests for

continuous data, and Fisher’s exact test for binary data. Survival

analyses utilised Cox-regression analyses.

Power calculation
Prior to initiating the study, we estimated the standard deviation

of the return of VL after treatment interruption would be

approximately 0.8 log10 copies of SIV RNA/mL plasma

[5,16,17,18,19,20]. In this intensive study we estimated that 2 of

the 12 monkeys within a group may have confounding problems

such as incomplete response to ART or death from acute SIV

Author Summary

Effective immunotherapies for HIV are needed. We
assessed a simple technique, reinfusion of fresh blood
cells incubating with overlapping SIV peptides (Overlap-
ping Peptide-pulsed Autologous ceLls, OPAL), in 36
randomly allocated SIV-infected monkeys. We analyzed
this therapy for the stimulation of immunity, control of
virus levels, and prevention of AIDS. The OPAL immuno-
therapy was safe and stimulated remarkable levels of T-cell
immunity. Levels of virus in vaccinated monkeys were 10-
fold lower than in controls, and this was durable for over
1 year after the initial vaccinations. The immunotherapy
resulted in fewer deaths from AIDS. We conclude this is a
promising immunotherapy technique. Trials in HIV-infect-
ed humans of OPAL therapy are planned.

OPAL Immunotherapy for SIV
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infection. A 10 control vs 10 active treatment comparison yields

80% power (p = 0.05) to detect a 1.0 log10 difference in TWAUC

VL over the first 10 weeks. An estimated comparison of 10 control

vs all 20 actively treated animals (OPAL-Gag plus OPAL-All) gave

80% power to detect differences of 0.87 log10 copies/ml VL

reduction.

Study conduct
This study was conducted according to a pre-written protocol

using Good Laboratory Practice Standards from the Australian

Therapeutic Goods Administration as a guide. Protocol deviations

were minor and did not affect the results of the study. Partial data

audits during the study did not raise any concerns about the study

conduct.

Results

OPAL Vaccinations
OPAL immunotherapy was studied in SIV-infected pigtail

macaques receiving ART. Pigtail macaques have at least an

equivalently pathogenic course of SIV infection as alternate rhesus

macaque models [14,26]. Thirty-six macaques were infected with

SIVmac251 and 3 weeks later treatment with the antiretrovirals

tenofovir and emtricitabine for 7 weeks was initiated. The animals

were randomly allocated to 3 groups stratified by peak plasma SIV

viral load (VL), Mane-A*10 status (an MHC class I gene that

improves VL in SIV-infected pigtail macaques [15]), weight and

gender. Macaques were immunized 4 times under the cover of

antiretroviral therapy (weeks 4, 6, 8, 10) with autologous fresh

PBMC mixed for 1 hour ex vivo with 10 mg/ml/peptide of either

125 overlapping SIV Gag 15mer peptides only (OPAL-Gag), 823

SIV 15mer peptides spanning all 9 SIV proteins (OPAL-All) or un-

immunized. The macaques were initially followed for 26 weeks

after ceasing ART on week 10.

All 36 macaques became infected following SIVmac251 exposure

and had a mean peak VL of 7.1 log10 copies/ml (Table S1). Prior

to vaccination, 4 animals died during acute SIV infection with

diarrhoea, dehydration, lethargy, anorexia and weight loss. The

vaccinations were well tolerated, with no differences in mean

weights, haematology parameters, or clinical observations in

OPAL immunized animals compared to controls (data not shown).

Immunogenicity
There was striking SIV-specific CD4+ and CD8+ T-cell

immunogenicity after the course of vaccination in the OPAL

immunized animals. Mean Gag-specific CD4 and CD8 T-cell

responses 2 weeks after the final immunization were 3.0% and

1.9% of all CD4 and CD8 T cells respectively in the OPAL-Gag

group. Mean Gag-specific CD4 and CD8 T-cell responses 2 weeks

after the final immunization were 0.84% and 0.37% in the OPAL-

All group and 0.15% and 0.29% in controls (Fig. 1A, B). The Gag-

specific T cells in the OPAL-All immunized animals, but not

control or OPAL-Gag only immunized animals, also had elevated

T-cell responses to all other SIV proteins. Mean Env, Pol and

combined regulatory protein-specific CD4/CD8 responses were

2.5%/11.8%, 0.8%/0.3% and 1.5%/2.4% respectively in the

OPAL-All group compared to #0.4% for all CD4/8 responses to

non-Gag antigens in control and OPAL-Gag groups (Fig. 1C, D

and Fig. 2). The kinetics of induction of non-Gag CD4 and CD8 T

cell responses in the OPAL-All group was similar for induction of

Gag-specific T cell immunity. Stronger CD8 T-cell responses to

non-Gag proteins correlated with reduced CD8 T-cell responses to

Gag (Fig. 1E). Thus, although a larger number of SIV proteins

were recognized in the OPAL-All immunized animals, Gag

responses were reduced in comparison to only immunizing with

Gag peptides.

Although the short linear peptides were primarily used to

induce T cell immunity, we also studied serial plasma samples for

SIV-specific antibodies. All animals seroconverted following SIV

infection, as shown by Western Blot (Fig. 3A). No significant

enhancement of Gag or Env antibody responses occurred with the

OPAL vaccinations (Fig. 3B, C). There was a dip in mean Gag

antibody responses during the period of ART in all groups

consistent with reduced viral antigen during this period. In

addition to the lack of difference in mean Gag (p26) or Env (gp36)

responses shown in Figure 3B and 3C, there were also no

significant different antibody responses to p16, p68, gp125 and

gp140 across the vaccine groups (not shown).

Virologic outcome following initial vaccinations
The 7-week period of ART controlled VL to below 3.1 log10

copies/ml in 26 of the remaining 32 animals by week 10 (Table

S1). The pre-defined (per-protocol) primary VL endpoint analyses

was performed on animals controlling viremia on ART (26

animals). The 6 animals that failed to control viremia on ART had

higher peak VLs at week 2 (mean6SD of 7.7460.33 compared to

6.9460.52 for animals controlling viremia on ART, p,0.001) and

higher VL following ART withdrawal (5.9860.53 vs 4.2860.90,

p,0.001). Control of VL is likely to be important in achieving

optimal results from immunotherapy of infected macaques [8,20].

The primary endpoint comparison of VL between combined

OPAL-All and OPAL-Gag treatment groups in the 10 weeks after

ART withdrawal was 0.5 log10 copies/ml lower than controls

(p = 0.084, Fig 4, Table 1). Each vaccination group (OPAL-All and

OPAL-Gag) had very similar reductions in VL. By 6 months after

ART withdrawal, the mean difference in VL between control and

OPAL-immunized groups was 0.93 log10 copies/ml (p = 0.028,

Table 1).

As a secondary endpoint, we also analysed all 32 remaining

animals by adjusting for VL control on ART and Mane-A*10

status. There was a significant difference in VL between controls

and vaccinated macaques with these analyses at both 10 and

26 weeks off ART (p = 0.050, 0.016 respectively, Table 1).

To confirm the virologic findings using a sensitive independent

VL assay, frozen plasma (1 ml) from study week 32 was shipped to

the National Cancer Institute (NCI) in Maryland, USA. Drs M

Piatak and J Lifson kindly analysed the samples for SIV RNA

blindly using an assay with a limit of quantitation of 1.5 log10

copies/ml (Table S1) [23]. The University of Melbourne and NCI

assays were tightly correlated (r = 0.97, p,0.001) and showed an

almost identical mean reduction in viremia in vaccinees compared

to controls at this time (0.82 vs 0.88 log10 copies/ml respectively).

Durability of OPAL immunotherapy
To further assess the durability of SIV control and prevention of

disease with OPAL immunotherapy, we re-boosted all 32 animals

in the same randomized groups 3 times with the identical

procedure (at week 36, 39, 42) without ART cover and followed

the animals for an additional 6 months. Despite the lack of ART

cover, SIV-specific T cell immunity was dramatically enhanced in

immunized animals 2 weeks after the last vaccination, similarly to

the primary vaccination (Figs 1, 2). The T cell responses to Gag

were again highest in the OPAL-Gag group with broader

responses in the OPAL All group. The pattern of enhancement

of T cell immunity was similar for the first and second vaccination

sets (Figs 1, 2).

We again sampled plasma for viral load every 3–6 weeks. To

account for the death of animals from AIDS, we used a ‘‘last

OPAL Immunotherapy for SIV
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Figure 1. T-cell immunogenicity of OPAL vaccination. SIV Gag-specific CD4 (A) and CD8 (B) T-cells expressing IFNc were studied over time by
intracellular cytokine staining. Mean6standard error of vaccine groups compared to control unvaccinated animals (circles) is shown. The primary OPAL
vaccinations of macaques (arrows, weeks 4, 6, 8 and 10 after SIVmac251 infection) consisted of autologous PBMC pulsed with either overlapping SIV Gag
15mer peptides (OPAL-Gag, triangles) or peptides spanning all 9 SIV proteins (OPAL-All, squares). Initial vaccinations were given under the cover of
antiretroviral treatment (ART). Animals were re-boosted with OPAL immunotherapy in the same randomised groups, without ART, at weeks 39, 42 and 42.
At week 12, two weeks after the last vaccination, CD4 (C) and CD8 (D) T-cell responses to pools of overlapping peptides spanning SIV Gag, Env, Pol or
combined Regulatory/Accessory proteins (Nef, Tat, Rev, Vif, Vpx, Vpr [Reg]) were assessed in all animals by intracellular cytokine staining. In addition,
responses to a SIV Gag CD8 T-cell epitope KP9, were assessed by a Mane-A*10/KP9 tetramer. Mean6standard error of vaccine groups is shown along with 2-
sided t-test p values of ,0.10. (E) SIV Gag specific CD8 T-cell responses correlated inversely with CD8 T-cell responses to the summation of non-Gag
(Env+Pol+Regulatory protein) responses across all 21 live OPAL-immunized animals. The animals with .50% CD8 T-cell responses to the combined pool
had total responses of 50.4% and 54.5%, primarily to Env (50.1% and 54.2% respectively). Spearman rank correlation is shown.
doi:10.1371/journal.ppat.1000055.g001

OPAL Immunotherapy for SIV
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observation carried forward’’ analysis for missing VL data.

Significant viral control was maintained throughout the follow

up period of just over 1 year off ART (Fig 4A, Table 1). In animals

which controlled VL on ART, there was a mean 0.98 log10

copies/ml difference between controls and vaccinees 54 weeks

after coming off ART (p = 0.019 for time-weighted analysis).

Twelve of the remaining 32 animals developed incipient AIDS

and were euthanised during the extended follow up. All 6 animals

Figure 2. Non-Gag T cell immunogenicity of OPAL Vaccination. SIV-specific CD4 and CD8 T-cells expressing IFNc were studied over time by
intracellular cytokine staining to Env (A, B), Pol (C, D) and a pool of overlapping peptides spanning combined Regulatory/Accessory proteins
(RTNVVV, E, F). Mean6standard error of vaccine groups compared to control unvaccinated animals (circles) is shown. Four initial vaccinations were
given weeks 4–10 and a second set of 3 immunizations given weeks 36–42 as shown in Fig 1A.
doi:10.1371/journal.ppat.1000055.g002

OPAL Immunotherapy for SIV
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Figure 3. SIV-specific antibody responses. All 32 live macaques had serial measurements of SIV-specific antibodies utilizing HIV-2 Western Blot
strips. (A) Representative examples of the evolution of the Western Blot profiles of a macaque within each vaccine group. A positive control sample
from HIV-2 infected (+) and uninfected (2) human subjects are shown at the right of the panel. (B) Mean6standard error densitometry
measurements of Gag (anti-p26) responses and (C) Env (anti-gp36) responses over time.
doi:10.1371/journal.ppat.1000055.g003

OPAL Immunotherapy for SIV
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that did not control viremia on ART required euthanasia. Of the 6

euthanised animals which did control viremia on ART, 5 were in

the control group and one in the OPAL-Gag group. OPAL

immunotherapy resulted in a survival benefit, analysing either the

26 animals that controlled viremia on ART (p = 0.053, Fig 4B,

Table 1) or all 32 animals, adjusted for Mane-A*10 status and

control of viremia on ART (p = 0.02, Table 1).

Discussion

In summary, OPAL immunotherapy, either using overlap-

ping Gag SIV peptides or peptides spanning the whole SIV

proteome was highly immunogenic and resulted in significantly

lower viral loads and a survival benefit compared to unvacci-

nated controls. The virologic efficacy in OPAL-immunized

macaques was durable for 12 months after ART cessation. Our

findings on OPAL immunotherapy were observed despite the

virulent SIVmac251-pigtail model studied [14] and provide strong

proof-of-principle for the promise of this immunotherapy

technique.

The OPAL immunotherapy approach is simpler than many

other cellular immunotherapies, particularly the use of dendritic

cells. The use of DNA, CTLA-4 blockade and viral vector based

approaches are also now showing some promise in macaque

studies [17,27], although such approaches have not yet been

translated into human studies. This study added peptides to

PBMC, however we have shown an even simpler technique,

adding peptides to whole blood is also highly immunogenic, a

technique that will be more widely applicable ([8] and unpublished

studies).

This is one of the largest therapeutic SIV vaccine studies yet

reported. Although it may have been ideal to have studied

Figure 4. Efficacy of OPAL immunotherapy. Antiretroviral therapy (ART) was withdrawn at week 10, after the last vaccination, and (A) plasma
SIV RNA followed. The 26 animals that controlled viremia on ART are illustrated with mean6standard error of vaccine groups. (B) Survival of these 26
vaccinated and controls animals is shown. P values represent the difference between controls and the combined vaccine groups (see Table 1).
doi:10.1371/journal.ppat.1000055.g004

OPAL Immunotherapy for SIV
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irrelevant peptide-pulsed autologous cells as an additional control

group, we were concerned that this may have magnified the

therapeutic effect or obscured any safety concerns. In the end, the

vaccination process was both safe and effective.

How well the findings on OPAL immunotherapy translate to

humans with acute HIV-1 infection will be determined by clinical

trials. Virus-specific CD4 T cells are typically very weak in HIV-

infected humans or SIV-infected macaques; dramatic enhance-

ment of these cells were induced by OPAL immunotherapy and

this may underlie its efficacy [28]. We measured IFNc-producing

T cells in this study since we had not developed polyfunctional ICS

assays prior to initiating the study. However, recent cross-sectional

polyfunctional ICS assays suggests OPAL immunotherapy can

also induce T cells capable of also expressing the cytokines TNFa
and IL-2, the chemokine MIP1b and the degranulation marker

CD107a (unpublished data).

A ,1.0 log10 reduction in VL would result in a substantial

delay in progressive HIV disease in humans and allow a

reasonable time period without the requirement to reintroduce

ART [29] if these findings are confirmed in human trials. Both

the control and vaccinated macaques were treated with ART

early in this study (3 weeks after infection), which alone can be

associated with a transiently improved outcome in humans [30].

None-the-less, a massive loss of CD4+ T cells in the gut occurs

within 2 weeks of infection [31]. Although it may be challenging

to identify humans within 3 weeks of infection, this is when HIV-

1 subjects typically present with acute infection. The durable

control of viremia exhibited by the vaccinated animals is

interesting and consistent with other recent macaque studies

[27], suggesting the need for re-immunization may not be

substantial. We cannot attribute the durable control of viremia to

the second set of immunizations; there was only a marginal, non-

significant, increase in the difference in VL between OPAL

vaccinees and controls before and after the second immunization

series. Further studies are required to address the timing and

benefit of ART cover during boosting immunizations with OPAL

immunotherapy.

Control of viremia was similar for the OPAL-Gag and OPAL-

All groups. Gag-specific CD4 and CD8 T-cell responses in OPAL-

Gag animals 5.1- and 3.5-fold greater than those in the OPAL-All

animals, despite an identical dose of Gag overlapping peptides.

This suggests antigenic competition between peptides from Gag

and the other SIV proteins. Inducing immunodominant non-Gag

T-cell responses by multi-protein HIV vaccines may limit the

development of Gag-specific T-cell responses [21]. A large human

cohort study demonstrated Gag-specific T-cell responses were the

most effective in controlling HIV viremia [32]. Useful subdom-

inant T cell responses may be particularly susceptible to dominant

non-Gag T cell responses [33,34]. The utility, if any, of inducing

T-cell responses to non-Gag proteins (i.e. excluding Gag peptides

from the vaccine antigens) can be addressed in future studies of

this flexible vaccine technology. Therapeutic HIV vaccines may

not need to aim for maximally broad multi-protein HIV-specific

immunity.

OPAL immunotherapy with Gag peptides is proceeding into

initial trials in HIV-infected humans. Additional peptides can

readily be added into standard consensus strains mixes to cover

common strain or subtype variations between strains with this

technology [35]. Additional technologies such as toggling variable

amino acids peptides may provide further T cell immunogenicity

with this general technology [36]. Immunotherapy with peptides

delivered onto fresh blood may have potential applicability for

other chronic viral diseases such as hepatitis C virus infection and

some cancers such as melanoma [37].
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