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Abstract

ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes,
Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the
26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU
homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We
characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of
human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential
lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is
associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by
causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous
network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of
kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial
protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication
that has never been observed in other organisms.
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Introduction

ATP-dependent protease complexes include the proteasomes in

eukaryotes, Archaea and Actinomycetales and the HslVU complex in

eubacteria [1–3]. The proteasomes rid the cells of mis-folded

proteins and control the levels of many regulatory proteins that

fluctuate during the cell cycle.

The mammalian 26S proteasome is composed of a 20S catalytic

particle (CP) capped at one or both ends with a 19S regulatory

particle (RP). The 20S CP is composed of 7 distinct a-subunits and

7 distinct b-subunits. Three catalytic b-subunits each having an N-

terminal threonine and a lysine at position 33 are playing essential

roles for activity [1]. The 19S RP binds, unfolds, and translocates

polyubiquitinated protein substrates into the interior of 20S CP,

where proteolysis occurs [1–3].

In the HslVU protease from Escherichia coli, the HslV subunit has

characteristics resembling those of the catalytic b-subunits of 20S

CP with a similar fold and two N-terminal threonines plus a lysine

#33 playing essential roles in catalysis [2,4–6]. Both threonines

are required for maximum enzyme catalysis, because mutation of

the first threonine to serine or valine eliminated activity and a

mutation of the second threonine reduced activity by 60–70% [6].

Two stacked hexameric rings of HslV, which are capped at one or

both ends with a hexameric ring of the AAA-type ATPase HslU

[4], form the proteolytic complex. Like the 19S RP, the HslU ring

recognizes and unfolds protein substrates and translocates them

into the HslV proteolytic chamber [3].

Bacterial HslVU is limited in function [7]. Its deletion inhibits

growth and viability of E. coli only at higher temperatures [8].

HslV responds to heat shock by degrading the heat shock factor

s32 [9,10] and the cell-division inhibitor SulA [8,11].

The co-existence of a 26S proteasome with an HslVU protease

in the same living organism was originally considered unlikely [2].

However, recent genomic data suggest that Trypanosoma, Leishman-

ia, and Plasmodium [12,13] as well as amoebozoa, plantae,

chromoalveolata, rhizaria and excavata species [14] could contain

both the 26S proteasome and HslVU protease. The latter could be

associated with mitochondria due to the presence of putative

mitochondrial targeting signals. Our interest in cell cycle

regulation by proteasomes prompted us to examine the HslVU

homolog in Trypanosoma brucei, a parasitic protozoan causing

sleeping sickness in Africa. We found that knockdown of this

protease by RNA interference (RNAi) has remarkable effects on

the mitochondrial genome, known as kinetoplast DNA (kDNA).

kDNA is a complex network consisting of several thousand

minicircles and a few dozen maxicircles topologically interlocked

and condensed into a disk-shaped structure closely associated with

the extra-mitochondrial flagellar basal body [15,16]. Maxicircles,

encoding ribosomal RNA and some of the subunits of respiratory

complexes, produce transcripts that are edited by inserting or
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deleting uridylate residues to form an open reading frame. Editing

specificity is provided by guide RNAs, most of which are encoded

by minicircles (For reviews, see [17–19]).

Replication of kDNA [17,18] occurs nearly concurrently with

nuclear S phase [20]. It involves a topoisomerase II-mediated

release of covalently-closed minicircles from the network into the

kinetoflagellar zone, a region between the kDNA disk and

mitochondrial membrane near the flagellar basal body [21].

Proteins within the kinetoflagellar zone, including UMSBP (the

minicircle origin recognition protein) [22] and two DNA

polymerases [23], then trigger replication and probably segrega-

tion of the free minicircles. The progeny free minicircles are

thought to migrate to the two antipodal sites [24], which are

protein assemblies situated ,180u apart on the periphery of the

kinetoplast disk. Late stages of minicircle replication occur within

the antipodal sites, including removal of minicircle replication

primers by a structure-specific endonuclease I (SSE1) [25] and

repair of most of the gaps by DNA polymerase beta [26] and DNA

ligase [27]. Finally, a topoisomerase II [28], also in the antipodal

sites, reattaches the still-gapped minicircles to the network

periphery [29], thereby enlarging the network. This process

continues until all minicircles have replicated. Then the gaps are

repaired by a polymerase and a ligase within the kDNA disk

[26,27]. The double-sized network splits in two [30], and these

progeny networks are pulled into the two daughter cells by their

linkage to the segregating flagellar basal bodies through a

transmembrane tripartite attachment complex [15,16].

In this report we show that T. brucei HslVU is mitochondrial and

enriched in the kinetoplast region. Knockdown of the protease

causes over-replication of minicircles, resulting initially in

abnormal kinetoplast segregation and ultimately in formation of

giant kDNA networks. Our results show that this HslVU complex

regulates replication of a mitochondrial genome.

Results

Identification of the HslVU genes in T. brucei
We identified in the trypanosome genome database (www.

genedb.org) an HslV homolog (Tb11.01.2000; designated

TbHslV) with ,40% identity to bacterial HslV (Fig. S1A) and a

15–24% overall identity to the three catalytic b-subunits in

T. brucei 20S CP (data not shown). In addition, we found two

HslU homologs, TbHslU1 (Tb927.5.1520) and TbHslU2

(Tb11.01.4050), that are 40–44% identical to E. coli HslU and

,40% identical to each other (Fig. S2A). These proteins have

potential N-terminal mitochondrial targeting signals. In addition,

TbHslV has two threonines (T20 and T21) next to the targeting

signal and a downstream lysine at position 53 (Fig. 1A, arrows).

Both TbHslU1 and TbHslU2 possess the putative NTP-binding

motif (P-loop) and the conserved residues essential for the ATPase

activity of HslU (Fig. S2A, arrows). By homology modeling [31],

TbHslV, TbHslU1 and TbHslU2 can be folded into three-

dimensional structures resembling those of the HslV and HslU of

E. coli (Figs. S1B and S2B; [4].

A Northern blot of total trypanosome RNA revealed that all the

three genes are transcribed at comparable levels in both procyclic

(insect) and bloodstream forms of T. brucei (data not shown).

Furthermore, a Western blot showed that PTP-tagged TbHslV is

expressed in procyclic trypanosomes (data not shown).

The peptidase activity of TbHslV
We next tested whether TbHslV functions as a threonine

peptidase and whether T20, T21, and K53 are essential for

activity. We replaced each of these residues with alanine (Fig. 1A,

arrows) in TbHslV tagged with a hemagglutinin (HA) epitope at

the C-terminus. After expression in T. brucei, we immunoprecip-

itated each mutant protein (presumably in a complex with

TbHslU1+2), and assayed for peptidase activity using Cbz-Gly-

Gly-Leu-AMC as substrate. ATP-dependent peptidase activity was

detected with wild type TbHslV, but it was strongly impaired by

the mutations (Fig. 1B). It thus appears that these residues

contribute to the peptidase activity of TbHslV.

The subcellular localization of TbHslVU
The three TbHslVU subunits were predicted to be mitochon-

drial because of the targeting sequences predicted by the TargetP

program (http://www.cbs.dtu.dk/services/TargetP/). To deter-

mine if they were indeed mitochondrial, we tagged each of them

with a C-terminal HA epitope and expressed them in procyclic

trypanosomes by tetracycline (0.1 mg/ml) induction. Immunoflu-

orescence assay revealed a net-like distribution of the proteins that

was closely associated with the mitochondrion stained by

Mitotracker green (Fig. 1C). Deletion of the putative targeting

sequence from each of the three proteins resulted in a failure to

localize to the mitochondrion. Instead, they dispersed throughout

the cytoplasm (Fig. 1D). TbHslVU immunofluorescence was often

enriched in the kinetoplast region (see Fig. 1C and Figs. S3 and

S4B), raising the possibility that its function may be related to

kDNA.

Effects of RNAi knockdown of TbHslVU
To evaluate the function of TbHslVU, we used RNAi to knock

down expression of each of the three subunits in procyclic

trypanosomes. Knockdown of individual transcripts, confirmed by

Northern blots (Fig. 2A, insets), resulted in modest to strong

growth inhibition. Knockdown of TbHslV registered the highest

inhibitory effect (Fig. 2A). Simultaneous knockdown of TbHslU1

and TbHslU2 led to a larger growth defect than that from

individual knockdowns, though still not as severe as that from a

TbHslV knockdown (Fig. 2A). DAPI staining showed significant

changes in the size and shape of kinetoplasts in the RNAi cells

(Fig. 2C), suggesting that TbHslVU could be involved in

controlling replication and/or segregation of the kDNA network.

Author Summary

ATP-dependent protein-hydrolyzing enzyme complexes
are present in all living organisms, including the 26S
proteasome in eukaryotes and the HslVU complex in
bacteria. A simultaneous presence of both complexes in an
organism was originally deemed unlikely until some HslVU
homologs were found in certain ancient eukaryotes,
though their potential function in these organisms remains
unclear. We characterized an HslVU complex in Trypano-
soma brucei, a protozoan parasite that causes human
sleeping sickness in Africa. The complex is an active
enzyme localized to the mitochondria of the parasite and
closely associated with the mitochondrial DNA complex,
which consists of several thousand small circular DNAs and
a few dozen mitochondrial genomic DNAs. Depletion of
this HslVU from the parasite resulted in a continuous
synthesis of the small circular DNA, which led to aberrant
segregation and incessant growth of the mitochondrial
DNA complex to an enormous size that eventually blocks
cell division. This novel HslVU function, which has not been
observed in other organisms previously, could be a
potential target for anti-sleeping sickness chemotherapy.

Bacterial-Like HslVU Protease in a Eukaryote
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Analysis of DAPI-stained cells showed that knockdown of

TbHslVU for 7 days resulted primarily in either large kinetoplasts

(Fig. 2C) or kinetoplasts undergoing abnormal segregation

(Figs. 2C and 2D). Of the segregation defects, about 5–10% had

cells undergoing asymmetric division of the kinetoplast (Fig. 2C),

and others, constituting about 15–20% of the total, had the two

kinetoplasts joined by a thick thread of DAPI-stained material up

to ,5.6 mm in length (see Fig. 2C under abnormally segregating

kDNA). In contrast, the normally segregating kinetoplast in the

control cell has an estimated length of ,1.4 mm (see Fig. 2B). A

third form, representing ,1% of the total, has the nucleus and

basal body already divided and segregated into two sister cells, but

there appeared to be incomplete segregation of the kinetoplast.

The single kinetoplast was stretched out through its central region

and situated within an intercellular bridge at the posterior ends of

the two divided cells, which were separated by a distance of

,6.1 mm (Fig. 2D). Only a few cells were found with small

kinetoplasts, multiple (.2) kinetoplasts, or none at all (see

examples in Figs. 2C and 2D). Fig. 2E shows kinetics of

appearance of the aberrant forms of kinetoplast as a function of

time after RNAi. By the end of the experiment, the majority of the

cells had abnormal kinetoplasts, though 30 to 40% still appeared

normal.

RNAi of TbHslVU resulted in a selective increase of kDNA
minicircles and an increase of kDNA network size

As another approach to assess kinetoplast size, we used

dihydroethidium (DHE) that selectively stains the kDNA but not

the nuclear DNA (Fig. 3A, Right panel) (DHE is oxidized to

ethidium in the mitochondrion but not in the nucleus, thus

staining only kDNA [32]). By flow cytometry, the DHE-stained

TbHslV and TbHslU1+2 knockdown cells (7 days after RNAi) had

a much broader distribution of fluorescence with higher intensity

than that of the control cells (Fig. 3A, Left panel), indicating that

the average kDNA/cell increases following RNAi.

To determine whether the kDNA increase involved minicircles,

maxicircles, or both, we isolated total DNA after RNAi, digested the

time samples with restriction enzymes and, after gel electrophoresis,

probed a Southern blot for minicircles and maxicircles. We found

that minicircle DNA increased significantly (,15–20 fold) in

TbHslU1+2 RNAi cells after 7 days, whereas maxicircle DNA

increased only ,2.8 fold (Fig. 3B). Thus, RNAi of TbHslU has a

much greater effect in enhancing the level of minicircles.

This increase in minicircles (Fig. 3B) could be attributed to

either an enlarged kDNA network or the presence of multiple

closely-packed networks. To distinguish between the two possibil-

ities, kDNA networks were isolated from 7-day knockdown cells,

Figure 1. Enzymatic activity and intracellular localization of TbHslVU. (A). TbHslV contains the conserved threonine and lysine residues
(arrows) found essential for the activities of HslV in E. coli [6] and the b-subunits of 20S CP in T. brucei [54]. (B). The ATP-dependent peptidase activity
of TbHslV. Wild type and three TbHslV mutants T20A, T21A and K53A were expressed as HA-tagged proteins in T. brucei, immunoprecipitated and
assayed for hydrolysis of Cbz-Gly-Gly-Leu-AMC. (C). Cells stably expressing TbHslVU-HA were labeled for mitochondria with Mitotracker green dye
(green), immunostained with anti-HA mAb for HA-tagged proteins (red) and counterstained with DAPI for DNA (blue). Arrows indicate the focal
points of HA-staining corresponding to the positions of kinetoplasts (arrowheads). (D). Cells expressing TbHslVU-HA with the putative mitochondrial
targeting sequences deleted were stained with anti-HA antibody (red) and counterstained with DAPI. Bars: 2 mm.
doi:10.1371/journal.ppat.1000048.g001

Bacterial-Like HslVU Protease in a Eukaryote
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stained with DAPI, and their surface areas were measured.

Networks from control cells were small in size (Fig. 3C) with a peak

representing an average surface area of ,8 mm2 (Fig. 3D). In

contrast, networks from RNAi cells had a much broader size

distribution ranging from 2 to over 40 mm2 (Fig. 3D) with the

largest network exceeding ,215 mm2. These data prove that the

increased kinetoplast size and minicircle level are primarily due to

enlargement of the network and not to an increased number of

normal-sized networks.

This conclusion was confirmed by EM of isolated networks.

Fig. 4H shows a network from a control cell with a typical elliptical

shape and planar structure; it is about ,6 mm in length and

,3 mm in width, a standard size of kinetoplast after being

processed for electron microscopy. Those from cells after 7 days of

TbHslV RNAi were grossly enlarged, heterogeneous in size and

irregular in shape with estimated lengths ranging from ,10 mm to

,16 mm (Figs. 4A, 4B, 4E and 4F). Electron-dense fibers were

present in these enlarged networks. The one in Fig. 4F, apparently

Figure 2. RNAi knockdown of TbHslVU affects cell growth and kinetoplast morphology. (A). Cells were grown in the presence (+) of
tetracycline to induce RNAi for 7 days, and cell growth was monitored daily. Northern blots were performed to assess levels of TbHslV, TbHslU1 and
TbHslU2 mRNA before (2) and after (+) 2 days of RNAi (insets). (B–E). Un-induced control cells (B) and cells after RNAi induction for 7 days (C) were
labeled with YL1/2 antibody for basal bodies (BB, arrowheads) and counterstained with DAPI for nucleus (N) and kinetoplast (arrows). (D). Two
TbHslVU RNAi cells at the final stage of cell division were still connected by a thin thread of kinetoplast DNA (arrows) between two basal bodies
(arrowheads) in two well-separated cells. Bars: 2 mm. (E). Tabulation of RNAi cells with kinetoplasts in varying sizes and morphologies. Approximately
200 cells were counted at each time point and the data represent averages from three independent experiments.
doi:10.1371/journal.ppat.1000048.g002

Bacterial-Like HslVU Protease in a Eukaryote
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Figure 3. TbHslVU RNAi led to heterogeneously sized kinetoplasts. (A). Flow cytometry analysis of DHE stained cells. A total of 25,000 cells
were counted in each experiment (Left panel). DHE stains exclusively the kinetoplasts in control and RNAi cells (Right panel). (B). Southern analysis of
changes in minicircle and maxicircle DNA content during TbHslU RNAi. The kinetics of minicircle (open circle) and maxicircle (filled square)
accumulation are presented to the right of the Southern blots. (C). DAPI staining of the isolated kDNA networks. (D). Surface areas of the isolated
kDNA networks stained with DAPI, and measured with the NIH Image software.
doi:10.1371/journal.ppat.1000048.g003

Bacterial-Like HslVU Protease in a Eukaryote
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undergoing asymmetrical division, has, like the wild type, a cluster

of maxicircles located between the two lobes (Fig. 4G).

Effect of RNAi on free minicircle replication intermediates
To analyze the effect of TbHslVU RNAi on the free minicircle

species, we fractionated total DNA from control and TbHslU1+2

RNAi cells on an agarose gel in the presence of ethidium bromide

to resolve covalently-closed free minicircles from those containing

gaps [29]. Probing a Southern blot for minicircles revealed that the

levels of covalently-closed and gapped free minicircles remained

constant during the first 5 days of RNAi and then dramatically

increased by 5 to 6-fold by the end of the 9 day experiment (Fig. 5),

implying that silencing of TbHslU enhances the rate of minicircle

replication.

RNAi of TbHslVU alters the distribution of gapped circles
in kDNA

To investigate the organization of the replicating kinetoplast in

RNAi cells, we in situ labeled gapped minicircles (and maxicircles)

at 39-OH groups using terminal deoxynucleotidyl transferase

(TdT) and fluorescent deoxyuridine triphosphate [33,34]. In

control cells, we detected no TdT labeling of kDNA before

kinetoplast replication as all minicircles are covalently closed

(Fig. 6A, a). At the early stage of kinetoplast replication, there is

strong TdT labeling at the two antipodal sites enriched in

multiply-gapped free minicircles, not yet attached to the network

(Fig. 6A, b). At the late stage of replication, when many gapped

minicircles had attached to the network, TdT-label is still strong in

the antipodal sites, but the network, especially the polar regions,

are also labeled weakly because they contain minicircles which had

most but not all of their gaps repaired just prior to network

attachment (Fig. 6A, c). When the kinetoplast was undergoing

segregation, TdT label spread over the entire network (Fig. 6A, d)

until the completion of segregation when all the minicircles

became covalently closed and could no longer be labeled

(Fig. 6A, e–f).

We observed a completely different pattern of TdT-labeling in

TbHslV RNAi cells. As shown in Fig. 6B, k, the frequency of TdT-

labeling increased to ,40% of the cells after 7 days. About 95% of

the RNAi cells with enlarged or abnormally segregating

kinetoplasts were TdT-positive (Fig. 6B, k). As for the pattern of

TdT-lableing of TbHslV-deficient cells, there were 3 distinct

categories. First, ,26% of the kinetoplasts contained multiple

bright TdT-labeled dots, most of which appeared on the

periphery. They number up to 7 in abnormally segregating

kinetoplasts (Fig. 6B, g) and from 3 to 6 in enlarged kinetoplasts

(Fig. 6B, h–j). The second category, constituting ,6% of the cells,

had the TdT labeled dots but also had a diffuse background of

TdT labeling (Fig. 6C, l–m). The third category, with ,8% of the

cells, had large regions or all of the kinetoplast uniformly stained

(Fig. 6C, o–p), although TdT labeling appeared punctate in

Fig. 6C, o, as if the TdT dots are merging together. In contrast to

control cells, TdT labeling was still detectable in kinetoplasts after

segregation (Fig. 6B, h–j, Fig. 6C, p with Fig. 6A, e–f).

Figure 4. Electron microscopic examination of kDNA networks
from the control and TbHslV RNAi cells. Methods were described
by [38]. (A, B, E, F) kDNA networks from cells after 7 days of TbHslV
RNAi. (H) A kDNA network from an un-induced control cell. (C, D)
Enlargements of the network in A, corresponding to the areas outlined
in white framed boxes. (G) Enlargement of the network in F framed in a
white box. The arrow in G indicates a maxicircle. Scale bars for A, B, E, F,
and H, 2 mm and for C, D, and G, 0.5 mm.
doi:10.1371/journal.ppat.1000048.g004

Figure 5. Effect of TbHslU1+2 double RNAi on free minicircle
replication intermediates. (A). Total DNA was fractionated on an
agarose/ethidium gel and a Southern blot was probed for minicircles.
N/G, nicked/gapped minicircles; L, linearized minicircles; CC, covalently-
closed minicircles, *, nonspecific hybridization to nuclear DNA. The
nicked/gapped minicircles form a doublet with the lower component
possibly linearized minicircles. Since it is present prior to RNAi induction
(day 0), it is likely unrelated to RNAi. (B). Quantitation (by Phosphor-
imager) of bands from A. The nicked/gapped species includes both
components of the doublet.
doi:10.1371/journal.ppat.1000048.g005
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Localization of minicircles and maxicircles by FISH
We used fluorescence in situ hybridization (FISH) to investigate

the effect of TbHslV RNAi on distribution of minicircle and

maxicircle DNAs within the network [24]. In control cells, the late-

replicating network has the minicircles organized in a dumbbell

shape with maxicircles clustered in the middle (Fig. 7a; see also

[30,35–37]). In an enlarged kinetoplast from a TbHslV RNAi cell,

however, minicircle DNA was spread out over nearly the entire

DAPI-stained network, whereas maxicircle DNA remained at the

center (Fig. 7b). In abnormally segregating kinetoplasts, the

minicircles also filled most of the DAPI-stained network, whereas

the maxicircle was segregated into two symmetrical clusters

(Fig. 7c). Due to the excessive size of minicircle network, it turned

into a thread between the segregated maxicircles. Of 30

abnormally segregating kinetoplasts, 23 had segregated their

maxicircles, in striking contrast to those in the control cells, which

remained in the center (compare Figs. 7c and 7a). In the

remaining 7, maxicircles have not segregated and appeared like

the control (compare Figs. 7d and 7a). In the asymmetrically

dividing kinetoplast, minicircle DNA was also distributed uneven-

ly, constituting the basis of unevenly sized kinetoplasts, whereas

maxicircle DNA was always symmetrically segregated (Fig. 7e).

These results suggest that uneven segregation and enlargement of

the kinetoplasts can be attributed to the excessive synthesis and

uneven distribution of minicircles.

Expression of peptidase-dead TbHslV mutants led to a
partial dominant-negative effect

Expression of the peptidase-dead TbHslV mutants (TbHslV-

T20A, TbHslV-T21A and TbHslV-K53A) in T. brucei (see Fig. 1B)

also led to reduced cell growth (Fig. S4A), but the extent of

reduction was less significant than that by a TbHslV knockdown,

presumably due to the fact that wild type TbHslV was also

expressed in these cells (compare Fig. S4A with Fig. 2A). The

mutant proteins localized to the mitochondria with an apparent

enrichment in the kinetoplast like the wild type protein (Fig. S4B).

Cells expressing the mutant proteins showed also enlarged or

abnormally segregating kinetoplasts (Fig. S4B), similar to those

from knocking down TbHslV (Fig. 2C). Thus, expression of the

inactive TbHslV mutants generated a partial dominant-negative

effect on kinetoplast replication and segregation. A likely

formation of TbHslVU complexes of mixed compositions of wild

type and mutant proteins could result in the partially reduced

activity of TbHslVU.

Discussion

We report here the identification of an HslVU protease,

previously found only in prokaryotes, in a eukaryote. We

demonstrated that T. brucei expresses an enzymatically active

ATP-dependent HslVU homolog that localizes to the mitochon-

drion. More importantly, we discovered that the function of

TbHslVU is to control replication/segregation of kDNA, the

trypanosome mitochondrial genome.

RNAi of TbHslVU in its early stages had two major effects.

First, it caused an increase in cells with kinetoplasts undergoing

abnormal segregation. Second, it caused the appearance of giant

kinetoplasts (Fig. 2C). Kinetic studies (Fig. 2E) showed that RNAi

caused an initial increase in the abnormally segregating forms,

followed by a decline. Then there was an increase in cells with

enlarged kinetoplasts. The switchover from abnormally segregat-

Figure 6. In situ TdT-catalyzed Fluorescein-dUTP labeling in cells after 7 days of TbHslV RNAi. (A). The control cells (a–f). (B, C). The
TbHslV RNAi cells (g–p). Percentages of TdT-labeled cells in control and TbHslV RNAi cells are presented (k). Bars: 2 mm.
doi:10.1371/journal.ppat.1000048.g006
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ing forms to enlarged kinetoplasts occurred earlier by about 2 days

when RNAi targeted TbHslV than when it targeted TbHslU1+2,

presumably because RNAi is more effective in the former case (see

Fig. 2A). The phenotype of HslVU knockdowns, due to over-

replication of minicircles, has no mechanistic similarity to those of

two other recently described RNAi cell lines that are also defective

in segregation and that produce giant networks. In the case of

p166 RNAi, these phenotypes develop because this protein is a

component of the tripartite attachment complex [38]. Regarding

UMSBP, RNAi not only affects kDNA segregation but also

nuclear division and separation of the basal bodies [39].

It is possible that minicircle over-replication starts soon after

induction of RNAi, resulting in a gradual increase in the size of the

network. These large networks probably can segregate in the

initial phase of RNAi, but because they are somewhat oversized,

the segregation machinery may be unable to handle them

properly. Thus they either undergo asymmetric division or

produce some of the abnormal forms shown in Figs 2C and 2D.

The increase in cells undergoing abnormal kinetoplast segregation

(Fig. 2E) is probably because abnormal segregation may take

longer than usual and thus a larger fraction of the cells are

involved with this process at any given time. We speculate that as

kDNA over-replication continues, the segregation machinery is

blocked, and the network just continues to grow without

segregation. It would be theoretically possible that the cells with

large kinetoplasts could undergo cytokinesis, generating one cell

with a large kDNA and another without any kDNA at all, as is the

case following RNAi of p166 [38]. However, few cells without

kDNA appear after RNAi of TbHslVU (Fig. 2E). Therefore, as is

occurring following RNAi of TbHslV for 5 to 6 days (Fig. 2A), cell

division slows down and eventually stops.

There is considerable evidence to support this model. Measure-

ment of total minicircles reveals a ,20-fold increase during

TbHslVU RNAi (Fig. 3B), whereas maxicircles increase only 2.8-

fold. The minicircle increase is biphasic, with the increased rate

occurring at about the time when the number of abnormally

segregating forms is declining (Fig. 2E). It is possible that once the

network has become too large to segregate, it could spend a longer

portion of the cell cycle undergoing replication, thus accounting for

its accelerated growth in size. It is not surprising that the increased

level of minicircles is accompanied by a corresponding increase in

free minicircle replication intermediates (Fig. 5).

The mechanism by which minicircles over-replicate is not clear.

It is thought that the gaps in minicircles are markers to distinguish

those that have undergone replication from those that have not,

thus ensuring that they replicate only once per generation [18].

This highly organized system appears to have broken down in cells

in which TbHslVU has been knocked down. Since about 95% of

the oversized kinetoplasts are TdT-positive, normal gap-repair

mechanisms for network minicircles may have been overwhelmed

by the accelerated rate of replication. Those that have their gaps

repaired may be released from the network a second time,

allowing the network to increase in size more than two-fold during

one cell cycle.

The TdT labeling pattern of RNAi cells differ dramatically from

those observed in kDNAs of other trypanosomatids. In Crithidia

fasciculata, newly synthesized gapped minicircles are attached to the

network adjacent to the antipodal sites, but then, due to rotation of

the kinetoplast disk, they distribute around the network periphery;

thus TdT labeling resembles a peripheral ring [37,40]. In T. brucei,

minicircles also attach to the network adjacent to the antipodal

sites. However, instead of rotating, the disk oscillates, distributing

minicircles in a limited region along the network periphery.

Occasionally, there is a larger displacement of the kinetoplast, a

jump, that moves the minicircle attachment site to a new position

on the periphery where it resumes oscillation. Thus, due to a

combination of oscillations and jumps, the gapped minicircle

progeny accumulate at the two ends of the kinetoplast, accounting

for the polar TdT labeling [37].

There is a completely different pattern of gapped minicircle

distribution in TbHslV RNAi cells (Fig. 6). A predominant form

has 3 to 6 dots of TdT label, mostly on the network periphery.

This pattern implies that reattachment of gapped minicircles is not

a random process and that there is still some order maintained in

the replication of large networks. One possible explanation for the

dot pattern is that the number of antipodal sites has increased so

that each site is associated with a dot. During the kDNA

replication cycle in normal cells, two new antipodal sites must

assemble every generation [33]. In TbHslVU RNAi cells, the

standard pair of antipodal sites may be unable to handle the 6-fold

increase in free minicircle replication intermediates (Fig. 5),

thereby additional pairs of antipodal sites are formed for the task.

Another possibility is that the RNAi cells have only two antipodal

sites, as in the wild type, but when functioning on a large network,

Figure 7. In situ detection of minicircles and maxicircles in the
kinetoplast by FISH. Cells were fixed, probed for minicircles (red) or
maxicircles (green), and counterstained with DAPI. kDNA is indicated
with a K and nucleus with an N. Bar: 2 mm. FISH does not detect
covalently-closed DNA minicircles because they are non-denaturable
[24]. This is likely also true for maxicircles. Thus the FISH signal may not
be proportional to the total populations of minicircles and maxicircles.
Bars: 2 mm.
doi:10.1371/journal.ppat.1000048.g007
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jumps dominate over oscillations. After attachment of gapped

minicircles at one site, forming a dot of TdT-label, a jump moves it

to another site. Thus, two antipodal sites are able to create

multiple TdT-labeled dots. There is precedent for RNAi changing

the mechanism of minicircle attachment. RNAi of SSE1 changed

the TdT labeling pattern from being polar to a ring. This pattern

apparently was not due to rotation of the kDNA disk but to

increasing the amplitude of oscillation to nearly 180u [37].

Although we do not have enough information to speculate further

on the detailed mechanism of minicircle over-replication, we can

conjecture about the role of TbHslVU in controlling the process. In

principle, it could degrade some or all kDNA replication proteins

when replication was complete, thereby stopping kDNA synthesis.

Alternatively, TbHslVU could degrade only one protein, a master

positive regulator of minicircle replication. The regulator cannot be

degraded in TbHslVU RNAi cells, thus allowing kDNA replication

to continue out of control. Possible candidates for this master

regulator are the universal minicircle sequence binding protein

(UMSBP) [41] and p38 [42], both of which bind the minicircle

replication origin and could be involved in triggering their

replication.

Since the function of TbHslVU in regulating DNA replication in

T. brucei mitochondria has never been observed in bacteria, this

distinction raises the interesting question of how this function was

acquired. As discussed previously [43], it is thought that an ancestor

of T. brucei, like present-day Cryptobia helices, had a mitochondrion

that contained non-catenated plasmids, which encoded guide

RNAs and had other minicircle-like properties. The pathway of

kDNA evolution, leading to the network structure found in

trypanosomatid parasites, was probably driven by a need to

improve the accuracy of segregation of the multiple minicircle

sequences required to encode the guide RNA repertoire. But the

development of the network structure required a much more

complex replication scheme. One example of complexity is that

kDNA networks replicate during a discrete phase of the cell cycle,

in contrast to mitochondrial DNAs in higher eukaryotes that

replicate randomly throughout the cell cycle. One mechanism for

this aspect of kDNA replication control could have involved

recruitment of the HslVU homolog that had initially been acquired

from the bacterial endosymbiont that formed the mitochondrion.

In this regard, it will be very interesting to study the function of the

HslVU homologs in other non-kinetoplastid eukaryotes.

Materials and Methods

T. brucei Cell Culture and RNA interference
The procyclic form of T. brucei strain 29-13 [44] was cultivated

at 26uC in Cunningham’s medium supplemented with 10% fetal

bovine serum and 15 mg/ml G418 and 50 mg/ml hygromycin B.

The N-terminal coding regions of TbHslV, TbHslU1 and

TbHslU2 were each cloned into pZJM vector [45] for RNAi. The

TbHslU1 and TbHslU2 double knockdown construct was

prepared by ligating the two fragments of TbHslU1 and TbHslU2

into the pZJM vector. The RNAi constructs were linearized and

electroporated into T. brucei [46]. The transfectants were selected

under 2.5 mg/ml phleomycin and cloned [47]. RNAi was induced

by 1.0 mg/ml tetracycline to switch on the two opposing T7

promoters for dsRNA synthesis.

Northern, Western and Southern Blots
Total RNA was blotted onto nitrocellulose membrane.

Northern hybridization was carried out overnight at 42uC in

50% formamide, 66 SSC, 0.5% SDS, 56 Denhardt’s solution

with 0.1 mg/ml salmon sperm DNA.

T. brucei cells were lysed and the lysate fractionated with SDS-

PAGE, transferred onto PVDF membrane and immuno-blotted

with anti-Protein C mAb that recognizes the PTP epitope tagged

to TbHslV [48].

Total DNA was purified from trypanosome cells using the Cell

Culture DNA Mini kit (Qiagen). For measurements of minicircle

and maxicircle content, total DNA was digested with Xba I-Hind

III, fractionated on a 1% agarose gel and transferred onto the

nitrocellulose membrane. The membrane was then hybridized

using fragments of minicircle conserved region, maxicircle or

tubulin as probes [29].

To detect free minicircles, total DNA was fractionated on a 1%

agarose gel with 1.0 mg/ml ethidium bromide, transferred onto a

nitrocellulose membrane and hybridized with a minicircle probe.

Kinetoplast DNA Staining, Flow Cytometry and
Measurement of Network Surface area

Flow cytometry analysis of DHE-stained trypanosome cells was

carried out as previously described [32] using a FACScan flow

cytometer (Becton Dickinson Biosciences). Briefly, live cells were

incubated with 10 mg/ml DHE (Molecular Probes) for 10 min at

room temperature, washed once with PBS, and re-suspended in

1 ml PBS.

kDNA networks were isolated from control and RNAi cells [34],

and stained with DAPI. The NIH Image software was used to

measure the surface area of the planar structures in fluorescence

micrographs (500 networks measured at each time point).

Expression of Epitope-tagged Proteins
TbHslV, TbHslU1 and TbHslU2 were each tagged at the C-

terminus with a triple HA epitope and cloned into a pLew100

vector [44]. The constructs were transfected into 29-13 cells.

Stable transfectants were selected under 2.5 mg/ml phleomycin

and cloned. TbHslV was cloned into the pC-PTP-NEO vector

[48], which places the PTP-tagged TbHslV under the endogenous

promoter, and transfected into the 427 cells. Stable transfectants

were selected under 40 mg/ml G418.

Peptidase Assay
Peptide hydrolysis was assayed as previously described [49].

Wild type and mutant TbHslV proteins were each immunopre-

cipitated with anti-HA mAb and protein A Sepharose CL-4B

beads in the presence of 1 mM ATP, and incubated at 37uC for

30 min in the assay buffer containing 0.1 mM Cbz-Gly-Gly-Leu-

AMC (Bachem). At different times, the reaction (100 ml) was

terminated by adding 900 ml of 1% SDS, and the fluorescence of

the reaction products was measured.

Immunofluorescence Microscopy and Mitotracker
Staining of Mitochondria

Cells were fixed with 4% paraformaldehyde and incubated with

the primary antibodies at room temperature for 60 min, washed

three times and incubated with FITC-conjugated or Cy3-conjugated

secondary antibodies (Sigma-Aldrich) for another 60 min at room

temperature. After three more washings, cells were mounted in

Vectashield mount medium (Vector Labs, Inc.) containing 1.0 mg/

ml of DAPI and examined with a fluorescence microscope. Anti-HA

mAb was used for detecting the TbHslVU-HA fusion proteins. Rat

monoclonal antibody YL1/2 and FITC-conjugated anti-rat IgG

were used to label the basal bodies [50,51].

T. brucei cells were incubated with 5 mM MitotrackerTM green

FM (Molecular Probes) for 20 min at 26uC, washed with fresh

medium and incubated for another 20 min. The cells were then
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washed six more times with PBS, fixed and processed for

immunofluorescence microspcopy.

Fluorescent In Situ Hybridization (FISH)
The minicircle probe (73 nucleotides of the minicircle conserved

region) was synthesized by PCR using isolated kDNA networks as

template. The PCR DIG probe synthesis kit (Roche) was used to

incorporate DIG-modified dUTP. The maxicircle probe was

labeled by nick translation with biotin-modified dUTP (Roche)

using standard protocols [52]. Templates for nick translation were

plasmids pTKH128, pTKH38, and pTKHR34, a gift from Dr.

Kenneth Stuart, together representing ,80% of the maxicircle

sequence [53]. The three maxicircle probes were pooled for a final

concentration of 2.5 ng/ml in the hybridization experiments. FISH

was performed as previously described [24].

In Situ Labeling of kDNA Network with Fluorescein-dUTP
Catalyzed by TdT

The nicks and gaps in minicircles were fluorescently labeled in situ

with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP

nick end-labeling (TUNEL) using an in situ labeling kit (Roche) as

previously described [33]. Cells were fixed in 4% paraformaldehyde

and permeabilized in cold methanol. After re-hydration, cells were

pre-incubated with labeling solution containing CoCl2, nucleotides,

and Fluorescein-dUTP for 20 min at room temperature and then

incubated for 60 min with the labeling solution containing TdT.

The reaction was stopped with three washes in 26SSC, 0.96PBS

and two washes in PBS. Samples were stained with DAPI and

processed for fluorescence microscopy.

Supporting Information

Figure S1 TbHslV resembles E. coli HslV protease. (A).

Sequence alignment of TbHslV with HslV. Residues essential

for the activity of HslV are indicated by arrows; (B). The homology

model of TbHslV. Generation of the three-dimensional models

was performed using Swiss-Model (http://swissmodel.expasy.org/)

[31] according to the corresponding E. coli templates. The

images were then analyzed with Swiss-Pdb-Viewer 3.7 (http://

swissmodel.expasy.org/spdbv/). Protein Data Bank codes for the

templates of HslV were 1ned [4], le94 [55] and 1hqy [56].

Found at: doi:10.1371/journal.ppat.1000048.s001 (1.21 MB TIF)

Figure S2 Both TbHslU1 and TbHslU2 resemble E. coli HslU.

(A). Sequence alignment of TbHslU1, TbHslU2 with HslU. The

NTP-binding domain (P-loop) is outlined and the residues

important for HslU function are indicated by arrows; (B) The

homology models of TbHslU1 and TbHslU2. Each structure was

modeled on an E. coli HslU template. The three domains identified

in HslU are also present in the two T. brucei homologs. The protein

bank code for the template of HslU is 1do0 [4].

Found at: doi:10.1371/journal.ppat.1000048.s002 (3.28 MB TIF)

Figure S3 (A). Co-localization of TbHslVU proteins with the

kinetoplast. Cells were labeled with anti-HA antibody for

TbHslVU-HA (red), YL1/2 antibody for basal body (BB, green),

and DAPI for nuclear (N) and kinetoplast (K) DNA. Arrows point

to the bright spots of HA labeling, arrowheads point to the basal

bodies, and open arrowheads indicate the co-localization of

TbHslVU-HA protein with kinetoplasts. Bar: 2 mm. (B). Subcel-

lular localization of TbHslV during different stages of kinetoplast

cycle. Cells were labeled with anti-HA antibody for TbHslV-HA,

and DAPI for nuclear (N) and kinetoplast (K) DNA. Arrows point

to the bright spots of HA labeling, and open arrowheads indicate

co-localization of TbHslV-HA with kinetoplasts. Bar: 2 mm.

Found at: doi:10.1371/journal.ppat.1000048.s003 (4.63 MB TIF)

Figure S4 Effects of expressing HA-tagged wild type and mutant

TbHslV on cell growth (A) and kinetoplast segregation (B). Cells

were labeled with anti-HA antibody (green) and counterstained

with DAPI for the nucleus and kinetoplast. The arrows point to

the bright spots of HA staining, the solid arrowheads point to the

kinetoplasts and the open arrowheads indicate the HA spots

superimposed with kinetoplasts. Bar: 2 mm.

Found at: doi:10.1371/journal.ppat.1000048.s004 (0.93 MB TIF)
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