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Abstract

Kaposi’s sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been
elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and
others discovered that Kaposi’s sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular
endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation.
Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role
in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 39-
untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the
ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA
through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that
kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by
KSHV.

Citation: Yoo J, Kang J, Lee HN, Aguilar B, Kafka D, et al. (2010) Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular
Endothelial Cells by Kaposi’s Sarcoma Herpes Virus. PLoS Pathog 6(8): e1001046. doi:10.1371/journal.ppat.1001046

Editor: Donald E. Ganem, University of California San Francisco, United States of America

Received November 25, 2009; Accepted July 15, 2010; Published August 12, 2010

Copyright: � 2010 Yoo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by Margaret Early Medical Research Trust, American Cancer Society (RSG-08-194-01-MBC), the Concern Foundation, March of
Dimes Birth Defect Foundation, American Heart Association and NIH/NHLBI (1R01HD059762). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: young.hong@usc.edu

Introduction

Kaposi’s sarcoma (KS) is causally associated with human herpes

virus (HHV)-8, also called KS-associated herpes virus (KSHV) [1].

KSHV develops various-sized KS tumors that are structurally

accompanied by aberrant angiogenesis of slit-like vessels frequently

containing red blood cells and inflammatory cells [2,3]. KS tumor

cells characteristically appear spindle-shaped and are believed to

be derived from endothelial cells. KS tumor cells were initially

proposed to originate from blood vascular endothelial cell (BEC)

because of their expression of BEC-specific antigens [4,5,6,

7,8,9,10]. Later, however, KS tumor cells were also found to

express lymphatic endothelial cell (LEC)-specific markers such as

VEGF receptor-3 (VEGFR-3/flt4) and podoplanin [11,12,13,

14,15,16,17,18,19], arguing for their lymphatic origin. Recently,

we and others have demonstrated that KSHV reprograms the

transcriptional profile of BECs to resemble LECs by upregulation

of PROX1, the master regulator for the LEC-differentiation

[20,21,22,23].

PROX1, the mammalian homolog of the Drosophila neuronal

cell fate regulator Prospero, is a homeodomain transcription factor

essential for development of a variety of organs, including the

lymphatic system [24,25], the liver [26], the lens [27,28], the brain

[29,30,31,32], the ear [33,34,35,36] and the heart [37,38]. During

early lymphatic development, endothelial cells in the cardinal vein

exhibit a mixed phenotype of both BECs and LECs. A subset of

venous endothelial cells begins to express PROX1 and migrates

out to form the initial lymphatic vessels [24,25]. This lymphatic

differentiation process is found to be arrested in PROX1 knockout

mice, which fail to develop the lymphatic system [24,25]. We and

others found that ectopic expression of PROX1 induces lymphatic

reprogramming of post-developmental BECs [39,40]. Therefore,

PROX1 is thought to override the BEC phenotype by repressing

BEC-specific markers and to induce lymphatic phenotypes by

upregulating LEC-specific genes, functioning as the master control

regulator for LEC differentiation.

Controlling mRNA stability is an important post-transcriptional

regulatory process, which allows a rapid adjustment of the copy

number of mRNAs by involving a sequence element called AU-

rich element (ARE) [41,42,43,44]. AREs are usually 50–150

nucleotide long and locate in the 39-untranslated region (UTR) of

mRNAs with a short half life, serving as an mRNA-destabilizing

determinant by promoting degradation of mRNAs. Notably,

ARE-containing mRNAs are found to represent as much as ,8%

of total mRNAs encoded in human cells and are involved in many

essential biological processes such as signal transduction, cell
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growth and differentiation, immune responses, hematopoiesis and

apoptosis [43,44]. AREs are grouped into three classes based on

the number and distribution of the core AUUUA pentamers

[43,45,46]. Class I ARE genes contain several dispersed copies of

the AUUUA motif within the AU-rich region and include c-myc,

c-fos, cyclins A, B1 and D1 and interferon-c. Class II ARE genes

have at least 2 overlapping UUAUUUA(U/A)(U/A) motifs and

include tumor necrosis factor (TNF)-a, interleukin (IL)-1b, IL-2,

IL-3, granulocyte/macrophage colony-stimulating factor (GM-

CSF), Cox-2 and VEGF. Finally, less characterized class III AREs

do not contain the canonical AUUUA motif and are found in

genes such as c-jun, GLUT, p53 and hsp70. Interestingly, while

many cytokine-encoding mRNAs harbor the class II AREs,

mRNAs encoding cell cycle regulators and transcription factors

contain the class I and occasionally class III AREs [43]. Several

ARE-binding proteins have been reported to either destabilize or

stabilize ARE-containing mRNAs [43,47]. Notably, HuR, embry-

onic lethal abnormal vision (ELAV)-like RNA-binding protein,

is one of the best characterized ARE-binding proteins and

stabilizes labile ARE-containing mRNAs such as c-fos, MyoD,

p21, cyclins A, B1 and D1, TNF-a, GM-CSF and VEGF [42,43,

48,49,50,51,52,53,54]. Predominantly present in the nuclei,

HuR shuttles between the nucleus and cytoplasm in response to

various internal and external stimuli, and its mRNA-stabilizing

function has been attributed to its cytoplasmic localization

[46,50,52,55,56].

Importantly, the KSHV latent gene kaposin-B has been shown

to activate the p38/MK2 pathway and to stabilize various

cytokine mRNA containing AREs [57,58]. Kaposin-B can directly

bind to MK2 and promote its kinase activity through its DR2

repeats and, in response to lipopolysaccharide (LPS), kaposin-B

and MK2 were shown to be exported to cytoplasm [57,58].

Kaposin-B and MK2/p38 proteins have been shown to enhance

the stability of ARE-containing mRNAs such as GM-CSF and IL-

6, leading to an enhanced production of cytokines and signaling

proteins [57,58]. However, the molecular mechanism underlying

the kaposin-B/MK2-mediated stabilization of the ARE-containing

mRNA remains to be better defined.

While study of endothelial cell fate reprogramming by KSHV

has provided important insights into KS oncogenesis, the

molecular mechanism underlying KSHV-mediated PROX1-

upregulation has only begun to be elucidated. An interesting

recent report has shown that Akt activation through gp130

receptor may play an important role in KSHV-induced lymphatic

reprogramming [59]. Here, we found that PROX1 harbors an

unusually long 39-UTR that contains the canonical ARE, which

functions as a PROX1 mRNA-destabilizing determinant. More-

over, we discovered that HuR protein physically binds and

stabilizes PROX1 mRNA and that cytoplasmic localization of

HuR protein is activated by kaposin-B. Together, our data

demonstrate that kaposin-B plays a key role in KSHV-mediated

PROX1 upregulation.

Results

KSHV infection is required for PROX1 upregulation in
vascular endothelial cells

We and others have previously demonstrated that KSHV induces

lymphatic reprogramming of vascular endothelial cells by upregu-

lating PROX1 and that this PROX1-upregulation occurs in

KSHV-infected cells in vitro [20,21,22,23]. In this study, we further

investigated the correlation between KSHV infection and PROX1

upregulation both in vitro and in vivo. For the in vitro study, we infected

cultured human dermal BECs with KSHV for 7 days and

performed immunofluorescent studies for PROX1 and LANA/

ORF73, a KSHV viral protein that marks a latent KSHV-infection.

We found that PROX1 was upregulated predominantly in LANA-

positive, KSHV-infected BECs, but not in LANA-negative,

uninfected neighboring BECs (Figure 1A-D). Our study revealed

that ,78% of the cells (n = 390) was double negative for PROX1

and LANA, and ,18% double positive (Figure 1E), strongly

correlating PROX1 upregulation with de novo KSHV-infection.

We next stained KS biopsy sections with anti-PROX1 and

LANA antibodies to analyze co-expression of PROX1 and LANA

in KS tumor cells (Figure 1F-I). We found that the majority of cells

in KS tumors were infected with KSHV based on the

characteristic LANA-speckles in KSHV-infected nuclei in vivo

(Figure 1G) and that most of the LANA-positive, KSHV-infected

cells upregulated PROX1. Out of 160 cells, ,81% of the cells was

double positive for PROX1 and LANA, ,12% double negative,

and only 3,4% cells single-positive (Figure 1J), a finding

consistent with the in vitro data. Together, our studies demonstrate

that PROX1 upregulation occurs only in KSHV-infected cells.

The KSHV latent gene kaposin-B induces PROX1-
upregulation in LECs

We next investigated how KSHV induces PROX1-upregulation

in endothelial cells. Since KSHV upregulates PROX1 in the latent

stage, when only a few viral genes are known to be expressed, we

hypothesized that one or more KSHV latent genes may be

responsible for the activation of PROX1 expression and thus

tested their ability to upregulate PROX1 in various endothelial

cell backgrounds such as LECs, BECs and human umbilical

venous endothelial cells (HUVECs). Real time RT-PCR (qRT-

PCR) analyses revealed that ectopic expression of the KSHV

latent gene kaposin-B in LECs significantly upregulated PROX1

(6,7-fold) (Figure 2A). In comparison, kaposin-B did not no-

tably induce PROX1 expression in either BECs or HUVECs

(Figure 2A). From the same set of experiment, we investigated the

effect of kaposin-B in the regulation of other lymphatic genes

(podoplanin, VEGFR-3, LYVE-1, FGFR-3, SLC and p57) in

LECs, BECs and HUVECs (Figure S1). Interestingly, we found

that although kaposin-B alone did not seem to induce the

lymphatic reprogramming as extensively as KSHV [20,21,

22,23], kaposin-B alone was able to partially modulate the

Author Summary

Kaposi’s sarcoma (KS) is the most common cancer in HIV-
positive patients and KS-associated herpes virus (KSHV)
was identified as its causing agent. We and others have
discovered that when the virus infects endothelial cells of
blood vessels, KSHV reprograms the cell type resembling
endothelial cells in lymphatic vessels. Although endothelial
cells of the blood vascular system and of the lymphatic
system share functional similarities, the cell type-repro-
gramming does not occur under a normal physiological
condition. Therefore, cell-fate reprogramming by the
cancer-causing virus KSHV provides an important insight
into the molecular mechanism for viral pathogenesis. Our
current study investigates the molecular mechanism
underlying the KSHV-mediated cell fate reprogramming.
We identified that a KSHV latent gene kaposin-B plays an
important role in KSHV-mediated regulation of PROX1 to
promote PROX1 mRNA stability. This study will provide a
better understanding on the tumorigenesis and patho-
genesis of KS with a potential implication toward new KS
therapy.

Kaposin-B-induced PROX1 mRNA Stabilization
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expression of other LEC-signature genes in KSHV-infected

endothelial cells. We next overexpressed kaposin-B in LECs and

performed the semi-quantitative RT-PCR analyses against

PROX1 and IL-6, a known kaposin-B target gene [57]. Like IL-

6, PROX1 was also significantly upregulated by kaposin-B in

LECs (Figure 2B). In a separate experiment, a Flag-tagged

kaposin-B was transfected into LECs and the steady-state level of

PROX1 protein was determined by western blot analyses

(Figure 2C). Together, these data demonstrate that the KSHV

viral gene kaposin-B can upregulate PROX1 expression in LECs,

but not in BECs and HUVECs where the lymphatic-specific

PROX1 is not expressed.

PROX1 mRNA has an unusually long 39 untranslated
region

We then set out to investigate the molecular mechanism

underlying kaposin-B-induced PROX1 upregulation. Kaposin-B

has been demonstrated to upregulate various cytokine genes by

stabilizing their mRNAs through AREs located in their 39-UTRs

[57]. We thus examined the mRNA structure of the PROX1 gene.

Although the open reading frame (ORF) of human or mouse

PROX1 gene is about 2.2 kb long and encodes a 737-amino acid-

long protein, reported northern blot analyses revealed that

PROX1 transcript was as large as 8-kb in various tissues

[60,61,62], suggesting that the PROX1 transcript has a long

UTR at the 59- and/or 39 ends. In fact, we found that an 8-kb

PROX1 transcript harboring an extended 39-UTR has been

annotated in a public genome database (ENST00000366958).

However, the corresponding Prox1 transcript from mouse has not

been annotated in the same public database. To further confirm

the presence of PROX1 transcript with an extended 39-UTR in

both human and mouse, we aligned 7-kb downstream genomic

sequences of human or mouse PROX1 against human or mouse

expressed sequence tag (EST) databases and found that numerous

EST sequences were mapped to the downstream of both human

PROX1 and mouse Prox1 genes (Figure 3A&B), indicating that

this region is indeed transcribed as a part of the fifth exon of

PROX1 mRNA in both species. We then investigated sequence

conservation of this 39-UTR among Prox1 genes of other species.

Analyses using a genome browser revealed a high DNA sequence

homology in this extended 39-UTR, especially in the second half,

of the Prox1 genes from primates, placental mammals or

vertebrates covering 48-speices [63] (Figure 3C).

Since PROX1 was expressed in multiple organs such as the

brain, liver, muscle and heart [60,61,62] and most of EST

fragments were derived from cDNA libraries of these organs, we

asked whether LECs express PROX1 mRNA with a long 39-UTR

and thus performed northern blot analyses by using three different

39-UTR probes and a PROX1 open reading frame (ORF) probe

against RNAs isolated from human LECs. Indeed, both the 39-

UTR and the ORF probes detected a single ,8-kb band

(Figure 3D), indicating that LECs express a ,8-kb long PROX1

mRNA. In addition, we performed the 39-rapid amplification of

cDNA end (RACE) analyses and found that a majority of human

LEC-PROX1 mRNA terminates at 5,414-bp downstream from

the termination codon of PROX1 (Figure 3E). We identified a

classical poly-A signal sequence (AATAAA) at ,20-bp upstream

of the termination site. Together, our data demonstrate that

Figure 1. PROX1 is upregulated only in KSHV-infected endothelial cells in vitro and in vivo. (A-E) Cultured human dermal BECs were
infected with KSHV for 7 days and subjected to immunofluorescent analyses against PROX1 (A), KSHV LANA/ORF73 (B) and nuclei (C). Merged image
(D) shows that PROX1 expression is mainly detected in LANA-positive, KSHV-infected cells (arrows), but not in neighboring LANA-negative,
uninfected cells (arrowhead). Bar, 100 mm. (E) Percent expression of PROX1 and/or LANA was analyzed in total 390 cells infected or not with KSHV.
(F-I) Human cutaneous KS tumor section was immuno-stained against PROX1 (F), LANA (G) and nuclei (H). Merged image (I) shows that PROX1
expression is mainly detected in LANA-positive (speckled nuclear staining), KSHV-infected cells in KS tumor (arrows), but not in a neighboring LANA-
negative uninfected cell (arrowhead). Percent expression of PROX1 and/or LANA was analyzed for total 160 nuclei in KS tumors and charted to
evaluate the extent of co-expression of the two genes (J). Bar, 25 mm.
doi:10.1371/journal.ppat.1001046.g001
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PROX1 mRNA expressed in primary human LECs harbors a 5.4-

kb-long 39-UTR and that this unusually long 39-UTR is conserved

among the Prox1 genes of many vertebrate species.

A functional AU-rich element is present in the PROX1
39-UTR and promotes PROX1 mRNA turnover

Because kaposin-B stabilizes cytokine mRNAs through AREs in

their 39-UTR [57], we asked whether PROX1 mRNA contains a

canonical ARE in its unusually long 39-UTR. We performed

bioinformatic analyses against the conserved vertebrate Prox1 39-

UTRs and found an AU-rich region approximately 400-bp

upstream of the mRNA termination site (Figure 3F). Notably,

this region contains three copies of the AUUUA core pentamer (its

location marked in Figure 3A) that can be classified as a class I

ARE [43,44,45,46]. Moreover, these three tandem copies of core

pentamer were also found to be conserved in Prox1 mRNA of dog,

mouse, human, chicken and zebrafish (Figure 3F).

We next investigated whether the newly discovered PROX1-ARE

can serve as an mRNA instability determinant by utilizing the

classical b-globin mRNA stability reporter system (pTet-BBB)

[64,65]. In this system, the tetracycline (Tet)-controlled promoter

directs the inducible expression of the rabbit b-globin gene and a

specific DNA sequence element such as a putative ARE can be

cloned into the 39-UTR of the b-globin gene in order to evaluate its

ability to destabilize otherwise stable b-globin mRNA [64,65]. We

cloned a 40-bp fragment containing the PROX1 AUUUA core

pentamer in pTet-BBB (Figure 3G) and evaluated its effect on the

stability of b-globin mRNA in NIH3T3/Tet-Off cells by northern

blotting analyses. Indeed, the three AUUUA motifs from the

PROX1 39-UTR significantly destabilized the stable b-globin mRNA

as potently as the c-fos ARE that was used as a positive control

(Figure 3H), demonstrating that the 40-bp PROX1-ARE is sufficient

to function as an instability determinant for PROX1 mRNA.

Quantification of the northern blot bands revealed that while the

unmodified b-globin mRNA shows a long half-life ( .210-minutes),

the PROX1-ARE, like the c-fos-ARE, shortened the half-life of b-

globin mRNA to ,60-minutes (Figure 3I). Together, our data

demonstrate that PROX1 mRNA contains an ARE functioning as

an mRNA instability determinant in its unusually long 39-UTR and

that this newly identified PROX1-ARE may play an important role

in the post-transcriptional regulation of PROX1 expression.

HuR physically binds to PROX1-ARE and upregulates
PROX1 expression

We next investigated the molecular mechanism underlying the

regulation of PROX1 mRNA stability through its ARE and

searched for ARE-binding factors that may interact with the

PROX1-ARE. The nuclear protein HuR, also known as

ELAVL1, has been shown to be one of the best characterized

ARE-binding proteins that bind various cytokine/chemokine

mRNAs to increase their stability [66]. Therefore, we evaluated

the possibility of HuR binding to the PROX1-ARE and

promoting the mRNA stability. Toward this aim, a HuR-

expressing vector was transfected into primary LECs and PROX1

expression was determined. Indeed, our semi-quantitative RT-

PCR analyses showed that HuR overexpression resulted in

upregulation of PROX1 as well as a known HuR-target gene

VEGF [49,67] (Figure 4A). This HuR-mediated PROX1 up-

regulation was also confirmed by using quantitative qRT-PCR

(Figure 4B) and western blot (Figure 4C) analyses.

We next asked whether HuR protein can physically interact

with the AU-rich region of the PROX1 39-UTR and performed

co-immunoprecipitation (co-IP) for a protein-RNA complex of

endogenous HuR protein and PROX1 mRNA from primary

LECs by using an anti-HuR antibody as previously described [68].

Precipitated protein-RNA complex was de-crosslinked, reverse-

transcribed and PCR-amplified by using two neighboring sets of

PROX1 PCR primers; Probe-1 and Probe-2. While Probe-1

primer pair detects the PROX1-ARE region, Probe-2 primer pair,

42-bp away from Probe-1, binds at 25-bp downstream from the

end of PROX1 mRNA (Figure 4D). Importantly, whereas RT-

PCR using Probe-1 amplified a corresponding product, RT-PCR

using Probe-2 did not yield any product, indicating that the

endogenous HuR protein is physically associated with the

PROX1-ARE region and also that the Probe-1 product was not

due to possible genomic DNA contamination in our co-immun-

oprecipitation assays (Figure 4D). As controls, we could detect the

association of HuR protein with VEGF and UBE2N mRNAs

[49,68], but not with GAPDH mRNA (Figure 4D).

We next performed a RNA electrophoresis mobility-shift assay

(RNA EMSA) to corroborate the molecular interaction between

HuR protein and PROX1-ARE mRNA. We in vitro transcribed a

RNA EMSA probe spanning the PROX1-ARE region and then

investigated if this RNA probe can make a stable RNA-protein

complex with recombinant HuR protein and/or another known

ARE-binding protein tristetraprolin (TTP) [47]. Indeed, while GST

alone or GST-TTP protein did not make any detectable RNA-

protein complex, GST-HuR recombinant protein formed a stable

complex with the PROX1-ARE RNA probe (Figure 4 E, lanes 1–4).

It is interesting to find that HuR, but not TTP, binds to PROX1-

Figure 2. Kaposin-B upregulates PROX1 in primary lymphatic
endothelial cells. (A) Regulation of PROX1 expression by kaposin-B in
LECs, BECs and HUVECs. A control (CTR) or a kaposin B-expressing
vector (kapB) was transfected into LECs, BECs and HUVECs for 16 hours
and PROX1 mRNA level was determined and normalized against the
internal control b-actin by using qRT-PCR analyses. Expression of
kaposin-B and b-actin was also shown by semi-quantitative conven-
tional RT-PCR. (B) A control (CTR) or a Flag-tagged kaposin-B (FLAG-
kapB) vector was transfected into LECs for 48-hours and the expression
of PROX1, IL6, kaposin-B and b-actin was determined by semi-
quantitative RT-PCR analyses. (C) In a separate experiment, a control
(CTR) or a Flag-tagged kaposin-B (FLAG-kapB) vector was transfected
into LECs for 48-hours and protein expression of PROX1 and Flag-
kaposin-B was determined by western analyses by using anti-PROX1,
FLAG and b-actin antibodies.
doi:10.1371/journal.ppat.1001046.g002

Kaposin-B-induced PROX1 mRNA Stabilization
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ARE RNA probe, although both are known to have an affinity to the

ARE motif [69]. Moreover, the complex formation between

PROX1-ARE RNA probe and GST-HuR protein could be

inhibited by an unlabeled specific competitor (PROX1-ARE RNA

probe), but not by an unlabeled non-specific competitor (yeast total

RNA), indicating a specific molecular interaction between HuR

protein and PROX1-ARE region (Figure 4E, lanes 5,14). Taken

together, our data demonstrate that HuR protein physically interacts

with PROX1 mRNA through the AU-rich region.

Kaposin-B promotes PROX1 mRNA stability through HuR
Our findings of kaposin-B-induced PROX1 upregulation and

HuR-binding to PROX1-ARE directed us to ask whether HuR

and/or kaposin-B upregulate PROX1 by enhancing PROX1

mRNA stability. Toward this question, we overexpressed HuR

or kaposin-B in primary LECs and quantified the steady-state

level of PROX1 mRNA by qRT-PCR. Indeed, the ectopic

expression of HuR or kaposin-B delayed the turnover of

PROX1 mRNA in LECs and increased the half-life of PROX1

mRNA from ,60 minutes in the control LECs to ,180 minutes

in LECs overexpressing HuR or kaposin-B (Figure 5A). We

then asked whether HuR is required for kaposin-B-mediated

PROX1 upregulation by knockdown of HuR in kaposin-B-

expressing LECs. We found that HuR-knockdown significantly

inhibited kaposin-B-mediated upregulation of PROX1 mRNA

and protein determined by qRT-PCR and western analyses,

respectively (Figure 5B&C). Moreover, we confirmed that this

reduction in kaposin-B-mediated PROX1 upregulation is due to

a decrease in PROX1 mRNA stability upon knockdown of HuR

(Figure 5D). Together, our data demonstrate that kaposin-B

upregulates PROX1 by promoting its mRNA stability through

HuR.

Figure 3. PROX1 mRNA has an unusually long 39-untranslated region with a functional ARE that decreases its mRNA stability. (A)
Alignment of 7-kb downstream genomic sequences of human PROX1 gene to human EST database identified numerous EST fragments (red lines)
that are mapped to the regions. Locations of the stop-codon-containing exon 5, ARE and a poly-A signal sequence (pA) are marked. (B)
Corresponding mouse Prox1 genomic sequence was also aligned against mouse EST database and the mapped ESTs are shown in read. Locations of
the exon 5, ARE and a poly-A signal sequence (pA) are marked. (C) Cross-species sequence conservation analyses of the Prox1 39-UTR from diverse
primates, mammalian and vertebrates by using the University of California Santa Cruz (UCSC) Genome Brower revealed a high DNA sequence
homology among various Prox1 39-UTR. Thick black bar represents the conserved 39-UTR of human PROX1. (D) Northern blot analyses showing
human LEC PROX1 with an extended 39-UTR. While lanes 1 and 2 were hybridized with a PROX1 open reading frame (ORF) probe, lanes 3, 4 and 5
respectively with the 39-UTR probes P1, P2 and P3, of which locations are shown in panel A. (E) A 39-RACE analysis for total RNA from primary human
LECs demonstrates that human PROX1 mRNA terminates at 5,414-bp downstream from its stop codon. A putative poly-A signal sequence is marked
with an asterisk. (F) Three highly conserved copies of the canonical AUUUA pentamer flanked by additional W (A or U) are present in the 39-UTRs of
dog, mouse, human, chicken and zebrafish Prox1 mRNAs. Asterisks mark the conserved bases. (G) A schematic diagram of the pTet-BBB vector
constructs containing PROX1-ARE or c-fos-ARE in its 39-UTR. Tet-promo, tetracycline-inducible promoter. (H) Northern blot analyses showing time-
dependent decay of the b-globin mRNA containing no ARE (a negative control), PROX1-ARE or c-fos-ARE (a positive control) after tetracycline
(doxycycline)-mediated shutdown of the transcription. b-globin DNA fragment was used as the probe and GAPDH mRNA was also shown as an
internal loading control. (I) Intensity of the b-globin mRNA bands in panel H was quantified and normalized against GAPDH and the relative intensity
was charted to show the stability of the b-globin mRNA with or without PROX1-ARE or c-fos-ARE.
doi:10.1371/journal.ppat.1001046.g003

Kaposin-B-induced PROX1 mRNA Stabilization
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Kaposin-B stimulates cytoplasmic localization of HuR
protein

While HuR protein mainly resides in the nucleus, various cell

stress signals activate cytoplasmic accumulation of HuR [52]. We

next asked if kaposin-B activates localization of HuR protein to the

cytoplasm where mRNA stability is regulated. Indeed, our

immunofluorescent analyses revealed that ectopic upregulation

of kaposin-B stimulated cytoplasmic mobilization of HuR protein

(Figure 6A). Moreover, we harvested the cytoplasmic and nuclear

fractions from control vs. kaposin-B-overexpressing LECs to

quantify the amount of mobilized HuR by kaposin-B. Consistent

with the immunostaining data, a significant amount of HuR

protein was found to be exported to the cytoplasm (Figure 6B).

Therefore, our data demonstrate that cytoplasmic accumulation of

HuR protein is activated by kaposin-B, which may play an

important role in PROX1 upregulation.

The p38/MK2 kinase pathway is required for cytoplasmic
accumulation of HuR protein and PROX1 mRNA
stabilization

Kaposin-B has been shown to activate the p38/MK2 pathway

and stabilize various cytokine mRNAs [57,58]. We further

examined this previous observation in LECs and found that the

ectopic expression of kaposin-B activated phosphorylation of p38

Figure 4. HuR upregulates PROX1-expression through physical interaction with the 39-UTR of PROX1 mRNA. (A) A control (CTR) or a
HuR-expression vector (MYC-HuR) was transfected into primary human LECs for 16 hours and the steady-state level of PROX1, VEGF, HuR and b-actin
mRNAs was measured by semi-quantitative RT-PCR analyses. (B, C) In a separate experiment, a control (CTR) or a HuR-expression vector (MYC-HuR)
was transfected into LECs for 16 hours and the expression of PROX1 was determined by qRT-PCR (B) and western blot (C) analyses. Expression of b-
actin was used as the internal control for both assays. (D) Endogenous HuR protein forms a stable complex with PROX1 mRNA in LECs. HuR protein-
PROX1 mRNA complex was immunoprecipitated from LEC-whole cell lysate (input) by a normal IgG (IgG) or anti-HuR antibody (aHuR) and resulting
precipitates were subjected to RT-PCR analyses for PROX1, VEGF, UBE2N and GAPDH. Two neighboring primer pairs were used for PROX1 as shown in
the upper panel: Probe-1 primer pair detects PROX1-ARE region (product size, 480-bp) and Probe-2, located at 25-bp downstream of PROX1
transcription termination site, serves as a negative control. VEGF and UBE2N mRNA are positive controls [49,68] and GAPDH is a negative control for
HuR-binding. (E) RNA-EMSA showing a complex formation between PROX1-ARE RNA and recombinant HuR protein. A PROX1-ARE RNA probe was in
vitro transcribed and incubated with buffer alone (lane1), GST (lane2), GST-TTP (lane3), or GST-HuR (lane4) recombinant proteins and the RNA-protein
complex formation was detected by polyacrylamide gel electrophoresis. Formation of PROX1-ARE RNA/HuR protein complex was inhibited by an
increasing amount of unlabeled PROX1-ARE RNA probe (competitor 1) (lanes 5,10), but not by unlabeled non-specific yeast total RNA (competitor 2)
(lanes 11,14).
doi:10.1371/journal.ppat.1001046.g004
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and MK2 proteins (Figure 7A). We then investigated whether

activation of the p38/MK2 pathway is required for kaposin-B-

mediated PROX1 upregulation. Notably, previous studies have

shown that p38 MAPK promotes cytoplasmic accumulation of

HuR in different cell types [70,71,72]. Therefore, we asked if

activated MK2 can promote cytoplasmic localization of HuR

protein in LECs and transfected LECs with vectors expressing a

wild type, constitutively active (EE) or dominant negative (K76R)

form of MK2 protein [73]. We found that whereas the

constitutively active (EE) MK2 protein stimulated cytoplasmic

accumulation of HuR, wild type or dominant negative MK2

protein did not (Figure 7B). Moreover, the expression of PROX1

was upregulated by constitutively active (EE) MK2 protein, but

not by wild type or dominant negative MK2 protein, in LECs

determined by western analyses (Figure 7C,D). Importantly, this

upregulation of PROX1 by MK2 (EE) protein was abrogated by

siRNA-mediated knockdown of HuR (Figure 7C,D), indicating

that HuR is required for the kaposin-B/p38/MK2 pathway-

mediated PROX1 upregulation. We also confirmed these findings

by using quantitative qRT-PCR measuring PROX1 mRNA level

(Figure 7E). Interestingly, we found that HuR knockdown slightly

decreases PROX1 expression compared to control siRNA

(Figure 7D,E). We think that this is because HuR protein is

present at a basal level in the cytoplasm of LECs (Figure 6B) and

may stabilize PROX1 mRNA under the normal condition and

thus knockdown of HuR resulted in decrease of PROX1

expression. This speculation is supported by our endogenous

HuR co-immunoprecipitation data (Figure 4D) demonstrating a

stable complex formation between HuR protein and PROX1

mRNA in normal primary LECs.

We next asked whether MK2 (EE) protein-mediated PROX1

upregulation is due to PROX1 mRNA stabilization and thus

studied the regulation of the PROX1 mRNA half-life by MK2

(EE) protein. Indeed, MK2 (EE) promoted PROX1 mRNA

stability by increasing mRNA half-life by more than 60 minutes in

LECs (Figure 7F). Moreover, we found that this increase in

PROX1 stability by MK2 (EE) could be abrogated by knockdown

of HuR (Figure 7G). Taken together, our data demonstrate that

Figure 5. Kaposin-B upregulates PROX1 by promoting its mRNA stability through HuR. (A) PROX1 mRNA stability is increased by HuR and
kaposin-B. LECs were transfected with a control (CTR), a HuR-expressing (HuR) or a kaposin B-expressing (kapB) vector for 16-hours and then treated
with Actinomycin D (ActD) (2 mg/ml) for the indicated length of time. Total RNA was isolated and analyzed for PROX1 mRNA level by qRT-PCR
analyses. (B,C) HuR is required for the kaposin-B-mediated PROX1 upregulation in LECs. LECs were transfected with a control (CTR) or a FLAG-tagged
kaposin B-expressing (kapB) vector. After 16 hours, the control or kaposin-B-expressing cells were divided into two groups and then transfected again
with siRNA against luciferase (siCTR) or HuR (siHuR). Total RNA and whole cell lysate was harvested from each group after 16-hours and subjected to
qRT-PCR (B) or western (C) analyses. (D) Kaposin-B-mediated increase of PROX1 stability was abrogated by inhibition of HuR expression. LECs
overexpressing kaposin-B were transfected with luciferase siRNA (kapB+siCTR) or HuR siRNA (kapB+siHuR) for 16-hours and then treated with
Actinomycin D (ActD) (2 mg/ml). Total RNA was isolated at the indicated time points and analyzed for PROX1 mRNA level by qRT-PCR analyses. Similar
results were obtained from three independent experiments and the error bars present standard deviations (SD) in a representative experiment.
Asterisks in panels A &D present p-value less than 0.05.
doi:10.1371/journal.ppat.1001046.g005
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activation of the p38/MK2 pathway results in cytoplasmic

accumulation of HuR protein and PROX1 upregulation through

stabilization of PROX1 mRNA.

The role of HuR in KSHV-mediated PROX1 upregulation
Our data above demonstrate the essential contribution of HuR

in PROX1 upregulation by kaposin-B. We next asked whether

HuR plays an important role in KSHV-mediated PROX1

upregulation in primary human BECs and HUVECs. We first

confirmed the KSHV-mediated PROX1 mRNA upregulation in

BECs and HUVECs (Figure 8A) and also PROX1 protein

expression by KSHV in HUVECs (Figure 8B). We next

investigated the cytoplasmic accumulation of HuR protein in

KSHV-infected cells and found that KSHV infection resulted in a

significant cytoplasmic localization of HuR protein in HUVECs

(Figure 8C). Consistently, we also observed HuR cytoplasmic

localization in KSHV-infected BECs (data now shown). We then

asked whether HuR plays a role in the KSHV-mediated PROX1

upregulation by knockdown of HuR by siRNA in KSHV-infected

BECs and HUVECs. Importantly, knockdown of HuR signifi-

cantly decreased the half-life of PROX1 mRNA in KSHV-

infected BECs and HUVECs (Figure 8D,E). In comparison, we

were not able to measure the half-life of PROX1 mRNA in

uninfected BECs or HUVECs due to their low/absent expression

of PROX1. Taken together, our data demonstrate that KSHV

infection stimulates cytoplasmic localization of HuR protein and

that HuR plays an important role in KSHV-mediated PROX1

upregulation.

Working model for KSHV/kaposin-induced PROX1
expression and lymphatic reprogramming

Based on our data presented here, we build a working model for

the molecular mechanism underlying KSHV-mediated PROX1

upregulation (Figure 9). When KSHV infects vascular endothelial

cells, the virus may employ two or more mechanisms for PROX1

upregulation: one may be a transcriptional activation of PROX1

possibly through Akt activation [59] and the other a post-

transcriptional PROX1 mRNA stabilization by kaposin-B, which

activates the p38/MK2 pathway. Activated MK2 by kaposin-B

stimulates the nuclear export and cytoplasmic accumulation of

HuR protein. Cytoplasmic HuR protein binds to the AU-rich

region in the 39-UTR of PROX1 mRNA and slows down PROX1

mRNA turnover, thus increasing the steady-state level of PROX1

mRNA in KSHV-infected cells.

Discussion

KS tumor cells were reported to be derived from endothelium

about 40 years ago [74]. However, the exact histogenetic origin of

KS had remained uncertain because KS cells were found to

express mixed cell-lineage markers of BECs and LECs [75].

Previously, we and others demonstrated that KSHV induces

lymphatic reprogramming of vascular endothelial cells by

upregulating the master control gene of lymphatic differentiation,

PROX1 [20,21,22,23]. This finding of endothelial cell fate

reprogramming by KSHV has provided an important insight into

the pathology of KS and KSHV. Nonetheless, the question how

the virus induces the host cell fate change remained to be

answered.

Our previous study revealed that the KSHV latent gene LANA

only marginally induced expression of PROX1 (1.93-fold) [20].

Interestingly, recent two exciting studies have established a

molecular connection between the function of LANA and PROX1

gene regulation: Di Bartolo et al. showed that KSHV LANA

inhibits TGF-b signaling through epigenetic silencing of TGF- b
type II receptor [76] and Oka et al. demonstrated that inhibition

of TGF-b signaling upregulates PROX1 by ,2 fold [77]. In spite

of this intriguing molecular association, the degree of KSHV-

induced PROX1 upregulation ( .8 fold) shown by us and others

[20,21,22,23] prompted us to hypothesize that LANA could not be

the major activator for PROX1 upregulation in KSHV-infected

cells and that another mechanism should also be present for

KSHV-mediated PROX1 upregulation. This rationale directed us

to search for an additional activator(s) among KSHV latent genes.

In this study, we investigated the role of kaposin-B, a latent gene

of KSHV, in the KSHV-mediated PROX1 upregulation and

found that kaposin-B promotes mRNA stability of PROX1. We

defined the structure of PROX1 mRNA and identified a class I-

type ARE in its 39-UTR, through which PROX1 expression can

be post-transcriptionally regulated by physiological or pathological

stimuli. At this point, it seems that kaposin-B targets both class I

(e.g., PROX1) and class II (e.g., GM-CSF [57]) mRNAs and the

Figure 6. Cytoplasmic accumulation of HuR protein by
kaposin-B. (A) LECs were transfected with an expression vector for
FLAG-tagged kaposin-B for 16-hours and subjected to immunofluores-
cent analyses for FLAG-kaposin B (red), HuR (green) and DAPI (blue). A
merged image shows that kaposin-B induces cytoplasmic accumulation
of HuR only in kaposin-B-expressing cell (arrows), but not in a
neighboring untransfected cell (arrowhead). Bar, 20 mm. (B) A control
(CTR) or a FLAG-tagged kaposin-B vector (FLAG-kapB) was transfected
into LECs for 16 hours. Nuclear (N) or cytoplasmic (C) fractions were
collected and subjected to western blot analyses with antibodies
against HuR, lamin A/C (nuclear marker) and tubulin (cytoplasm
marker). Note accumulation of HuR protein in the cytoplasmic fraction
by kaposin-B.
doi:10.1371/journal.ppat.1001046.g006
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specificity determinant for kaposin-B targets needs to be further

defined. Moreover, we discovered that the ARE-binding protein

HuR is exported to the cytoplasm by kaposin-B and also by

KSHV infection, and increase PROX1 mRNA stability. These

findings are consistent with our observation from in vitro cell

cultures and KS tumor samples that PROX1 upregulation occurs

in only KSHV-infected cells, not in neighboring uninfected cells

(Figure 1).

Kaposin-B-induced mRNA stabilization appears an attractive

model for PROX1 upregulation since kaposin-B has been shown

to upregulate other cytokine mRNAs such as GM-CSF and IL-6

[57]. However, it needs to be highlighted that kaposin-B is not the

sole component in the molecular mechanism underlying PROX1-

upregulation by KSHV because mRNA stabilization inevitably

requires pre-existing mRNA and PROX1 mRNA is not expressed

in BECs [24,25]. Therefore, other factors/stimuli are needed for

Figure 7. MK2 stimulated by kaposin-B activates the cytoplasmic accumulation of HuR protein and upregulates PROX1 mRNA
stability. (A) Activation of p38 and MK2 by kaposin-B in LECs. LECs were transfected with a control (CTR) or a FLAG-tagged kaposin B-expressing
vector (FLAG-kapB) for 16-hours and protein level of PROX1, FLAG-kaposin-B (FLAG), p38, phospho-p38 (P-p38), MK2, phospho-MK2 (P-MK2) and b-
actin was determined by western blot analyses. (B) MK2 activation results in cytoplasmic accumulation of HuR protein. A control (CTR), a wild type-
MK2 (WT), a constitutively active-MK2 (EE), or a dominant negative-MK2 (K76R) vector was transfected into LECs for 16 hours and the nuclear (N) and
cytoplasmic (C) fractions were isolated and subjected to western blot analyses against HuR, lamin A/C (nuclear marker) and tubulin (cytoplasm
marker). (C) HuR is required for MK2-mediated PROX1 upregulation. Expression of PROX1 protein was determined by western blot analyses in LECs
that were transfected with a control (CTR), a wild type-MK2 (WT), a constitutively active-MK2 (EE) or a dominant negative-MK2 (K76R) vector. After
16 hours, transfected cells were divided into two groups and then transfected again with either luciferase siRNA (siCTR) or HuR siRNA (siHuR). Protein
level of PROX1, Myc-tag, HuR and b-actin was determined after 16 hours. (D) Relative intensity of PROX1 bands in panel C was measured and charted
in a graph. (E) MK2-mediated PROX1 upregulation is due to an increased expression of PROX1 mRNA. The steady-state level of PROX1 mRNA from the
same set of experiment as panel (C) was determined by qRT-PCR. (F) MK2 activation increases Prox1 mRNA stability. A control (CTR) or a constitutive-
MK2 (MK2 (EE)) vector was transfected into LECs for 16 hours and the steady-state level of PROX1 mRNA was determined by qRT-PCR analyses at the
indicated time point (minutes) after Actinomycin-D (ActD) (2 mg/ml) treatment. (G) HuR is necessary for MK2-induced PROX1 stability. Constitutively
active MK2 (EE) was overexpressed in LECs for 16 hours and the cells were then transfected again with luciferase siRNA (MK2 (EE)+siCTR) or HuR siRNA
(MK2 (EE)+siHuR) for 16-hours, followed by Actinomycin-D (ActD) administration (2 mg/ml). PROX1 mRNA level at the indicated time points was
determined by qRT-PCR analyses. Data are represented by mean and standard deviation (SD) and three independent experiments were performed to
yield similar results. Asterisks in panels F and G present p-value less than 0.05.
doi:10.1371/journal.ppat.1001046.g007
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the initial transcriptional activation of the PROX1 mRNA

synthesis. This hypothesis is further supported by two of our

findings. First, PROX1-upregulation by kaposin-B was much

prominent in LECs where PROX1 mRNA is already present, in

comparison to BEC and HUVEC-backgrounds where PROX1

expression is fairly low, if any (Figure 2A). Second, PROX1

expression in BECs and HUVECs was more strongly activated by

the entire virus (KSHV), compared to by kaposin-B alone

(Figures 2A & 8A), again suggesting that kaposin-B alone is

unable to efficiently activate PROX1 expression in BECs and

HUVECs. Importantly, Morris et al has recently shown that Akt

activation through gp130 is required for KSHV-mediated

PROX1 upregulation and lymphatic reprogramming [59].

Considering the fact that KS tumors have been associated with

numerous cytokines, chemokines and diffusible factors in their

microenvironments [78,79,80,81], it is highly likely that multiple

KS-associated viral and/or cellular factors may activate the

gp130/Akt pathway to prime the initial activation of PROX1

transcription [59]. We hypothesize that this transcriptional

activation may require a subsequent secondary post-transcription-

al mechanism involving kaposin-B to achieve PROX1 upregula-

tion. This two-step mechanism is also consistent with the fact that

PROX1-upregulation is limited to KSHV-infected cells. Taken

together, Figure 9 illustrates our hypothesis that both steps

(transcriptional activation and mRNA stabilization) may be

necessary to achieve PROX1-upregulation and lymphatic repro-

gramming of blood vascular endothelial cells by KSHV.

Figure 8. KSHV upregulates PROX1 by promoting its mRNA stability by HuR protein in primary BECs and HUVECs. (A) PROX1 is
upregulated in KSHV-infected BECs and HUVECs. Primary BECs and HUVECs were infected with KSHV for 5 days and PROX1 expression was
determined by qRT-PCR. (B) Protein level of PROX1 and LANA was determined in mock vs. KSHV-infected HUVECs. (C) KSHV-infection stimulates
cytoplasmic accumulation of HuR protein in HUVECs. After KSHV infection for 5 days, cytoplasmic accumulation of HuR protein was assessed in the
nuclear (N) and cytoplasmic (C) fractions. (D,E) HuR promotes PROX1 mRNA stabilization in KSHV-infected primary BECs and HUVECs. KSHV-infected
primary BECs (D) and HUVECs (E) were transfected with luciferase siRNA (KSHV+siCTR) or HuR siRNA (KSHV+siHuR) for 16-hours and then treated with
Actinomycin-D (ActD) (2 mg/ml). PROX1 mRNA level was determined at the indicated time points by qRT-PCR analyses. Three independent
experiments were performed and data are expressed by mean and standard deviation (SD). Asterisks in panels D and E present p-value less than 0.05.
doi:10.1371/journal.ppat.1001046.g008

Figure 9. Proposed model of PROX1 mRNA stabilization and
upregulation by KSHV and kaposin B. KSHV may employ two or
more components for upregulating PROX1 in vascular endothelial cells:
transcriptional activation and mRNA stabilization. While KSHV may
stimulate the transcriptional activation of PROX1 through activation of
Akt, as proposed by Morris et al [59], PROX1 mRNA may be stabilized by
the KSHV latent gene kaposin-B, which activates the p38/MK2 pathway
and cytoplasmic localization of HuR.
doi:10.1371/journal.ppat.1001046.g009
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On the other hand, kaposin is a unique KSHV latent gene

considering distinct features in its transcription and translation.

Kaposin transcripts are the most abundantly expressed viral mRNA

throughout all stages of KS progression determined by in situ

hybridization assays and a complex translational program directs

production of multiple isoforms of kaposin gene product, termed

kaposin A, B and C [82,83]. Kaposin-B uses a non-conventional

CUG start codon and consists of a series of tandem repeats of

hydrophobic 23-amino acids, named DR1 and DR2 [82,83]. DR2

can directly bind to MK2 and, when overexpressed, DR2 domain

alone can dominantly inhibit the mRNA-stabilization function of

the whole kaposin-B protein [57,58]. It was also found that the

DR1/DR2 repeats are more abundantly expressed in lytic- or TPA-

treated cells [84] and that DR2 is reiterated three to five times in

different stains of KSHV [58], suggesting a significant variation in

the expression level and DR2 repeat number of kaposin-B.

Accordingly, it will be interesting to investigate whether kaposin-

B-induced PROX1 mRNA stabilization is more prominent during

viral reactivation. Moreover, it is possible that both the expression

level and structure of kaposin-B may affect its mRNA-stabilizing

function through different ARE-binding proteins (including HuR)

and target a different set of cellular mRNAs. It would be also

exciting to study if kaposin-B may have other functions in addition

to its role in mRNA stabilization.

Our current study brings up numerous questions. To date, the

pathological role of PROX1 in KS development and progression

has not been defined. Is the lymphatic phonotype more favorable

for KSHV infection and propagation? Is lymphatic reprogram-

ming a by-product or a goal of PROX1 upregulation by KSHV?

Some insights may be obtained from interesting findings that

PROX1 was shown to increase the invasion of endothelial tumor

cells [85] and that PROX1 promotes the transition from benign to

highly dysplastic phenotype in colon cancer [86]. While these

studies support the oncogenic roles of PROX1, many other studies

demonstrate the opposing role of PROX1 as a tumor suppressor

[87,88,89,90,91,92]. Therefore, cell type and tissue microenviron-

ment may be crucial for PROX1 to play the oncogenic versus

tumor suppressive role and further studies will be necessary to

better understand the role of PROX1 in KS tumor development.

Moreover, PROX1 has been reported to be important for cell-fate

specifications in a broad range of cells including lymphatics

[24,25], liver [26], lens [27,28], brain [29,30,31,32], the ear

[33,34,35,36] and the heart [37,38] during development and has

been associated with post-developmental processes such as cell

cycle regulation [28,39,93] and inflammation [94]. It will be very

interesting to investigate whether PROX1 is post-transcriptionally

regulated for any of its functions during and after development.

Materials and Methods

Cell cultures and transfection
Human primary dermal blood vascular endothelial cells (BECs)

and lymphatic endothelial cells (LECs) were isolated from

anonymous neonatal human foreskins and cultured as previously

described [95] with an approval of the University of Southern

California Internal Review Board (PI: YK Hong). Primary human

umbilical venous endothelial cells (HUVECs) were purchased

from Lonza (Basel, Switzerland), and cultured in EGM-2 medium

(Lonza). NIH3T3 cells containing tTA (Tet-Off), named B2A2,

were kindly provided by Dr. Ann-Bin Shyu (University of Texas

Houston Health Science Center) [64,65,96]. NIH3T3 cells were

transfected by using Lipofectamine 2000 (Invitrogen) and primary

endothelial cells were transfected by electroporation (Nucleofactor

II, Amaxa Biosystems).

Plasmid constructs
The pTet-BBB and pTet-BBB-Fos-ARE vectors were kindly

provided by Dr. Ann-Bin Shyu (University of Texas-Houston

Medical School) [64,65]. pTet-BBB contains the Tetracycline

(Tet) - responsive element that drives transcription of the rabbit b-

globin reporter gene and pTet-BBB-Fos-ARE bears the Fos-ARE

inserted in the 39 UTR of the reporter. To make pTet-BBB-Prox-

ARE that contains the 40-bp PROX1-ARE (4,994 ,5,034 bp

downstream from the stop codon of human PROX1), sense and

anti-sense primers harboring the ARE and BamHI-half site at the

both ends (gatccTGCATAATTTATTGGTTTAATTTATCC-

TAATTTATTTGATG, gatccATCAAATAAATTAGGATAAA-

TTAAACCAATAAATTATGCAG) were annealed and cloned at

the unique BglII site of the 39-UTR of pTet-BBB. To clone the

human PROX1 39-UTR, a 5.4-kb fragment covering the human

PROX1 39-UTR was amplified by two primers (ATTAGC-

GGCCGCTTTGAATGTATGAAGAGTAGCAGTCC, AAT-

CAAACGGCACTGAGCTT) from a bacterial artificial chromo-

some (RPCI11-71F10, Invitrogen) and was cloned in pCRII-Blunt

(Invitrogen). Expression vectors encoding MYC-tagged MK2

(WT, EE, and K76R) were kindly provided by Dr. Matthias

Gaestel (Hannover Medical School, Germany) [73]. Expression

vectors for myc-tagged HuR and FLAG-tagged kaposin-B were

kind gifts by Drs. Dominique Morello (Institute Pasteur, France)

[97] and Craig McCormick (Dalhousie University, Canada) [57],

respectively. SiRNA for HuR was purchased from Santa Cruz

Biotechnology (siHuR; cat. sc-35619) and the control siRNA

(CUUACGCUGAGUACUUCGATT, UCGAAGUACUCAGC-

GUAAGTT) against the firefly luciferase was previously described

[95].

Rapid amplification of cDNA ends (RACE)
39-RACE assay was performed by following the manufacturer’s

instruction (First Choice RLM Race kit, Applied Biosystems).

Total RNA was isolated from human primary LECs and subjected

to 39 RACE by using two sets of PCR primers (GGATTGGTCT-

CAGCGCTACC, GCGAGCACAGAATTAATACGACT; AA-

CTGAACTGATAAAGTCAATTTTTG, CGCGGATCCGAA-

TTAATACGACTCACTATAGG). Amplified PCR products

were cloned in the pGEM-T Easy vector (Promega) and se-

quenced to define the end of PROX1 mRNA.

KS and KSHV production
De-identified anonymous KS specimens were obtained from the

AIDS and Cancer Specimen Resource (ACSR) with an approval

of the University of Southern California Internal Review Board

(PI: YK Hong). KSHV was purified from BCBL-1 cells by

following a previous description [23] with a minor modification.

Briefly, BCBL-1 cells were cultured to the density of 5,10 million

cells/ml and then activated with TPA (20 ng/ml) and sodium

butyrate (NaB, 3 mM). After 24,48 hours, TPA/NaB-containing

media was replaced with normal media and cells were incubated

for additional 5 days. Culture media was then collected and

filtered through 0.45-mm filters and centrifuged for 20 minutes at

4uC at 8,000 rpm to remove cell debris. Supernatant was

centrifuged for 5 hours at 4uC at 11,000 rpm to pellet the virus,

which was then resuspended in endothelial cell media. Infectivity

was measured by immunohistochemistry for LANA after infection

for 5 days.

RNA EMSA and RNA/protein immunoprecipitation
GST-HuR and GST-TTP fusion proteins were isolated as

previously described [98]. Expression vectors for GST-HuR and
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GST-TTP were kindly provided by Drs. Henry Furneaux

(University of Connecticut) [51] and Gilles Pages (University of

Nice-Sophia Antipolis, France) [99], respectively. For RNA EMSA

experiments, radio-labeled RNA transcripts (200 Kcpm/reaction)

was mixed with 200 ng GST fusion proteins or GST alone in a

previously described binding buffer [100]. The reaction mixture was

incubated for 30 minutes at 30uC and treated for 15 minutes at

room temperature with 100 U of Ribonuclease T1 (Roche). For

competition assays, specific (unlabeled PROX1-ARE RNA probe)

or nonspecific (yeast total RNA) competitors were incubated for 15

minutes at 30uC with the proteins in the binding buffer before the

addition of the labeled transcripts. The reaction mixtures were

resolved on 8% native polyacrylamide gels in 0.56 Tris borate-

EDTA (TBE) buffer. Gels were dried and exposed to X-ray film.

RNA/protein immunoprecipitation assay was performed essentially

as described [96] by using protein A/G-Sepharose beads pre-

incubated with anti-HuR (3A2, SC-5261, Santa Cruz Biotechnol-

ogy). RNA was isolated from supernatants and reverse-transcribed

with Superscript II (Invitrogen). The transcripts were amplified by

PCR by using the following primers: PROX1 (probe-1), ATCC-

TAATTTATTTGATGAAGGTG, TGCACATACATTCAGT-

TTAAGAGG; PROX1 (probe-2), TCAGTGCCGTTTGAT-

TTTCTTAAA, GGAACA TCTTTCCTTGTTCTTAGA; VEG-

F, TCCAATCTCTCTCTCCCTGAT, CGGATAAACAGTAG-

CACCAAT [67]; and UBE2N, TACCCAATGGCAGCCCC-

TAA, TTCCACTGCTCCGCTACATCA [68]. The resulting

PCR products were analyzed by 2% agarose gels.

Immunostaining and western blot analyses
Cells were cultured on 8-mm cover slips and infected with

KSHV for 5,7 days or transfected with FLAG-tagged kaposin-B

for 16 hours. Cells were then fixed with 4% paraformaldehyde for

10-minutes, washed in phosphate-buffered saline solution (PBS)

and treated with blocking solution (5% Bovine serum albumin)

overnight. Subsequent immunostaining was performed as previ-

ously described [95]. Antibodies and dilution factors used for

immunofluorescent staining analyses are follows; PROX1 (1:1000,

ReliaTech, Germany), LANA (1:1000, Advanced Biotechnologies

Inc, Maryland), HuR (1:1000, Santa Cruz Biotechnology), FLAG

tag (1:1000, Sigma-Aldrich). Antibodies used for western analyses

were PROX1 (1:1000, Millipore Corporation, MA), b-actin and

FLAG tag (all in 1:2000, Sigma-Aldrich Corporation), MYC tag

(1:1000, Covance), lamin A/C, p38 and phospho-p38 (all in

1:1000, Cell Signaling Technology), tubulin, MK2, phospho-

MK2, and HuR (all in 1:1000, Santa Cruz Biotechnology).

Northern blot analyses
Total RNA was purified from primary human LECs, separated

in an agarose gel, transferred to nylon membrane and then

hybridized with 32P-labeled DNA probes. A 2.2-kb fragment was

prepared as the PROX1 ORF probe by digesting pcDNA3-

hPROX1 with NotI [98]. Three 39-UTR probes, P1 (,2.3-kb), P2

(,0.5-kb) and P3 (,0.7-kb), were prepared by EcoRV, XbaI/

XmnI, and AfeI/SpeI digestions from PROX1 5.4 kb 39 UTR,

respectively. For the functional test of PROX1-ARE, NIH3T3/

Tet-Off cells were transfected with pTet-BBB, pTet-BBB-Prox-

ARE or pTet-BBB-Fos-ARE [64,65] and were grown in

doxycycline (40 ng/ml)-containing DMEM/FBS medium for 48-

hours. Transcription of b-globin was induced by removing

doxycycline (replacing media with doxycycline-lacking media) for

110-minues. Subsequently, doxycycline (500 ng/ml) was added to

the media to shut down the transcription and total RNA was

harvested after 0, 30, 60, 90, 120, 180 and 240-minutes. Northern

blot analysis was performed by using 32P-labeled b-globin and

GAPDH probes.

Quantitative real time and conventional RT-PCR
Real-time RT-PCR (qRT-PCR) was performed by using

TaqMan EZ RT-PCR Core Reagent (Applied Biosystems). For

dual-labeled probe-based qRT-PCR reactions, each reaction was

multiplexed for both target gene and the internal control b-actin

for normalization. Conventional RT-PCR was performed by using

Superscript II (Invitrogen) and Taq polymerase (New England

Biolabs). Primer sequences will be provided upon request.

Supporting Information

Figure S1 Regulation of lymphatic-signature genes by kaposin-B

in LECs, BECs and HUVECs. A control vector (CTR) or a

kaposin B-expressing vector (kapB) was transfected into LECs,

BECs and HUVECs for 16 hours and the expression level of

podoplanin (A), VEGFR-3/flt4 (B), LYVE-1 (C), FGFR-3 (D),

SLC (E) and p57 (F) was determined and normalized against the

internal control b-actin by using quantitative real time RT-PCR

(qRT-PCR) analyses.

Found at: doi:10.1371/journal.ppat.1001046.s001 (4.02 MB TIF)
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