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The Effect of Trim5 Polymorphisms
on the Clinical Course of HIV-1 Infection
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The antiviral factor tripartite interaction motif 5o (Trim5a) restricts a broad range of retroviruses in a species-specific
manner. Although human Trim5a4 is unable to block HIV-1 infection in human cells, a modest inhibition of HIV-1
replication has been reported. Recently two polymorphisms in the Trim5 gene (H43Y and R136Q) were shown to affect
the antiviral activity of Trim5a in vitro. In this study, participants of the Amsterdam Cohort studies were screened for
polymorphisms at amino acid residue 43 and 136 of the Trim5 gene, and the potential effects of these polymorphisms on
the clinical course of HIV-1 infection were analyzed. In agreement with the reported decreased antiviral activity of Trim5a
that contains a Y at amino acid residue 43 in vitro, an accelerated disease progression was observed for individuals who
were homozygous for the 43Y genotype as compared to individuals who were heterozygous or homozygous for the 43H
genotype. A protective effect of the 136Q genotype was observed but only after the emergence of CXCR4-using (X4) HIV-
1 variants and when a viral load of 10*® copies per ml plasma was used as an endpoint in survival analysis. Interestingly,
naive CD4 T cells, which are selectively targeted by X4 HIV-1, revealed a significantly higher expression of Trim5a than
memory CD4 T cells. In addition, we observed that the 136Q allele in combination with the —2GG genotype in the 5'UTR
was associated with an accelerated disease progression. Thus, polymorphisms in the Trim5 gene may influence the
clinical course of HIV-1 infection also underscoring the antiviral effect of Trim5« on HIV-1 in vivo.

Citation: van Manen D, Rits MAN, Beugeling C, van Dort K, Schuitemaker H, et al. (2008) The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. PLoS

Pathog 4(2): e18. doi:10.1371/journal.ppat.0040018

Introduction

The susceptibility to HIV-1 infection and subsequent
disease progression is highly variable between individuals.
Host genetic variations have previously been demonstrated to
account for at least part of these differences. Polymorphisms
in chemokine receptors that serve as HIV-1 coreceptors, or in
their natural ligands, have been associated with reduced
susceptibility to infection as well as disease progression [1-4].
Furthermore, certain HLA types have been correlated with
the clinical course of infection [5-8].

Variations in genes involved in innate immunity may also
contribute to the differential susceptibility of humans to
HIV-1 infection and the highly variable outcome of the
disease. Recently, the tripartite interaction motif 5o (Trimbot)
has been identified as part of the intrinsic immunity that
protects human and non-human primates against retroviral
infection [9,10]. Trimbo targets the capsid of the incoming
retrovirus in the cytoplasm directly after entry and interferes
with viral replication at an early post-entry step most likely at
the poorly understood uncoating process [11-19]. Species-
specific variations in Trimbo account for the restriction
pattern of specific retroviruses [20-26]. For example, HIV-1
replication is blocked efficiently by Trimba of rhesus
macaques and African green monkeys, whereas SIV-mac is
only restricted by Trimbo from African green monkey.
Human Trimba efficiently blocks N-tropic MLV and equine
infectious anaemia virus, but is much less efficient in
restricting HIV-1 replication. This indicates that HIV-1 has
at least partially adapted to the human variant of this
restriction factor. Recently, we observed that Trimba escape
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variants developed late in infection in a proportion of the
HIV-1 infected individuals [27]. The emergence of the escape
variants was preceded by a prolonged asymptomatic phase,
indicating that Trimb5o mediated suppression of viral
replication indeed plays a role in HIV-1 pathogenesis.

The potential role of polymorphisms within the Trim5 gene
on HIV-1 susceptibility has recently been studied [28-31]. Of
the eight nonsynonymous polymorphisms that have been
identified in the Trim5 gene, two have been reported to have
functional consequences with regard to the antiviral activity
of Trimba (H43Y and R136Q)) [28,30]. The H43Y is located in
the RING domain of Trimb5a and may impair its putative E3
ligase activity [28,30]. Indeed, the 43Y variant of Trimba was
less efficient in restricting HIV-1 replication in vitro [28,30].
The R136Q polymorphism has been associated with a slightly
higher anti-HIV-1 activity of Trimba [30]. In agreement, the
R136Q polymorphism was more frequently observed in high
risk seronegative as compared to HIV-1 infected individuals
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Author Summary

The clinical course of HIV-1 infection is highly variable between
individuals, and host genetic variations may at least account for part
of these differences. Recently two single nucleotide polymorphisms
in the tripartite interaction motif 5 gene (Trim5) have been reported
to affect the antiviral activity of the Trim5a protein. Here we
analyzed the effect of these polymorphisms on the clinical course of
HIV-1 infection in participants of the Amsterdam Cohort studies. We
observed an accelerated disease progression for individuals who
were homozygous for the 43Y genotype that has been associated
with a decreased antiviral activity of Trim5a in vitro. The 136Q
genotype has in vitro been associated with a slightly higher anti-HIV-
1 activity. We observed a protective effect of the 136Q genotype
only after the emergence of CXCR4-using HIV-1 variants using viral
load above 10*° copies per ml plasma as an endpoint in survival
analysis. These results suggest that genetic variations in the Trim5
gene may influence the clinical course of HIV-1 infection and
confirm a role of Trim5a on HIV-1 in vivo.

in a cohort of African Americans [30], although not
confirmed in other study populations [29,30]. So far no
significant association between Trim5 polymorphisms and
HIV-1 disease progression have been demonstrated [29,31,32].
Here we studied the effect of the Trim5o H43Y and R136Q
polymorphisms on the clinical course of HIV-1 infection in
participants of the Amsterdam Cohort studies. In addition,
we analyzed whether the R136Q) genotype in combination
with a SNP in the 5'UTR of Trim5 (—2G/C) was associated with
susceptibility to HIV-1 infection or disease progression.

Results

Distribution of H43Y and R136Q Trim5 Genotypes

The prevalence of Trimbo polymorphisms H43Y and
R136Q was studied in 327 HIV-1 positive participants of
the Amsterdam Cohort studies. For the H43Y polymorphism
a minor allele frequency of 0.115 was observed. Of the 327
HIV-1 positive participants, 61 (18.7%) were heterozygous
and 7 (2.1%) were homozygous for the 43Y allele. The R136Q
polymorphism was observed at a minor allele frequency of
0.379. Of the 327 participants, 156 (47.7%) were heterozygous
and 46 (14.1%) were homozygous for the 136Q allele. Six
mutually exclusive haplotypes were observed for the combi-
nation of R136Q) and H43Y polymorphisms: 43HH/136RR (n
= 88), 43HH/136RQ (n = 125), 43HH/136QQ (n = 46), 43HY/
136RQ (n=31), 43HY/136RR (n=230) and 43YY/136RR (n=7).
The 43Y polymorphism was not observed in the group
homozygous for the 136QQ genotype and the 136Q poly-
morphism was never observed in combination with a
homozygous 43YY genotype, also confirming that the 43Y
polymorphism and the 136Q polymorphism are not located
on the same allele [29,31]. No significant differences in the
H43Y or R136Q minor allele frequencies were observed
between the HIV-1 seropositive individuals and healthy
controls (allele frequencies of 0.106 and 0.389 for H43Y and
R136Q), respectively).

Effect of the H43Y Trim5 Genotype on the Clinical Course
of HIV-1 Infection

Kaplan Meier and Cox Proportional Hazard analysis with
clinical AIDS (Definition CDC 1987 and 1993), CD4 T cell
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counts below 200 cells/ul blood, and plasma viral RNA load
above 10*° copies per ml plasma were used as end points to
determine the effect of polymorphisms in the Trim5 gene on
disease progression. We observed an accelerated disease
progression in the group homozygous for the 43Y allele
relative to the 43 HH wild type genotype, with a relative hazard
(RH) of 3.1 (p = 0.006) and 2.8 (p = 0.007) for AIDS diagnosis
according to the 1987 or 1993 CDC definition, respectively
(Figure 1A and 1B; Table 1). An accelerated progression rate
was also observed when CD4 T cell counts below 200 cells per
ul blood were used as end point (Figure 1C; Table 1). The
median viral RNA load of participants of the Amsterdam
cohort progressing to AIDS has previously been determined at
10*° copies HIV-1 RNA per ml plasma [1]. When viral RNA
load above 10*° copies per ml plasma was used as endpoint in
the survival analysis, we again observed an accelerated disease
progression for individuals homozygous for the 43Y genotype
(Figure 1D; Table 1). The heterozygous genotype (43HY) was
not associated with delayed disease progression (Figure 1).

Development of CXCR4 using HIV-1 variants (X4-variants)
has previously been associated with an accelerated disease
progression [33]. The ability of HIV-1 variants to use CXCR4
as a coreceptor and replicate in MT2 cells was analyzed
routinely during follow-up in the cohort studies in 319 of 327
individuals from our study population. During the course of
infection X4-variants developed in 126 individuals. No
association between the prevalence of X4-variants and the
H43Y genotype could be observed (data not shown). However,
X4-variants did develop more rapidly in individuals who were
homozygous for the 43Y genotype (Figure 1E; Table 1).

Our study population consisted of 130 participants who
seroconverted for HIV-1 antibodies during follow-up and 197
seroprevalent participants with an imputed seroconversion
date [34]. Inclusion of seroprevalent participants in our
analysis did not bias our data and Cox regression analysis
stratifying for seroconvertors and seroprevalent participants
gave similar results (data not shown).

Effect of the R136Q Trim5 Genotype on the Clinical Course
of HIV-1 Infection

Next we examined a potential role for the R136Q
polymorphism in Trim5 on the clinical course of HIV-1
infection. Using clinical AIDS (Definition CDC 1987 and
1993), CD4 T cell counts below 200 cells/pl blood or viral RNA
load above 10*° copies per ml plasma as endpoint in Kaplan
Meier and Cox proportional hazard analysis, no significant
associations between the 136RQ or 136QQ genotype and the
clinical course of infection were revealed (data not shown).
The R136Q polymorphism also had no effect on the time to
first detection of X4-variants (data not shown). In addition,
the prevalence of CXCR4 using HIV-1 variants was not
associated with the R136Q) genotype.

Next we analyzed whether a potential effect of the R136Q)
Trim5 genotype was dependent on the coreceptor usage of
the virus present. The R136Q genotype had no significant
effect on the clinical course of infection when only CCRbH
using HIV-1 variants (R5-variants) were present irrespective
the end point used in the survival analysis (data not shown).
However, a significant protective effect on disease progres-
sion associated with the R136Q) genotype was observed after
X4-variant development using the median viral RNA load of
participants of the Amsterdam cohort progressing to AIDS
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Figure 1. Survival Analysis for the H43Y Genotype
Kaplan Meier analysis for time in years from seroconversion to AIDS ac
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cording to the CDC 1987 definition (A), to AIDS according to the CDC 1993

definition (B), to CD4 count below 200 cells/ul blood (C), to viral RNA load above 10%° copies per ml plasma (D), and to first detection of X4-variants (E)
based on the H43Y genotype. Bold lines indicate individuals with the wild type genotype (43HH); dashed black lines indicate individuals heterozygous
for the 43Y genotype (43HY); thin black lines indicate individuals homozygous for the 43Y genotype (43YY).

doi:10.1371/journal.ppat.0040018.g001

(10*° copies per ml) as an end point in survival analysis, with
a RH of 0.44 (p = 0.008) and 0.26 (p = 0.030) for the
heterozygous 136RQ and homozygous 136QQ genotype,
respectively as compared to the 136RR genotype (Figure 2;
Table 2). At the moment of X4-development the viral load of
individuals who were homozygous (QQ), heterozygous (RQ)
or wild type (RR) for the amino acid residue at position 136
was similar (data not shown). The R136Q polymorphism was
not associated with disease progression after X4-variant
development using clinical AIDS or CD4 cell counts below
200 cells pl blood as end points (Table 2).

Trim5a mRNA Expression Levels in Naive and Memory
CD4 T Cells

The protective effect of the 136Q) Trimboa variant on
disease progression only after emergence of X4 variants may
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imply that Trimba has a stronger effect on X4 variants than
on R5 variants. Previously we demonstrated that R5 and X4
HIV-1 variants partially reside in different CD4 T cell
compartments due to differential expression of coreceptors
CCR5 and CXCR4 [35,36]. Rb variants were selectively
isolated from CD4 memory T cells, whereas X4 variants were
isolated from memory and naive CD4 T cells. Here we
analyzed whether differences of the Trimb5a mRNA levels in
naive and memory CD4 T cell populations could contribute
to the differential effect of the 136Q variant on X4 and R5
variants in vivo. Naive and memory CD4 T cells were isolated
from PBMC from 12 healthy controls by FACS sorting based
on CD45RO and CD27 expression and Trim5a mRNA levels
were analyzed by quantitative real time PCR. To correct for
differences in input, Trimb5a mRNA levels were normalized
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Table 1. Cox Regression Analysis for Progression to AIDS, CD4

Cells <200 Cells/ul, and X4-Variant Development
Endpoint Number Event 43YY versus 43HH
p-Value RH (95% Cl)

AIDS (CDC1987) 327 188 0.006 3.2 (1.4-7.3)
AIDS (CDC 1993) 325 215 0.007 2.8 (1.3-6.1)
CD4 <200 cells/pl 325 182 0.001 3.7 (1.7-8.0)
X4-variant development® 319 108° 0.039 2.9 (1.1-8.0)
RNA load >0*° copies/ml 324 214 0.036* 23 (1.1-4.8)

X4-variants that develop before the start of active antiretroviral therapy are counted as
events.

bX4-variants emerged before the start of effective antiretroviral therapy in 108 out of 126
individuals who developed X4-variants.

*p-Value did not reach significance after Bonferroni correction (Simes-Hochberg method).
doi:10.1371/journal.ppat.0040018.t001

for B-actin mRNA levels. Trimbo mRNA levels were signifi-
cantly higher in naive (CD45RO—-CD27+) CD4 T cells as
compared to memory (CD45RO+) CD4 cells (p = 0.019)
(Figure 3A).

In addition, Trimba mRNA levels in naive and memory
CD4 T cells were analyzed in HIV-1 positive individuals early
and late in the course of infection (23 PBMC samples from 11
individuals). Although no differences in Trimba mRNA levels
were observed during the course of infection, we again
observed a significantly higher Trimb5a mRNA level in naive
CD4 T cells as compared to memory CD4 T cells (p = 0.003)
(Figure 3B).

Effect of Combined R136Q and —2G/C Genotypes on
Susceptibility to HIV-1 Infection and Disease Progression
Recently a G to C polymorphism at position —2 in the
5"UTR of the Trim5 gene (—2GIC; rs3824949) in combination
with the R136Q polymorphism has been associated with
enhanced susceptibility to HIV-1 infection (136Q/~2G hap-
lotype) and accelerated disease progression (136R/—2G
haplotype) [29]. To analyze whether the combined R136Q
and —2G/C genotype was also associated with HIV-1 suscept-
ibility or disease progression in our study population, we
genotyped our study population for the G to C polymorphism
at position —2 (=2G/C). The —2C allele frequency was 0.486
and 0.418 in our HIV-1 positive individuals and healthy
controls, respectively. When the —2G/C genotype was analyzed
in combination with the R136Q genotype no significant
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Figure 2. Survival Analysis for R136Q Genotype after Emergence of X4-
Variants

Kaplan Meier analysis for time in years from the moment of first
detection of X4-variants to viral RNA load above 10*° copies per ml
plasma based on the R136Q genotype. Bold black lines indicate
individuals with the wild type genotype (136RR); dashed black lines
indicate individuals heterozygous for the 136Q genotype (136RQ); thin
black lines indicate individuals homozygous for the 136Q genotype
(136QQ).

doi:10.1371/journal.ppat.0040018.9g002

differences in the distribution of the combined genotypes was
observed between the HIV-1 infected individuals and the
healthy controls. The —2GG genotype was not observed in
combination with the homozygous 136Q genotype in both
study populations.

Next we analyzed the effect of the combined R136Q and
—2GI/C genotypes on disease progression using clinical AIDS
(Definition CDC 1993) as an end point. Individuals carrying
the 136Q allele (136RQ and 136QQ) in combination with the
—2GG genotype showed an accelerated progression to disease
in comparison to the —2GC (p =0.009; RH 2.6; 95% CI 1.3-5.2)
and —2CC genotype (p = 0.056; RH 2.1; 95% CI 1.0-4.3)
(Figure 4). In contrast to the study by Speelmon et al. [29], no
significant effect of the —2G/C genotype on disease pro-
gression was observed in the group with the 136RR genotype.

AIDS Incidence in Relation to H43Y Genotype and Other
Progression Markers

Uni- and multivariate relative hazard analysis were used to
determine the predictive value of the Trim5 H43Y genotype

Table 2. Cox Regression Analysis for Progression to AIDS, CD4 Cells <200 Cells/pl, or Viral RNA Load >10%/ml after X4-Variant

Development

Endpoint Number Event 136RQ versus 136RR 136QQ versus 136RR

p-Value RH (95.0% CI) p-Value RH (95.0% CI)
AIDS (CDC1987) 114 75 0.146 0.7 (0.4-1.1) 0.329 0.7 (0.3-1.4)
AIDS (CDC 1993) 104 93 0.666 0.9 (0.6-1.4) 0.097 0.6 (0.3-1.1)
CD4 <200 cells/pl 104 920 0.703 0.9 (0.6-1.4) 0.082 0.5 (0.3-1.1)
Viral RNA load >10*>/ml 70 46 0.008 0.4 (0.2-0.8) 0.030* 0.3 (0.1-0.9)

*p-Value did not reach significance after Bonferroni correction (Simes-Hochberg method).

doi:10.1371/journal.ppat.0040018.t002
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(A) Trim5a mRNA levels in naive CD4 T cells (CD45R0O-CD27+4) and memory CD4 T cells (CD45R0O+) obtained from healthy controls.
(B) Average Trim5a mRNA levels in naive and memory CD4 T cells during the course of infection from HIV-1 infected individuals. Trim5a mRNA levels are
normalized for B-actin mRNA levels. Different symbols represent Trim5a mRNA levels of naive and memory CD4 T cells from the different individuals.

doi:10.1371/journal.ppat.0040018.g003

(43YY) in combination with previously established prediction
markers such as CD4 T cell count, plasma viral RNA load, the
presence of X4-variants, and CCR5-genotype [1]. Univariate
analysis indicated that homozygosity for the H43Y poly-
morphism, CD4 T cell counts below 500 cells per pl, viral
RNA load above 10*° copies per ml plasma and the presence
of X4-variants at 18-30 months after seroconversion were
predictive for more rapid progression to AIDS, whereas
heterozygosity for the CCR5-A32 genotype had a protective
effect (Table 3). Multivariate analysis at 2 years after
seroconversion indicated that CD4 T cell counts below 500
cells per pul blood, viral RNA load above 10*° copies per ml
plasma, the presence of X4-variants and homozygosity for the
Trim5 H43Y genotype (43YY) were independent predictors
for progression to AIDS (Table 3). In our study population
the homozygous H43Y genotype was not observed in

1.0 1
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0.6 -
0.4 -

(CDC 1993)

0.2 |

Fraction AIDS free

0.0 |

Years after seroconversion
Figure 4. Survival Analysis for the —2G/C Genotype in Combination with
the 136Q Genotype
Kaplan Meier analysis for time in years from seroconversion to AIDS
according to the CDC 1993 definition. Bold black lines indicate
individuals with the —2GG genotype; dashed black lines indicate
individuals with the —2GC genotype; thin black lines indicate individuals

with the —2CC genotype.
doi:10.1371/journal.ppat.0040018.9004
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combination with a heterozygous CCR5-A32 genotype ex-
cluding this parameter from the multivariate analysis.

Discussion

Old World monkey Trimba very efficiently blocks HIV-1
infection at an early step in the viral replication cycle,
immediately after cellular entry. Human Trimba is also able
to interfere with HIV-1 infection, albeit less efficiently.
Although this may suggest that HIV-1 has at least partially
adapted to human Trimba, we have recently provided the
first evidence that Trimba might still play a role in HIV-1
pathogenesis [27]. We observed that HIV-1 variants contain-
ing a H87Q mutation in the cyclophilin A binding region of
capsid, which has previously been associated with escape from
Trimba [11-16], developed during the late phase of infection
in a proportion of the HIV-1 infected individuals [27]. The
emergence of these Trimba escape variants was preceded by a
prolonged asymptomatic phase implying that Trimba con-
tributed to control of virus replication in vivo and concom-
itantly selected for Trimba resistant variants.

Two genetic polymorphisms in the human Trim5 gene have
recently been described to affect the antiviral activity of
Trimba on HIV-1. The H43Y polymorphism has been
associated with an impaired anti-HIV-1 activity of Trimbo
in vitro [28,30,32]. In agreement, we here observed that a 43YY
homozygous genotype was predictive for an accelerated
progression to AIDS, independent of CD4 cell counts, viral
RNA load in plasma, and HIV-1 coreceptor usage at 18-30
months after seroconversion.

In previous studies, the H43Y genotype had no effect on
HIV-1 disease progression [29-32]. Speelmon et al. observed
no significant difference in viral RNA load in the period from
100 days until 2 years post infection between individuals who
were homozygous (YY), heterozygous (HY) or wild type (HH)
for amino acid residue 43 [29]. In agreement, we also did not
observe a difference in viral RNA load at 2 years after
seroconversion between the H43Y genotypic groups (data not
shown). However, the studies by Speelmon et al. and by
Goldschmidt et al. did also not show significant differences in
CD4 cell decline between the H43Y genotypic groups [29,31].
Due to the low minor allele frequency for H43Y in the study
population by Speelmon et al., which had a size of only 90
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Table 3. Univariate and Multivariate Relative Hazards for Progression to AIDS (CDC 1987) for the H43Y Genotype, Presence of X4-
Variants, CD4 T Cell Count, Viral RNA Load in Plasma, or CCR5 Genotype at Two Years after Seroconversion

Progression Marker Crude Adjusted

p-Value RH (95.0% CI) p-Value RH (95.0% CI)
Trim5 43YY genotype 4.2E-03 3.4 (1.5-7.6) 1.4E-02 4.5 (1.4-15.1)
CCR5-A32 genotype 1.2E-05 0.4 (0.2-0.6) ND? ND?
X4-variants® 1.2E-15 8.1 (4.9-13.6) 1.8E-06 5.8 (2.8-12.0)
CD4 cells <500 cells per pl® 6.9E-05 1.9 (1.4-2.7) 1.6E-02 1.8 (1.1-2.8)
Viral RNA load >10*° copies per ml° 7.2E-06 2.6 (1.7-3.9) 2.7E-04 2.7 (1.5-3.7)

2CCR5-A32 genotype was not observed in combination with the Trim5 43YY genotype.

*The presence of X4-variants, CD4 T cell counts, and the viral RNA load in plasma was determined at 1.5-2 y after seroconversion.

ND, not determined.
doi:10.1371/journal.ppat.0040018.t003

individuals, the number of individuals homozygous for the
43Y genotype might have been to low to observe significant
difference between the genotypes. The discrepancy between
our results and those of Goldschmidt et al. may lie in their
relatively short average follow-up time of 3.2 years as
compared to the average follow-up of 7.9 years on patients
in our study. Nakayama et al. observed similar frequencies of
homozygous 43YY and heterozygous 43HY genotypes in
progressors and LTNP in a study population of Japanese
HIV-1 infected individuals [32]. In our Amsterdam cohort
however, none of the individuals homozygous for the 43YY
genotype had an asymptomatic follow up of 10 years or more.
Javanbakht et al. observed no significant differences in
progression to CD4 T cell counts below 200 cells per pul
blood, AIDS defining events or AIDS related deaths associ-
ated with the different H43Y genotypes in two large cohorts
of African Americans and European Americans [30]. In the
African American population the frequency of individuals
homozygous for the 43YY genotype is however very low which
might account for the discrepancy with our data. However,
the minor allele frequency for H43Y in the European
American cohort is similar to the frequency in the Amster-
dam cohort (0.114 and 0.115 respectively). Unfortunately, lack
of details on their European American cohort and their
analyses make it difficult to bring up potential explanations
for the inconsistency in results.

The R136Q polymorphism has been associated with a slight
increase of the anti-HIV-1 activity of Trimbo in vitro [30],
although not confirmed by others [28,29,31]. In agreement
with earlier reports [29,31], we did not observe an effect of
the R136Q polymorphism on disease progression. A protec-
tive effect of the 136Q) variant was only evident in the phase
of infection when X4-variants were present, where a delayed
rise in viral load above the median load during progression to
disease (10*° copies per ml) was observed in individuals who
were homozygous (QQ) or heterozygous (RQ) for the 136Q
genotype as compared to individuals with the wild type
genotype (RR).

The protective effect of the 136Q) Trimba variant on
disease progression only after the emergence of X4-variants,
may imply that Trimbo in vivo affects replication of X4-
variants more efficiently than R5-variants. X4-variants devel-
op in 50% of the HIV-1 infected individuals during the
natural course of infection after which R5- and X4-variants
coexist [35-37]. While co-existing R5- and X4-variants infect
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memory CD4 T cells that co-express CCR5 and CXCR4, X4-
variants have the unique ability to additionally infect naive
CD4 T cells that selectively express CXCR4 [35,36]. Here we
observed that naive CD4 T cells expressed higher levels of
Trimba as compared to memory CD4 T cells. It is tempting to
speculate that high Trimba expression levels in naive T cells
in combination with a more potent antiviral activity
associated with the 136Q polymorphism provide prolonged
control of HIV-1 replication in carriers of X4-variants.

Recently a G to C polymorphism at position —2 in the
5'UTR of the Trim5 gene (—2G/C; rs3824949) in combination
with the R136Q polymorphism has been associated with HIV-
1 susceptibility and disease progression [29]. Speelmon et al.
observed an enrichment of the 136Q/—2G haplotype in the
HIV-1 positive population [29], however we were unable to
confirm this and observed an equal distribution of the —2G/C
polymorphism in combination with the 136Q) allele between
the HIV-1 positive population and the control group.
However, the 136Q allele in combination with the —2GG
genotype was associated with accelerated disease progression
in our study population. Speelmon et al. observed an
association between a faster CD4 T cell decline and the
136R/—2G haplotype [29], but we were unable to confirm this.
In our study population we observed a —2C allele frequency
of 0.486 and 0.418 in the HIV-1 positive study population and
the control group, respectively, which is similar to the
frequencies in the European American population reported
by Javanbakht et al. [30]. However the frequencies for the —2C
allele frequencies in the study populations of Speelmon et al.
were much lower (0.38 in exposed seronegatives and 0.31 in
HIV-1 infected population) [29]. Therefore, it cannot be
excluded that differences in the distribution of the —2G/C
polymorphism in different study populations account for the
observed discrepancies in results.

Our data confirm a role of Trimba in the clinical course of
infection. In addition, they show that different genetic
variants in Trimba are associated with a differential clinical
course of infection. Overall, these results may encourage
exploiting the possibility of using Trimba or alike derivatives
in antiviral strategies.

Materials and Methods

Study participants. The study population, 364 Caucasian, homo-
sexual men enrolled in the Amsterdam Cohort studies (ACS) on the
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natural history of HIV-1 infection between October 1984 and March
1986, was previously described [1]. The censor date of our study was
set at the first day of effective antiretroviral therapy of the participant.
Of the 364 participants, 131 seroconverted during the study. The
remaining 233 men were positive for HIV-1 antibodies at entry
between October 1984 and April 1985. In previous epidemiological
studies, the time since seroconversion of these prevalent cases has
been estimated based on the incidence of HIV-1 infection amongst
homosexual participants of the Amsterdam Cohort and was on
average 1.5 years before entry into the cohort studies [34]. For analysis,
we combined the 131 participants with documented seroconversion
and 233 seroprevalent participants with an imputed seroconversion
date as one study group, since previous studies have not revealed
differences in AIDS-free survival between the two groups [4].

The ACS has been conducted in accordance with the ethical
principles set out in the declaration of Helsinki and written informed
consent is obtained prior to data collection. The study was approved by
the Amsterdam Medical Center institutional medical ethics committee.

Trim5 genotyping. DNA samples of 327 out of 364 participants of
the Amsterdam Cohort studies were available for Trim5 genotyping.
For analysis of the Trim5 R136Q polymorphism (rs10838525), DNA
samples were amplified by PCR using Taq DNA polymerase
(Invitrogen) and primer pair Trim5-F (5'-ATGGCTTCTGGAATC
CTGGTTAATG-3") and Trim5-R136Q-R (5'-CCCGGGTCTCAGGTC
TATCATG-3'). The following amplification cycles were used: 5min
95°C; 35 cycles of 30s 95°C, 30s 50°C, 90s 72°C; bmin 72°C.
Subsequently PCR products were purified and subjected to a
restriction digest with 1U Aval (1.5 hour 37°C; NEB) and analyzed
on a 1% agarose gel. A PCR product containing an R at position 136
will result in digestion of the PCR product into a 405bp and 121bp
product. A PCR product containing a Q at position 136 will result in
a 526bp (undigested) product. For conformation, 15 samples (5
homozygous 136R, 5 homozygous 136Q and 5 heterozygous 136QR)
have been sequenced with the ABI prism BigDue Terminator kit V1.1
(Applied Biosystems) using primers Trim5-F and Trim5-R136Q-R).
Sequences were analyzed on an ABI 3130XL Genetic Analyzer.

For analysis of the Trim5 H43Y polymorphism (rs3740996), DNA
samples were amplified by PCR using Taq DNA polymerase
(Invitrogen) and primer pair Trim5-F and Trim5-H43Y-R (5'-
GGCTGGTAACTGATCCGGCAC-3"). For analysis of the —2GC poly-
morphism (rs3824949), DNA samples were amplified by PCR using
Taq DNA polymerase (Invitrogen) and primer pair Tr5-2GC (5'-
GCAGGGATCTGTGAACAAGAGG-3") and Trimb-H43Y-R. The fol-
lowing amplification cycles were used: bmin 95°C; 35 cycles of 30s
95°C, 30s 55°C, 90s 72°C; 5min 72°C. Subsequently PCR products were
purified and sequenced with the ABI prism BigDue Terminator kit
V1.1 (Applied Biosystems) using primers Trim5-F and Trim5-H43Y-R
for H43Y and Tr5-2GC and Trim5-H43Y-R for —2GC. Sequences
were analyzed on an ABI 3130XL Genetic Analyzer.

FACS sorting naive and memory CD4 T cells. Cryopreserved PBMC
were stained with antibodies against CD4 (tricolor conjugated; Caltag
Laboratories), CD45RO (FITC conjugated; BD Biosciences) and CD27
(phycoerythrin conjugated; Caltag Laboratories), and sorted using a
MoFlo cell sorter (Cytomation Inc.). Cells were sorted in two different
cell populations: naive (CD45RO-CD27+) CD4 T cells and memory
(CD45RO+) CD4 T cells.

RNA isolation and quantitative PCR. Total RNA was isolated from
naive and memory CD4 cells from HIV-1 infected individuals or
healthy donors, using the RNeasy mini kit (Qiagen, Hilden, Germany).
Subsequently, cDNA was prepared using the SuperScript™ First-
Strand Synthesis System for RT-PCR (In Vitrogen). Trim5o. mRNA
levels were analyzed by SYBR green qPCR using the LightCycler
(Roche). The reaction mix contained 20 mM Tris-HCI (pH 8.4), 50
mM KCI, 3 mM MgCls, 200 pM dNTP, 250 pg/ml BSA, 500 nM primers,
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