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Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector.
Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito’s immune
system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to
invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the
rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito
transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at
the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety
of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on
infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were
found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin,
FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and
a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei.
While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection,
four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P.
falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense
against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species
specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in
the absence of invading ookinetes, thereby inducing anti-Plasmodium immune responses.
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Introduction have linked the A. gambiae NF—kappaB—like transcript.ion
factor REL2 and adaptor protein IMD to the defense against
P. berghei and thereby established a role for the putative IMD
pathway in anti-Plasmodium defense [8]. Plasmodium infection
will also affect a variety of other biological processes in

addition to those linked to the immune response [7].

The transmission of the malarial parasite Plasmodium by the
vector mosquito Anopheles gambiae is enabled by hematophagy,
which is essential for egg production. Within 24 h after
ingestion of infected blood, the Plasmodium gametocytes are
fertilized and develop into motile ookinetes, which invade and
traverse the mosquito midgut epithelium to reach its basal side,
where they develop into oocysts. Plasmodium encounters several
obstacles at each of its developmental stages and spatial
transitions within the mosquito. One of the major barriers is
the midgut epithelium, within which Plasmodium is attacked by
the mosquito’s immune system. These defense reactions
involve a variety of immune components that reduce the
parasite population by several-fold and have mainly been
described at the stage of ookinete invasion and beyond [1].

Survival of ookinetes in the midgut epithelium has been

Activation of immune gene transcription has also been
documented prior to ookinete invasion, suggesting that other
constituents of malaria-infected blood are sensed by the
immune surveillance system and can thereby elicit immune
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shown to depend on the action of agonists and antagonists.
Recent studies have identified two infection-inducible puta-
tive pattern recognition receptors, Tepl and LRIMI, that can
mediate Kkilling of ookinetes in the midgut epithelium; in
contrast, two c-type lectins, CTL4 and CTLMAZ2, can protect
the ookinetes from destruction [2]. Other known factors with
activity against the midgut stages of Plasmodium include nitric
oxide, the antimicrobial peptides gambicin and cecropin, and
an apolipophorin precursor RFABG [3-7]. Recent studies
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Synopsis

The malarial parasite Plasmodium has to traverse the gut wall of the
Anopheles mosquito in order to complete its lifecycle and to be
transmitted between hosts. At the midgut stage of infection, the
mosquito activates immune responses to eliminate most invading
parasites. The features of these immune responses are not very well
understood and have mainly been examined using the rodent
parasite model P. berghei. Here the authors investigated the
relationship between the Anopheles gambiae responses against
the human pathogen P. falciparum, the rodent parasite P. berghei,
and bacterial infections, at both the gene expression and functional
levels. The mosquito responses against these pathogens were quite
diverse, and the defense against the two malaria parasite species
involved both common and species-specific components. Malaria-
infected blood was sufficient to activate anti-Plasmodium immune
responses, even in the absence of midgut invasion. Through this
mechanism, the mosquito can initiate its defense against Plasmo-
dium prior to invasion of the gut. Mosquito genes that could
negatively influence Plasmodium development were also capable of
regulating the resistance to bacterial infection, but several of the
antibacterial genes had no effect on Plasmodium; thus, the mosquito
apparently utilizes its antibacterial defense systems against the
malaria parasite.

responses [9]. The ingested malaria-infected blood differs from
noninfected blood in a number of ways, including the presence
of blood-stage and gametocyte-stage Plasmodium and their
metabolites, and of vertebrate infection-responsive molecules,
as well as higher free-radical concentrations [10,11]. These
biochemical and cellular factors can be expected to influence a
variety of biological processes in the mosquito, including the
activation of immune responses [3]. Midgut invasion by
ookinetes is accompanied by apoptosis of the invaded
epithelial cells, which are expelled into the lumen [12].

Most studies addressing A. gambiae responses to Plasmodium
infection have utilized the rodent Plasmodium berghei model
system, which is more amenable to experimental manipulation
than is the human parasite P. falciparum. However, A. gambiae is
not the natural vector of P. berghei, for which it is significantly
more permissive than for P. falciparum: P. berghei frequently
produces more than 300 oocysts on the midgut epithelium,
while P. falciparum rarely produces more than two to five
oocysts, either under laboratory conditions or in nature [13,14].
At present, the dependence of these infection levels on the
mosquito’s immune responses or other factors is not known. At
the cellular level, the ookinete invasion route and midgut
epithelial response appear to be similar for the two parasite
species, but the process may proceed more rapidly for P.
Salciparum at some stages because of its ~3 °C higher temper-
ature of infection [15,16]. The mosquito’s immune system is
most likely predominantly devoted to combating the bacterial
and fungal pathogens present in its external environment and
intestinal flora, and it is unclear whether defense mechanisms
have evolved that are specific for Plasmodium [17,18].

We have used an experimental design involving wild-type
(wt) and transgenic mutant parasite strains of both P.
falciparum and P. berghei species to analyze and compare A.
gambiae tesponses, at the global transcript level, to the
invading ookinetes of both human and rodent parasite
species and to human malaria-infected blood lacking invasive
ookinetes. A similar strategy has been used previously [7] to

@ PLoS Pathogens | www.plospathogens.org

Anopheles Anti-Plasmodium Defense

analyze midgut transcriptomic responses to P. berghei ooki-
nete invasion; however, this previous study was more broadly
focused on midgut responses relating to a variety of
biological processes rather than the specific immune
responses to the parasite. We have furthermore compared
the anti-Plasmodium immune responses with those acting
against bacteria with RNAi gene-silencing assays. Our analysis
provides insight into the species specificity of the immune
defense against Plasmodium and its relationship to the
mosquito’s antibacterial defense system.

Results

Responses to Invasion of the Midgut Epithelium by P.
falciparum and P. berghei Ookinetes

Ookinete-stage Plasmodium invades the mosquito midgut
epithelium over a 10-h period beginning about 20 h after
ingestion of infected blood. The peak of P. berghei (21 °C) and
P. falciparum (24 °C) ookinete invasion occurs at 24-26 h after
ingestion [17,19]. To assess the impact of ookinete midgut
invasion on the mosquito transcriptome, we compared gene
expression in the gut and carcass tissues of mosquitoes that
had fed on a wt Plasmodium-infected blood and those that had
fed on blood infected with an invasion-incapable circum-
sporozoite- and TRAP-related protein (CTRP) knockout
(CTRP") Plasmodium mutants. The experimental strategy used
to assay the mosquito responses to ookinete invasion and
infected blood is presented in Figure 1A. Identical assays with
wt Plasmodium and CTRP knockout mutants were conducted
with P. falciparum and P. berghei, allowing comparison of the
mosquito responses to midgut invasion by ookinetes of the
two parasite species. The entire predicted A. gambiae tran-
scriptome was screened in these assays using a 60-mer
oligonucleotide microarray (Agilent Technologies, Palo Alto,
California, United States). The gene regulation threshold
cutoff was determined to be 1.74-fold, which corresponds to
0.8 in log2 scale, according to [20].

P. falciparum ookinete invasion triggered the regulation of
471 genes in the midgut and carcass tissues, corresponding to
~3.4% of the mosquito transcriptome; P. berghei ookinete
invasion elicited changes in the expression of 1,102 genes,
corresponding to 8.1% of the mosquito transcriptome. The
mosquito midgut and carcass responses to P. falciparum and P.
berghei ookinete invasion were remarkably divergent, with
only limited overlap in gene expression (Figure 1B-1D); for
example, the overlap in transcriptional responses to the two
parasite species in the midgut involved only 16 induced and
five repressed genes. Midgut invasion by the P. falciparum
ookinetes elicited less profound gene regulation than P.ber-
ghei. Specifically, P. falciparum induced 265 genes and re-
pressed 65 genes in the midgut, while P. berghei invasion
produced alterations in more than three times as many genes,
inducing 623 and repressing 292 (Figure 1B-D).

P. falciparum induced more putative immune genes in the
mosquito midgut than did P. berghei (48 versus 35; Figure 1C
and 1D). It is possible that a proportion of the P. berghei
induced genes is implicated in as-yet-unknown defense
mechanisms and has therefore not been assigned to the
immunity class. In general, fewer genes were induced or
repressed in the carcass by ookinete invasion of the midgut
(141 for P. falciparum versus 187 for P. berghei; Figure 1B-D).
Quantitative RT-PCR assays of the expression patterns of 15
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Figure 1. Experimental Design and Global Gene Expression Patterns at
the Different Conditions of Infection

(A) Model outlining the experimental design for assessing responses to
the invading ookinetes (indicated as P.f. ookinete [P.f. 0.] and P.b.
ookinete [P.b. 0.] in (B) and (C) by comparing transcription between
mosquitoes fed on blood infected with a wt Plasmodium strain and those
fed on blood infected with the invasion-incapable mutant Plasmodium
strain CTRP™. Responses to infected blood (indicated as P.f. blood in [B]
and [C]) in the absence of ookinete invasion were assessed by comparing
gene expression between mosquitoes fed on blood infected with the P.
falciparum invasion-incapable mutant and mosquitoes fed on non-
infected (no Plasmodium) blood.

(B) Gene regulation in midgut and carcass tissues triggered by P.
falciparum ookinete invasion (P.f. ookinete), P. berghei ookinete invasion
(P.b. ookinete), and P. falciparum strain CTRP -infected blood lacking
invasive ookinetes (P.f. blood). Colored arrows indicate genes that are
up- or down-regulated in the various unique and overlapping sections.
(C) Proportions and numbers of genes belonging to distinct functional
classes which were up- or down-regulated by the various stimuli in the
gut and carcass tissues. DIV: diverse; R/T/T: replication, transcription,
translation; MET: metabolism; TRP: transport; CY/ST: cytoskeletal,
structural; PR/DI: proteolysis, digestion; MIT: mitochondrial; RE/ST:
oxidoreductive, stress-related; APO: apoptosis; P/A: putative immunity
and apoptosis. Gene functions were predicted based on Gene Ontology
data and manual sequence homology searches.

(D) Same as in (C), but also including genes of diverse functions (DIV) and
unknown functions (UKN).

DOI: 10.1371/journal.ppat.0020052.g001

control genes, under several experimental conditions, vali-

dated microarray assays (Figure S1; Table S4; Protocol S1).

Responses to Malaria-Infected Blood in the Absence of
Midgut Invasion

The impact on the mosquito midgut and carcass tran-
scriptomes of P. falciparum-infected blood that lacked
invasive ookinetes was investigated by comparing gene
expression between mosquitoes that had fed on blood
infected with the CTRP knockout mutant P. falciparum strain
(incapable of ookinete invasion; used as experimental sample)
and mosquitoes fed on non-Plasmodium—infected blood (used
as a reference sample) at 24 h after ingestion, when ookinete
invasion of the midgut normally takes place (Figure 1A). The
mosquitoes were clearly capable of sensing and discriminat-
ing between infected blood and non-infected blood.

Ingestion of CTRP knockout-infected blood elicited
changes in the expression of as many as 1,896 genes in the
midgut and carcass tissues, corresponding to approximately
14% of the A. gambiae transcriptome (Figure 1B-1D; Tables S1
and S2). The magnitude of the gene regulation in the midgut
in response to P. falciparum CTRP knockout mutant-infected
blood was comparable to that induced by P. berghei ookinete
invasion (844 versus 915 genes). Six times as many genes
(1,052) were affected in the carcass tissues as were regulated
by P. berghei ookinete invasion (187). The 487 induced and 357
repressed genes in the midgut tissue represented a variety of
functional classes, including 51 putative immune genes.

Molecular Immune Responses

Invasion of the midgut epithelium by P. falciparum and P.
berghei ookinetes as well as infected blood containing non-
invasive ookinetes induced putative immune-related genes.
Genes that showed significant up- or down-regulation (at
least 1.74-fold) in at least one experiment were grouped into
clusters according to the specificity of their regulation for the
midgut tissue and/or carcass. We divided these 157 transcripts
into seven groups based on their expression patterns and
tissue specificity (Table 1).
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Table 1. Grouping of Putative Immune Genes into Seven Distinct Groups, According to their Regulatory Significance in the Midgut and

Carcass Tissue

Group Functional Name Pf. P.b. P.f.CTRP P.f. P.b. P.fCTRP E.c. S.a. RNAi RNAi RNAi RNAi
Class Gut Gut Gut Carc Carc Carc P.f. P.b. E.c. S.a.
Group 1 PRR E20083:AgMDL1 1.7 —-10 -06 0.6 0.2 0.0 1.5 03 (—)* NS (=)* (—=)*
E16963:AgMDL2 14 -15 -05 1.1
E16857:TEP1 21 03 0.3 0.6 0.2 1.5 23 —07 ()¢ &5 E* E*
E21216:TEP4 0.9 0.4 0.5 0.1 0.1 1.9 1.7 1.6 NS (—)* (—)*
E16853:TEP6 1.1 —-02 02 0.1 0.5 0.5 02 —06
E13026:TEP12 13 —-03 -02 0.6 0.2 0.5 03 -07
E19727:TEP14 14 01 —0.1 0.2 0.1 0.5 1.8 —04
E19522:TEP15 14 -03 -09 0.0 -0.5 1.0 1.8 1.0
E21282:TEP16 1.8 0.1 —-0.5 0.3 0.0 1.8 1.8 —05
E29396:FBN51 1.6 0.9 0.7 -0.8 0.6 -04 12
E11252:FBN8 19 —04 0.1 0.4 0.8 0.1 —-01  —01 (—)* (=F —Jye —Jy?
E11248:FBN9 1.6 0.0 0.8 0.2 0.0 1.7 25 07 (—)* (—)* —)* —)
E21822:LRRD7 30 -1.0 1.1 22 —11 (—)* (—)* —)* —)*
E19113:LRRD4 17  —02 0.7 -01  —03 22 0.9 0.5
E15066:LRRD5 22 07 0.1 —-0.6 0.0
E14959:LRRD8 1.3 —06 —03 09 06
E19115:LRRD9 1.7 0.4 -02 02 23 15 —02
E06959:AGBP1 1.8 —-12 —-08 0.7 NS NS (—)*
E12234:CTLGA3 1.5 0.2 0.2 0.4 0.1 22 08
SPC E20941:SP PPO ACTIVATE 1.8 0.2 -0.7 —-1.1 23  -03
E13584:SP 14D2 CLIPB1 1.5 0.1 0.2 01 08 0.7 21 —02
E23726:SP CLIPB4 0.9 0.9 0.5 01 05 2.0 0.8 0.4
E12706:SP CLIPA9 1.4 0.7 0.5 0.3 —-0.4 1.6 1.8 —04
E12642:SP CLIPB13 1.1 —-04 —-05 0.0 -0.3 0.3 1.7
E15815:SP CLIPB15 12 —03 0.1 0.3 0.3 0.9 1.8 02
E11374:SP SNAKE-LIKE 16 -10 1.1 0.0 0.2
E20158:SP CLIP1 1.8 —-07 -03 0.3 0.4 1.3 19 -02 (—)* (—)* (=)* (—=)*
E08842:SP CLIP2 1.0 0.0 0.6 -02 —04 1.7 0.9 1.0
E21812:SERPIN2 12 —02 0.2 04 03 0.9 2.1
E18532:PACIFASTIN 1.4 0.2 0.4 0.0 0.3 2.7 1.8 0.3
M E02437:PPO3 1.1 —-1.0 —0.1 0.0 05 —02 -08 05
E14433:DCE LIKE1 0.9 0.3 -0.2 0.2 —-04 0.3 08 0.2
E20450:DCCE2 2.8 1.9 0.2 —-0.3 1.6 1.8 —0.1
AMP E21028:IRSP1 3.1 —-1.5 -08 (—)* (—)* (—)* (—)*
E19220:IRSP2 23 —-04 22 1.3 0.4 2.1 0.6 1.1 NS NS (—)* (—)*
E09630:IRSP3 23 0.0
E19451:IRSP5 29 -16 2.7 0.6 NS (—-)* (—)* NS
E17888:LYSOZYMET1 29 0.8 -02 -18
E18395:LYSOZYME4 13 —05 —0.1 0.0 0.7
DIV E10802:CUT4 0.9 0.1 00 —04 —1.
E13822:CUT5 1.2 1.0 —-04 -1.0 -09
E26190:CUT9 08 —03 0.1 0.4
E21949:TRANSFERRIN 14 0.1 0.4 —-04 08 33 1.5 0.4
E28106:APOD 14 —-08 —0.1 0.5 —-04 0.5 19 —-04 (—)* (—)* (—)* (—)*
E08856:F SPONDIN 27 —-10 —02 -02 08 1.1 24 —04
Group 2 PRR E20281:FBN18 0.2 1.1 -0.2 0.3 0.9 —-0.6 -07 —-04
E08964:FBNa2 0.2 1.1 —-0.6 -0.2 0.9 0.9 03 04
E20316:FNBN33 0.0 1.0 0.5 0.0 —0.1 0.5 0.5 -0.2
E11478:FBN-LIPASE —-0.4 1.0 0.2 0.2 0.3 0.4 00 04
E15624:GALES5a 0.2 1.1 —01 0.3 02 04 0.2 0.1
E28711:GALE5b -0.2 1.6 —02 —0.1 0.3 —-0.2 —0.6 0.6
E17035:GNBPB3 -0.2 0.9 0.3 —0.1 0.8 —-2.1 -1.0 —-06
E16221:GNBPB4 —0.2 1.0 0.0 -03 —0.1
E07504:LRRD1 —0.1 16 —0.1 -05 03
E17816:LRRD2 —0.1 0.8 0.4 0.2 0.3 1.0 —0.5
E14905:LRRD10a 0.0 13 —02 0.0 03 08 01 -12
E15569:LRRD10b 0.0 1.0 0.1 -04 02
E11337:LRRD11 -0.2 1.0 —-06 -1.0 -07
E11311:LRRD14 —0.2 1.1 02 0.0 03 05 14 0.0
E19036:LRRD17 09 -0.1 0.2 0.0
E15763:LRRD20 —0.1 12 0.3 13 —14
E29002:PGRPLC 1-3 0.1 1.2 -03 04 —-03
E12978:PGRP AMIDASE 0.0 0.8 1.4 —0.1 0.0 —-0.5 0.1 0.2 NS NS (—)*
E12979:PGRPS3 0.0 14 1.0 02 —0.1 1.7 -03 13
E22427:SRB1 SR BI 0.2 14 05 -03 —-09
E12288:SCRBQ2 0.4 1.2 0.6 0.1 0.3 0.6 -02 —-06
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Table 1. Continued

Group Functional Name pf. P.b. P.f.CTRP P.f. Pb. P.fCTRP E.c. S.a. RNAi RNAi RNAi RNAi
Class Gut Gut Gut Carc Carc Carc P.f. P.b. E.c. S.a.
SPC E15833:SERPIN1B —0.1 08 0.2 08 —05

E10507:SERPINS 00 08 04 -04 —07 06 —0.1
E19065:SP INHIBITOR KAZ1 -02 11 0.0 -02 0.1
M E16955:PPO1 —-0.2 1.1 —-06 -0.9 0.4
A E18439:LYSOZYME2 -04 21 1.1 09 0.1
DIV E13340:CUT11 0.2 1.1 0.2 0.2 00 —-04 -0.7 —-05
E23320:CUT12 —0.1 16 —0.2 0.5 05 -06 -08 -08
E10057:CUT8 -04 11 0.4 -06 —1.1
Group 3 PRR E28194:A2M LIKET -05 03 1.2 01 -02 -05 -02 -02
E11296:FBNa4 0.9 08 -07 —0.1 -04 -02
E21318:FBN24 -06 02 15 -0.1 -03
E13811:FBN36 0.2 0.4 1.0
E22867:FBN50 —0.2 1.6 04 -02 1.9 0.7 —1.1
E21166:CTL4 00 -02 16 -01  -07 1.4 24 02 E*
E16937:GNBP LIKE 1.0 0.0 0.3
E13948:PGRPLB -03 03 1.5 —0.1 0.1 0.2 -09 -—12
E21511:LRRD,FN- TYPE Il -04 06 08 -03 -08
E23264:LRRD13 00 -04 10 0.2 0.0 0.0 -02 —12
E21533:LRRD15 —-04 0.9 03 -09
E04718:LRRD18 —-03 0.3 0.9 -05 —-07
E10921:LRRD19 0.4 0.4 1.2 —0.1 0.5 0.5 1.2 13
E27057:DSCAM 01 —0.1 0.8 12 03
SPC 18122:SP CLIPB14 0.5 1.4 23 06
E21259:SP CLIPC7 03 -04 18 —0.1 0.8 0.6 18 09
E13861:5P5 0.0 1.2 —0.2 0.2
E15886:SP SNAKE-LIKE2 0.1 0.8 24 0.7 0.5
I E20964:IKKB -1.0 0.9 19 00
A E13255:GAMBICIN 0.1 3.2 -07 NS (-)* NS (=)
E25070:LYSOZYME3 -02 -03 1.1 14 —-1.0
M E22659:DCE LIKE2 0.1 07 09 14 —07
E29284:DCCE1 0.1 0.4 1.2 04 0.6 0.9 1.5 —-08
P E10572:CED 1.6 -1.0 08
D E27865:CUT10 05 04 08 -05 —0.1
Group 4 P E29579:FBNa5 0.5 0.8 0.6 0.3 01 1.1
E17928:CTLMA4 09 0.1 0.6 —-0.7 1.2
M E22058:HECY1 1.1 —02 -04 00 NS NS (—)*
E22055:HECY2 09 -03 -02 -03 -06
Group 5 PRR E18121:TEP9 0.1 1.2 0.3 -02 -07
E02335:FBN24 0.6 13 0.6
E26094:FBN15 0.3 13 —-03 0.0
E12652:SCRB7 0.7 1.1 01 —0.1
A E20428:NOS 12 -1 04 06
Group 6 PRR E14456:FBN (EGF) 0.1 0.6 13 1.0 0.2
E22610:FBNa6 05 07 03 04 -05 1.0 19 -07
E08288:FBN5 0.0 0.2 0.4 0.1 0.8 0.9 —03 0.7
E13041:LRIM1 0.7 0.2 02 -0.1 1.6 04 -06 E*
E12396:LRRD -07 —08 1.5 -0.1 —06
E14508:LRRD19 0.5 0.0 0.3 0.0 0.3 0.9 1.8 0.0
E17320:PGRPS1 —-02 —0.2 0.3 -04 09 1.0 01 —-02
SPC E17184:SP CLIPD7 0.0 0.2 0.9 02 -02
E10201:SP INHIBITOR KAZ3 —0.6 -12  -1.0 1.8 0.6
E13422:SP SNAKE-LIKE3 03 -04 1.5 00 -02
E07878:SP CLIP3 00 03 1.4 —-05 0.1
E27174:SP CLIP4 05 —0.1 0.2 00 0.1 1.8 21 —-03
E26523:SP CLIP5 0.5 2.1 -07 —15
E21796:5P22D 0.3 0.1 0.3 —0.1 0.0 13 21 -02
E07723:SRPN3 0.5 —0.1 01  —0.1 1.6 1.0 03
E04662:SRPN4 00 08 03 —0.1 0.0 1.0 15 —04
AMP E11995:CECROPIN 3 —03 0.3 -12 05 1.7 —0.7
E15621:DEFENSIN 1 —-0.2 -05 04 26 -0.2 12
E26058:NOS -02 -02 1.0 -03 04
E25363:NOS 0.0 0.6 0.8 —0.6 0.0
DIV E22116:FERRITIN 0.0 0.3 -0.1 —02 1.0 2.2 12
E14280:CUT14 —0.1 0.9 1.0 00 -03
E10987:A-2-M RECEPTOR ASSOC 0.4 0.0 1.9 0.0 0.0
0517 June 2006 | Volume 2 | Issue 6 | e52
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Table 1. Continued

Group Functional Name pf. P.b. P.fCTRP P.f. P.b. P.f.CTRP E.c. S.a. RNAi RNAi RNAi RNAi
Class Gut Gut Gut Carc Carc Carc P.f. P.b. E.c. S.a.
Group 7 (1) PRR E17003:AgMDL3 0.5 -13 1.5 -0.2
E16922:AgMDL4 -1.6 0.2 —0.1 0.7 0.5 —05 0.
E28973:AgMDL5 0.1 -1.0 0.4 —-07 -03
E16849:TEP7 —-06 —1.0 0.1 —0.6 3.0
E20938:CTLMA6 —-02 -04 -10 01 03 -05 03
E17694:GNBPB1 0.1 -1.1 0.1 0.2 13 0.1 0.1 (—)* (=)* NS
E05042:LRRD12 -09 0.4 0.2 02 —-07 0.5 -02 -03
E14342:LRRD16 -0.8 0.4 —-06 —0.7
E14345:LRRD12 0.7 02 -09 —-04 0.1 0.5 —-04
SP E10496:SP CLIPB12 03 -17 04 —-05 0.4
E28244:SP INHIBITOR KAZ2 04 —14 06 -1.1 0.1
E24778:SP SNAKE-LIKE1 -1.0 0.7 -0.7
DIV E16631:APOLIPOPHORIN [lI 0.1 -26 0.7 -15 -03 -14
E19994:F SPONDIN 00 -04 -09 0.3 0.9
E12780:CUT3 0.1 -09 0.2 27 -0.1
E18232:CUT6 03 01 -10 0.2 05 —12 -0.1 —07
E22552:CUT7 03 -09 0.1 —0.1 —03 0.9 27 -0.2
Group 7 (2) PRR E18120:TEP8 —1.2 —0.3
E11308:FBN35 —06 —1.1 —06 00
E21372:SCRB7 02 05 -—15 —04 —0.1
SP E21354:SP CLIP1 02 -09 0.2 23 -01
A E25996:DEFENSIN 2 04 -03 -14 —-09 —05
DIV E11541:CUT13 0.0 0.4 0.4 0.0 02 -09 —-04 —-04
E26827:CUT15 -12  —0. -08 -07
E18253:CUT16 —-08 08 —-0.2 0.0
E13093:SAPOSIN B 0.0 05 -20 00 -03

Gene IDs have been abbreviated by deleting the “NSANGT000000” part that follows the “E.” Numbers indicate Log2-transformed -fold differences in regulation between compared
samples. Groups 1, 2, and 3 consist of genes with significant induction in the midgut tissue upon P. falciparum ookinete invasion (P.f.0.Gut), P. berghei ookinete invasion (P.b.0.Gut), and at
24 h after feeding on infected blood lacking invasive ookinetes (P.f.b.Gut), respectively. Groups 4, 5, and 6 consist of genes with specific induction in the carcass tissue upon P. falciparum
ookinete invasion (P.f.o.Carc), P. berghei ookinete invasion (P.b.o.Carc), and at 24 h after feeding on infected blood lacking invasive ookinetes (P.f.b.Carc), respectively. Group 7 consists of
genes with diverse and mostly repressed regulation under the various conditions and in different tissues. Expression profiles of genes in E. coli- and S. aureus-challenged mosquitoes, as
compared to PBS-injected mosquitoes, are designated E.c. and S.a., respectively. Genes within each group have been ordered according to their putative functional class (second column).
PRR(P), pattern recognition receptors; SPC(S), serine proteases cascades; MEL(M), melanization; AMP(A), proteins mediating antimicrobial activity; DIV(D), diversified and novel; IMM(l),
immune signaling; PHA(P), phagocytosis. Effects of genes, subjected to RNAi gene silencing, on Plasmodium development and mosquito survival after bacterial challenge are shown on
the right and are indicated as RNAi P.f, RNAi P.b.,, RNAi E.c. and RNAi S.a. (-)*: the repressive effect of genes on parasite and bacterial survival, with the asterisks indicating statistically
significance at the 95% confidence level. NS, nonsignificant difference; E*, significant difference effect based on other published studies.

DOI: 10.1371/journal.ppat.0020052.t001

Groups 1, 2, and 3 consisted of 45 genes that were induced
in the midgut by P. falciparum ookinete invasion, 29 genes
induced by P. berghei ookinete invasion, and 25 genes induced
by ingested infected blood lacking invasive ookinetes (the
CTRP mutant), respectively. While P. falciparum ookinete
invasion induced almost twice as many immune genes as did
the other two infection conditions, the distribution of
functional classes was quite similar among the three groups.
Almost half of the genes in each group encoded putative
pattern recognition receptors that belong to the MD2-like
protein family (AgMDL), the fibrinogen domain immunolec-
tin family (FBN), the thioester-containing protein family
(Tep), the Gram-negative bacteria binding protein family
(GNBP), the peptidoglycan recognition protein family (PGRP),
the C-type lectin family (CTL), gal-lectin family (GALE), the
scavenger receptor family, the leucine-rich repeat domain
protein family (LRRD), and the bacteria recognition family
(AGBP) [18,21-29]. We suggest that some of these proteins are
required for the recognition of Plasmodium and subsequent
activation of defense reactions. Other transcripts in groups 1-
3 encoded immunity-related serine proteases and serine
protease inhibitors that are most likely involved in immune
signal amplification cascades. Several transcripts encoding
enzymes involved in melanization reactions were induced in
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the midgut. Finally, lysozymes and the mosquito-specific
antimicrobial peptide gambicin (E13255) were induced.

Groups 4, 5, and 6 consisted of immune genes that were
induced in the carcass tissues, and group 7 consisted of a
variety of immune genes that were mostly repressed under
the various experimental conditions.

The proportion of genes induced in invaded cells may be
larger than that seen for the entire midgut tissue, because a
relatively small number of cells is invaded by ookinetes; we
therefore suspect that we might have missed genes that are
highly expressed in invaded cells but are diluted out by the
rest of the midgut. Hemocytes that are attached to the midgut
wall but difficult to separate by dissection have been shown to
express Tepl, LRIM1, and other effectors that act against
Plasmodium in the midgut [2,30]. Some of the gene activation
that we detected in infected midgut samples is therefore likely
to be derived from hemocytes. Preliminary studies have shown
that as many as 30 of the 157 putative immune genes listed in
Table 1 are highly expressed in hemocytes (Strand and
Dimopoulos, unpublished data). Many of the immune genes
identified here have also been found to be induced in the
midguts of A. gambiae refractory L3-5 and susceptible G3 and
4A-RR strain mosquitoes upon P. berghei infection [7,17,31].

Our analyses identified several novel infection-responsive
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Figure 2. Effects of Gene Silencing of 11 Selected Putative Immune
Genes on P. falciparum and P. berghei Infection

The gene silencing efficiency values (KD %) are displayed in Table S6. The
frequency distribution of oocysts pooled from three independent assays
is displayed, with bars indicating the percentile of mosquitoes with the
corresponding oocyst number in the range indicated on the x-axis. Equal
numbers of midguts from all three experiments in each dataset were
pooled. Bars with asterisks indicate the statistically significant differences
at the 95% confidence level, based on the p value from two independent
probability tests, the KS and Mann-Whitney tests (Tables S5 and S6). n:
total midguts assayed; MI: mean intensity of infection (oocysts number);
S.E.: standard error of mean intensity; p value: from Mann-Whitney test.
DOI: 10.1371/journal.ppat.0020052.g002

genes that we suggest are components of the mosquito’s
immune system; these are discussed in detail in the Support-
ing Information (Protocol S1). Data concerning other bio-
logical processes in the mosquito that are affected by
ookinete invasion of the midgut and ingestion of malaria-
infected blood are detailed in the Supporting Information
(Protocol S1).

Determinants of Mosquito Resistance to Infection

We assume that the mosquito’s immune response is largely
regulated at the level of mRNA abundance [2,7,17,32]. Based
on this assumption, we predict that many of the infection-
stimulated immunity-related genes are necessary to defend
against Plasmodium. We took an RNAi-based reverse genetic
approach to test the role these induced genes played in
fighting a Plasmodium infection. Transcripts of selected genes
were targeted with double-strand RNAs (dsRNAs) prior to
experimental infection with the pathogens to assess the
potential effects of the transcript depletion on the infection
phenotype. Nineteen genes were selected on the basis of their
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expression patterns and putative functions in innate im-
munity, as predicted by their sequences. The efficiency of
RNAi-mediated transcript depletion was verified by quanti-
tative real-time RT-PCR (Table S6 in Results S1). These 19
genes encode putative pattern recognition receptors
(AgMDL1, TEP1, TEP4, FBNS8, FBNY9, FBN39 [E21380]),
LRRD7, AGPB1, PGRP-AMIDASE, GNBPBI; the serine
protease SPCLIP1; the antimicrobial peptide gambicin; the
hemocyanin HECY1, the apolipoprotein APOD; the kinino-
gen KINT; and four short secreted peptides, IRSP1, IRPS2,
IRSP3, and IRSP5. Two genes were tested but did not display
any significant effects (KIN1 [E14131] and IRSP3 [E09630])
(unpublished data). Tepl was used as a positive control as
silencing of Tepl in a susceptible G3 A. gambiae strain results
in an up to 7-fold increase in P. berghei infection [30]. All
genes were used in challenge experiments with P. berghei while
only a subset of genes were tested with P. falciparum because of
the difficulty of performing these experiments. Detailed
information on the genes selected for gene silencing assays
is presented in the Supporting Information (Protocol S1).

Anti-Plasmodium Defense Activities

Silencing of 11 of the transcripts (Tepl, AgMDLI, FBNS,
FBNY, FBN39, SPCLIP1, APOD, IRSP1, IRSP5, LRRD7, gambicin)
resulted in increased Plasmodium levels, in both the present
work and previous studies [22,23,30,33-36] (Dimopoulos,
unpublished data; Figures 2 and 3; Tables S5 and S6). The
effects of gene silencing on the susceptibility to Plasmodium
infection were evident in the differences between the gene-
silenced and green fluorescent protein (GFP) dsRNA-treated
control mosquitoes in terms of the proportion of mosquitoes
exhibiting a very low number of oocysts and the proportion
exhibiting exceptionally high oocyst numbers (Figures 2 and
3). Although most of these anti-Plasmodium factors were
induced in the midgut tissue, several were also induced in
carcass tissues (Table 1).

Seven genes that strongly influenced both P. falciparum and
P. berghei development, Tepl, APOD, FBNS, FBN9, SPCLIPI,
IRSPI, and LRRD?7, were all induced in the mosquito midgut
upon P. falciparum ookinete invasion but not in P. berghei—
infected mosquitoes (Figure 2 and Table 1). Silencing of
AgMDLI and FBN39 showed a more pronounced effect on P.
falciparum development, while silencing of the gene encoding
the antimicrobial peptide gambicin and an infection-respon-
sive secreted peptide gene IRSP5 had a specific effect on the
resistance to P. berghei infection.

Though P. falciparum appeared to elicit a stronger immune
response at the gene transcript level than P. berghei, knock-
down of most of the genes that were specifically induced by P.
falciparum ookinete invasion surprisingly also affected P.
berghei levels.

Relationships between Anti-Plasmodium and Antibacterial
Immune Responses

To assess the relationships between the transcriptional
immune responses to Plasmodium and other immune chal-
lenges, we compared the gene expression in mosquitoes
injected with FEscherichia coli and Staphylococcus aureus to
Plasmodium-infected mosquitoes. Of the 132 genes that were
induced by Plasmodium ookinete invasion or infected blood,
49 were also induced by E. coli challenge, and 12 genes were
induced by S. aureus challenge. The E. coli infection-responsive
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Figure 3. Comparison of Anti-Plasmodium and Antibacterial Activities for
16 Selected Immune Genes

(A) Effect of gene silencing on P. berghei development, as described in
Table S6. For ease of comparison, only the mosquito portions with the
highest P. berghei oocyst numbers (>200) are presented. The effect of
gene silencing on bacterial infection is presented as the mosquito
survival at d 6 after challenge with E. coli and S. aureus. After 6 d, the
survival rates stabilized and did not change significantly until age-related
mortality ensued. The baseline survival rate was set to that of the
challenged GFP dsRNA-treated control mosquitoes (~70%). Standard
error bars with asterisks indicate the results of two-way analysis of
variance, with p < 0.05 considered statistically significant. The gene
names are numbered for ease of comparison.

(B) Mosquito survival rates for each silenced gene after challenge with E.
coli and S. aureus. The numbers in parenthesis correspond to the
numbers in (A). Open squares, dsGFP control-treated mosquitoes
challenged with E. coli; solid squares, dsGFP control-treated mosquitoes
challenged with E. coli; open triangles, gene-silenced mosquitoes
challenged with E. coli; and solid triangles, gene-silenced mosquitoes
challenged with S. aureus. Standard error bars from three replicate
experiments are included for each time point.

DOI: 10.1371/journal.ppat.0020052.g003
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transcripts included eight genes (Tepl, FBNY, FBN39, LRRD7,
CTL4, SPCLIPI, IRSP5, and APOD) that can influence
Plasmodium development and resistance to bacterial challenge
(Table 1 and Figures 2 and 3; presented below). The overlap
between Plasmodium- and bacteria-elicited immune gene
regulation supports the hypothesis that the mosquito is
utilizing some of the same immune pathways and mechanisms
for defense against these two classes of pathogen.

All 19 genes that were tested for their effect on P. berghei
development through RNAi-mediated depletion were also
able to influence mosquito resistance to bacterial challenge
and can therefore be considered as components of the
antibacterial defense. The anti-Plasmodium factors Tepl,
gambicin, and NOS have been shown in previous studies to
mediate anti-Plasmodium and antibacterial defenses [3,4,30].
Five genes encoding IRSP2, Tep4, PGRP-AMIDASE, AGBPI,
and HECY1 were specific for antibacterial defense and had
no significant effect on the Plasmodium infection (Table 1 and
Figure 3). Three genes that had effects on mosquito survival
upon S. aureus challenge, PGRP-AMDISAE, AGBPI, and
HECYI, had no significant effects on survival after E. coli
challenge or infection by Plasmodium, whereas two genes,
IRSP5 and GNBPBI, were more specific for E. coli and P.
berghei. Only one gene, gambicin, could influence resistance to
both P. berghei and S. aureus.

Discussion

Both Plasmodium ookinete invasion and other factors in
infected blood serve as triggers of the immune and other
responses by the Anopheles mosquito. The diverse midgut
responses to P. falciparum and P. berghei infection can be
attributed to differences in infection level and in the biology
of interaction between the two parasite species and the
mosquito [13,37]. Achieving comparable infection levels for
the human and rodent parasites in A. gambiae, through
artificial manipulation of infections, would be difficult and
not appropriate for the scope of this study, which addresses
the relevance of analyses with a laboratory experimental
model. The unnaturally high infection levels in P. berghei are
useful for the experimental analysis of gene expression
patterns that may be undetectable at the low infection levels
of P. falciparum. An example of this phenomenon is the
induction of cytoskeletal genes in this and other studies upon
P. berghei infection, that have been shown to act as both
agonists and antagonists of Plasmodium [7,38]. The smaller
number of induced putative immune genes upon P. berghei
infection may indicate that the mosquito’s immune surveil-
lance system is more capable of sensing P. falciparum, or P.
berghei may in some way suppress the mosquito’s immune
response, and that could partly explain the significantly
higher infection levels of the rodent parasite in A. gambiae.

While the midgut is the primary site of response to the
invading ookinetes, the observed changes in gene expression
in the carcass tissues, at a time point when the ookinetes are
in the midgut epithelium, most likely reflect intertissue
signaling from the midgut epithelium to hemocytes and fat
body cells, possibly through cytokine-like molecules. Alter-
natively, parasite-derived molecules that diffuse into the
hemolymph may affect mosquito biological processes in the
carcass tissues of the mosquito [24].

The broader effect of infected blood on gene regulation, as
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Figure 4. AgMDL Gene Family

(A) A. gambiae MD2-like genes encode proteins ranging from 130 to 162
amino acids and include signal peptides and an ML lipid recognition
domain. Alignment of AgMDL1 with the human homologues MD1, MD2,
and Npc2, the mite allergen Der-P2, and the Bombyx mori promotor
protein (BmPP). Two conserved cysteines, Cys95 and Cys105, that are
essential for binding to TLR4 are indicated with asterisks.

(B) Phylogenetic tree of MD2-like proteins from A. gambiae, D.
melanogaster, B. mori, and humans. 1:1 orthologs and ortholog groups
are highlighted with filled circles. Ag, Anopheles gambiae; Dm, D.
melanogaster. The accession numbers for these genes are listed in Table
S7.

DOI: 10.1371/journal.ppat.0020052.g004

compared to ookinete invasion of the midgut, can be
attributed to the exposure of all the midgut cells to the
infected blood components, while only a subset of cells are
invaded by the ookinetes, and indicates the extensive
qualitative differences between infected and noninfected
blood [10,11]. The capacity to mount an immune response to
infected blood, in the absence of ookinete invasion, is likely
beneficial in controlling Plasmodium infection. This strategy
would allow for enrichment of anti-Plasmodium factors prior
to epithelial invasion. P. falciparum glycosylphosphatidylino-
sitols in malaria-infected blood have been shown to act as
potent elicitors of immune responses [3,11]. It is also possible
that the immune response acts against parasite stages in the
midgut lumen prior to invasion. For example, the antimicro-
bial peptide gene Gambicin, which is induced by infected
blood in the absence of invasion, has been shown to be highly
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expressed in the cardia tissue of the anterior midgut, which is
not invaded by Plasmodium [4] (Dimopoulos lab, unpublished
data). From the cardia, gambicin and other effectors may be
blended into the blood meal, where they can limit bacterial
growth and attack Plasmodium in the midgut lumen.

A recent study by Vlachou and coworkers utilized an
expressed sequence tag (EST)-based ¢cDNA microarray
comprising approximately 8,000 A. gambiae genes to assay
midgut gene expression responses to P. berghei ookinete
invasion [7]. Surprisingly, of the 914 P. berghei regulated genes
identified in the present study and the 346 regulated genes
with accession numbers from the previous study, only 25
genes showed similar regulation in the two studies. These
differences can presumably be attributed to the differences in
the two experimental systems: we utilized different A. gambiae
and P. berghei strains, and a different type of microarray [2].
Even small differences in rearing and infection conditions
could also have affected the responses [7,31]. A previous study
has also documented significant differences in transcriptional
infection responses between different A. gambiae lab strains
upon challenge with the same pathogens [31]. A. gambiae most
likely possesses a variety of anti-Plasmodium defense mecha-
nisms, and different strains may differ in their usage of these
defenses. For instance, one genetically selected A. gambiae
strain melanotically encapsulates the invading ookinetes,
while another selected strain lyses the ookinetes in the
midgut epithelium [39,40].

The high proportion of tested genes that had an effect on
Plasmodium and bacterial infection in this study can be
explained by the targeted selection of putative immune genes
with a bias towards P. falciparum infection-induced tran-
scripts. RNAi gene-silencing assays in A. gambiae are based on
the direct injection of gene-specific dsRNAs into the
hemolymph, which is in direct contact with the fatbody,
midgut, hemocytes, and other tissues [41]. The genes we
examined are expressed in different tissues and even in
different cell types within the same tissues [42]. Consequently,
the gene knockdown phenotypes may to some extent also
reflect the efficacy of dsRNA uptake and gene silencing of
different tissues and cell types in addition to specific gene
functions. Several anti-Plasmodium genes were expressed in
carcass tissues and hemocytes (Strand and Dimopoulos,
unpublished data) (Table 1) [2,30]. These factors are likely
to be present in the hemolymph, from which they are able to
attack the midgut-stage Plasmodia on the basal side of the
midgut or even within the epithelium by diffusion through
the basal labyrinth, which is a channel system extending into
the cells [43]. The extensive overlap between gene effects on
P. falciparum and on P. berghei development suggest that the
mosquito’s defense mechanisms are quite universal for
different Plasmodium species, although species-specific de-
fense mechanisms also exist.

Silencing of putative anti-Plasmodium factors resulted in an
increase in P. falciparum levels of up to 6-fold; in terms of
mean oocyst numbers, this increased level is significantly
lower than the infection level of P. berghei in non-gene-
silenced mosquitoes (Figure 2; Tables S5 and S6). The lower
infection level of the human parasite species is therefore
attributable to nonimmunity related factors or, alternatively
but less likely, to immune factors that were not identified or
tested in the present study. It is not yet clear how many of the
different anti-Plasmodium factors function together in the
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same mechanism or pathway, and which may be acting
independently. Some of the tested genes may participate in
anti-Plasmodium defense but not be essential because their
function is redundant with that of other immune genes. The
infection phenotype of such genes after RNAi knockdown
will therefore not differ from that in untreated mosquitoes.
Genes with differential effects on infection with different
pathogens, such as gambicin and AgMDL]I, could reasonably be
expected to act in different defense mechanisms. Future
analyses will address the relations and hierarchies of these
anti-Plasmodium factors in the fight against malaria. Of
particular interest is the anti-P. falciparum-specific activity
of the novel mosquito immune factor AgMDLI, which may act
as an immune pathway activator similarly to its vertebrate
homologue (Figure 4 and Protocol S1) [21,28].

The genes displaying anti-Plasmodium activity also influ-
enced the mosquito’s resistance to bacterial infection, while
several genes with an effect on resistance to bacterial
infection did not influence Plasmodium development. These
findings suggest the mosquito is mainly employing its
antimicrobial defense system in the fight against malaria.
Although certain immune gene allele frequencies have been
correlated with Plasmodium exposure in the field, there is little
reason to believe that the mosquito would have undergone
major adaptations to malaria and evolved highly specific anti-
Plasmodium defense mechanisms [44,45]. In nature, bacteria
and fungi are most likely the major pathogens to which the
mosquitoes are continuously exposed. In contrast, exposure
to Plasmodium is seasonal and usually very low-level, rarely
exceeding 25% of the infected mosquitoes in a given
population [46]. A recent study has linked the A. gambiae
anti-Plasmodium defense to the REL2F factor, which also
mediates activation of the defense against S. aureus [8]. Up-
regulation of the antibacterial-specific genes IRSP2, Tep4,
PGRP-AMIDASE, AGBPI, and HECY1 after Plasmodium infec-
tion may be attributed to concomitant microbial infections of
the midgut epithelium; it is very likely that the ookinete
invasion of the epithelium facilitates exposure to bacteria
and bacterial components such as lipopolysaccharide and
peptidoglycan (Table 1). Through this mode of gene
induction, the bacteria may participate in boosting the
mosquito’s anti-Plasmodium defense. Previous studies have
shown that antibiotic-treated mosquitoes, with significantly
reduced microbial midgut flora, express lower levels of
immune genes and are more susceptible to Plasmodium
infection [19,47]. Conversely, mosquitoes that have been
challenged with bacteria are more resistant to Plasmodium
infection [48].

This study suggests that P. berghei is a useful malaria model
for studying anti-Plasmodium gene function but may be less
relevant as a model for studying transcriptional immune
responses to ookinete invasion of the midgut epithelium. A
comprehensive understanding of the interactions between
Anopheles and Plasmodium can lead to the development of new
strategies for controlling malaria, based on the mosquito’s
own defense against the parasite [49].

Materials and Methods

Mosquito rearing and infection assays. A. gambiae Keele strain
mosquitoes were maintained on sugar solution at 27 °C and 70%
humidity with a 12-h light/dark cycle according to standard rearing
procedures [50]. For microarray assays, the carcasses and midguts
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from approximately 40 mosquitoes were dissected on ice 24 h after
ingestion of blood infected with the wt Anka 2.34 or CTRP™ P. berghei
strain, or the wt NF54 or CTRP™ P. falciparum strain, or noninfected
human blood. P. falciparum gametocyte cultures were prepared as
previously described, and mosquitoes were fed on cultures through a
membrane feeder at 27 °C and then maintained at 24 °C [51]. P. berghei
infections were done at 21 °C as previously described [7]. Mosquito
midguts were dissected at 7-8 d after feeding and stained with 0.2%
mercurochrome. Oocyst numbers per midgut were determined using
a light-contrast microscope (Olympus, Tokyo, Japan). P. berghei
infections with gene-silenced (RNAi) mosquitoes were performed
with a transgenic GFP P. berghei strain and infection phenotypes were
determined as previously described [7]. For preparation of bacterially
challenged samples for microarray analyses, 4-d-old female mosqui-
toes were first injected with approximately 20,000 heat-inactivated E.
coli or S. aureus and approximately 20 whole mosquitoes were
collected 4 h after challenge [52]. For bacterial challenge of gene-
silenced (RNAi) mosquitoes, E. coli and S. aureus were cultured in LB
broth overnight, then washed three times with phosphate-buffered
saline (PBS) before being resuspended in PBS. Approximately 27,000
live E. coli or 55,000 S. aureus in a 50-nl PBS suspension were injected
into the mosquito hemolymph 4 d after the dsRNA injections. RNA
was extracted from dissected tissues or whole mosquitoes by using the
RNeasy kit (Qiagen, Valencia, California, United States). Quantifica-
tion of RNA was performed using a Biophotometer (Eppendorf,
Hamburg, Germany) spectrophotometer, and quality assessment was
determined by RNA Nano LabChip analysis on an Agilent Bio-
analyzer 2100.

Probe sequence design and microarray construction. The release
2a A. gambiae sequences were retrieved from Ensembl (http:/lwww.
ensembl.org/Anopheles__gambiae). These sequences were predicted
using a combination of ab initio, EST, and protein similarity-based
methods [63-55]. The transcripts were annotated with the EnsMart
utility (http://'www.ensmbl.orglensmart) [56,57]. Oligonucleotides (60
mer) for the 14,180 predicted A. gambiae transcripts that corre-
sponded to 13,118 genes were designed using the Oligo Picky
software according to the software developer’s instructions [58].
Oligonucleotide sequences were designed to be complementary to
regions within 1 kb of the 3’ untranslated region of transcripts and
had a minimal sequence identity overlap with nontarget transcript
sequences. Microarrays were constructed through in situ synthesis of
oligonucleotides on glass slides by Agilent Technologies.

Microarray analysis. Fluorochrome-labeled cRNA probes were
synthesized from 2-3 pg of RNA using the Agilent Technologies low-
input linear amplification RNA labeling kit according to the
manufacturer’s instructions. Probe quantity was determined with a
Biophotometer spectrophotometer, and 16-h hybridizations were
performed with the Agilent Technologies in situ hybridization kit
according to the manufacturer’s instructions. After washes, the
prescribed microarrays were instantaneously dried with pressurized
air. Microarrays were scanned with an Axon GenePix 4200AL scanner
using a 10 pm pixel size (Axon Instruments, Union City, California,
United States). Laser power was set to 100%, and the photomultiplier
tube voltage was adjusted to maximize effective dynamic range and
minimize pixel saturation. The spot size, location, and quality were
determined using GenePix software Pro 6.0 algorithms, and potential
misidentifications of spot locations and quality were corrected
manually. Scan images were analyzed, and Cy5 and Cy3 signal and
ratio values were obtained using Genepix software. The minimum
signal intensity was set to 200 fluorescent units, and the signal-to-
background ratio cutoff was set to 2.0 for both Cyb5 and Cy3 channels.
Three or four biological replicates were performed for each
experimental set. The background-subtracted median fluorescent
values for good spots (no bad, missing, absent, or not-found flags)
were normalized according to a LOWESS normalization method, and
Cy5/Cy3 ratios from replicate assays were subjected to ¢ tests at a
significance level of p < 0.05 using TIGR MIDAS and MeV software
[59]. For genes with significant p values in one experimental set, the
expression values from other experimental sets were included when
the direction of regulation in all the replicate assays was the same and
within a regulation range of < 0.5-fold. Expression data from all
replicate assays were averaged with the GEPAS microarray prepro-
cessing software prior to logarithm (base 2) transformation [60]. Self-
self hybridizations were used to determine a cutoff value for the
significance of gene regulation of 0.8 in log2 scale, which corresponds
to 1.74-fold regulation according to previously established method-
ology [20]. The false discovery rate was therefore 0.027% (three
standard deviations). Microarray-assayed gene expression of 15 genes
was further validated with quantitative RT-PCR and showed a high
degree of correlation (Pearson correlation coefficient p = 0.86; best-fit
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linear-regression R?= 0.75; and the slope of the regression line m =
0.996) for 15 tested genes (Figure S1).

Real-time quantitative PCR. RNA samples were treated with Turbo
DNase (Ambion, Austin, Texas, United States) and reverse-tran-
scribed using Superscript III (Invitrogen, Carlsbad, California, United
States) with random hexamers. Real-time quantification was per-
formed using the QuantiTect SYBR Green PCR Kit (Qiagen) and ABI
Detection System ABI Prism 7000 (Applied Biosystems, Foster City,
California, United States). All PCR reactions were performed in
triplicate. Specificity of the PCR reactions was assessed by analysis of
melting curves for each data point. The ribosomal protein S7 gene
was used for normalization of cDNA templates. Primer sequences are
listed in Table S3.

RNAi gene-silencing assays. Sense and antisense RNAs were
synthesized from PCR-amplified gene fragments using the T7
Megascript kit (Ambion). The sequences of the primers are listed in
Table S3. About 69 nl of dsRNAs (3 pg/ul) in water was introduced
into the thorax of cold-anesthetized 4-d-old female mosquitoes using
a nano-injector (Nanoject; Drummond Scientific, Broomall, Pennsyl-
vania, United States) with a glass capillary needle according to
established methodology [41]. For gene-silencing assays, 80 4-d-old
female mosquitoes were injected, in parallel, with GFP dsRNA as a
control group or with target gene-specific dsRNA for the exper-
imental group. Gene silencing was verified 3 to 4 d after dsRNA
injection by real-time quantitative RT-PCR, done in triplicate, with
the A. gambiae ribosomal S7 gene as the internal control for
normalization (Table S6). The primers for silencing verification are
listed in Table S3. For Plasmodium infection assays, 3-4 d after dsRNA
injection, at least 50 control (GFP dsRNA-injected) and 50
experimental (gene dsRNA-injected) mosquitoes were fed on the
same P. berghei-GFP strain-infected mouse or the same NFb54 P.
falciparum culture; 24 h later, the unfed mosquitoes were removed [7].
Mosquito midguts were dissected at 7-8 d after feeding and stained
with 0.2% mercurochrome. Oocyst numbers per midgut were
determined using a light-contrast microscope (Olympus). Infection
phenotypes of the transgenic GFP P. berghei-infected mosquitoes were
determined as previously described [7]. The mean number of oocysts
per midgut was calculated for each tested gene and for GFP dsRNA-
injected control mosquitoes. The results for equal numbers of
midguts from all three independent biological replicates were
pooled. Because of the lower P. falciparum infection levels, the
Kolmogorov-Smirnov (KS) test was used to check the shape of the
oocyst levels’ distribution. When the KS test indicated a nonnormal
distribution, the rank of sum (Mann-Whitney) test was used to
determine the statistical significance (Tables S5 and S6). For bacteria
infection assays, 3-4 d after dsRNA injection, at least 50 of each
control and experimental mosquitoes were injected with the same E.
coli or S. aureus cultures. Dead mosquitoes were counted and removed
daily for 7 d after bacterial challenge. Two-way analysis of variance
was used to assess the significance of the gene-silencing effect on
mosquito survival after challenge, with p < 0.05 deemed statistically
significant. The RNAi gene-silencing assays were done as blinded tests
with coded dsRNA samples. The effects on gene silencing are
displayed in Table S6 as percentile of knockdown efficiency.

Phylogenetic analysis. Full-length or partial predicted sequences of
MD2 homologues were aligned using the Clustal X program (ftp://
ftp-igbmc.u-strasbg.fr/pub/ClustalX), and cladograms were
constructed by neighbor-joining analysis and displayed through
Treeview (http://darwin.zoology.gla.ac.uk/~rpageltreeviewx/
download.html). AgMDL sequences were retrieved from Ensembl
[63], and D. melanogaster MD2-like proteins (DmML) were retrieved
from Flybase (http:/flybase.bio.indiana.edu). DmMLs were named
according to [21]. Genes were only considered as 1:1 orthologues if
the relevant bootstrap values were higher than 800 (1,000 iterations).

Supporting Information

Figure S1. Validation of Microarray-Assayed Gene Expression with
Real-Time Quantitative RT-PCR

The mean values for the expression data (log2 ratio) for 15 genes
from three midgut assays (P.f. ookinete, P.b. ookinete, P.f. blood)
obtained by microarray analysis were plotted against the correspond-
ing mean expression values obtained with real-time RT-PCR from
two biological replicates of each experiment. The Pearson correlation
coefficient (p = 0.86), the best-fit linear-regression analysis (R®=0.75),
and the slope of the regression line (m = 0.996) demonstrated a high
degree of correlation of the magnitude of regulation between the two
assays. The individual values for all these genes are presented in Table
S4.
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Found at DOI: 10.1371/journal.ppat.0020052.sg001 (87 KB DOC).

Protocol S1. Additional Information on Novel Immune Genes,
Transcript Responses to Plasmodium Infection, and the Genes Selected
for RNAi Screening

Found at DOIL: 10.1371/journal.ppat.0020052.sd001 (414 KB DOC).

Table S1. Log2-Transformed Expression Ratios of Anopheles gambiae
Genes Showing >1.74-Fold Regulation (0.8 in log2) under at Least
One Experimental Condition in the Midgut

Expression values of the following microarray assays are presented. Pf
GUT, Pf wt gut/Pf CTRP™ gut; Pb GUT, Pb wt gut/Pb CTRP" gut; Pf
CTRP, Pf CTRP™ gut/blood-fed gut; Pf CARC, Pf wt carcass/Pf CTRP™
carcass; Pb CARC, Pb wt carcass/Pb CTRP™ carcass; Pf CTRPCARC, Pf
CTRP™ carcass/blood-fed carcass.

Found at DOIL 10.1371/journal.ppat.0020052.st001 (266 KB XLS).

Table S2. Log2-Transformed Expression Ratios of Anopheles gambiae
Genes Showing >1.74-Fold Regulation (0.8 in log2) under at Least
One Experimental Condition in Carcass Tissues

Expression values of the following microarray assays are presented. Pf
GUT, Pf wt gut/Pf CTRP™ gut; Pb GUT, Pb wt gut/Pb CTRP" gut; Pf
CTRP, Pf CTRP™ gut/blood-fed gut; Pf CARC, Pf wt carcass/Pf CTRP™
carcass; Pb CARC, Pb wt carcass/Pb CTRP™ carcass; Pf CTRPCARC, Pf
CTRP™ carcass/blood-fed carcass.

Found at DOI: 10.1371/journal.ppat.0020052.st002 (189 KB XLS).

Table S3. Primers Used to Produce PCR Amplicons for dsRNA
Synthesis, Real-Time QRT-PCR for Microarray Validation, and
Verification of Gene Silencing

Underlined letters indicated the T7 promoter sequence. The same
pair of forward and reverse primers was used for both dsRNA
synthesis and QRT-PCR validation of microarray expression data. For
the RT-PCR verification of gene silencing, the different veriF primers
and reverse primers were used.

Found at DOIL: 10.1371/journal.ppat.0020052.st003 (80 KB DOC).

Table S4. Correlation of Microarray Expression Data with Real-Time
QRT-PCR

Comparison of the expression data from real-time quantitative RT-
PCR (QRT) and DNA microarrays (Arrays) for 15 genes. For QRT-
PCR, data were obtained from two biological and three technical
replicates. The mean value for the regulation and standard error of
the mean (SE) for the reactions were obtained from both QRT-PCR
and array data. Pearson correlation (P) indicated the consistency
between the two methods. N/A indicates the absence of microarray
data.

Found at DOI: 10.1371/journal.ppat.0020052.st004 (49 KB DOC).

Table Sb. Effect of Gene Silencing on P. falciparum Infection (Oocyst
Numbers)

Plasmodium falciparum oocyst loads in midguts of gene knockdowns
(KD) and their controls (GFP). The efficiency of gene KD (%) is
presented in Table S6. The KD and GFP control mosquitoes in each
dataset were fed on the same P. falciparum gametocyte culture. The
results of equal numbers of midguts from all three experiments in
cach dataset were pooled. The total midgut numbers (midguts #),
mean and standard error of oocyst numbers (Mean = SE), range of
oocyst numbers (range), n-fold difference of the mean oocyst
numbers between gene KD and control (GFP) mosquitoes, and the
p value from two independent probability tests (KS and Mann-
Whitney test) are presented. Zero oocysts are also included for
calculation of mean oocyst numbers. The repressive (—) effects of
genes on parasite survival are shown in parentheses, with the asterisks
indicating statistical significant at the 95% confidence level. NS
indicates not significantly different. For calculation of mean oocyst
numbers, midguts with zero oocysts were included.

Found at DOIL: 10.1371/journal.ppat.0020052.st005 (58 KB DOC).

Table S6. Effect of Gene Silencing on P. berghei Infection (Oocyst
Numbers)

P. berghei oocyst loads in midguts of gene knockdowns (KD) and their
controls (GFP). The KD and GFP mosquitoes in each dataset were fed
on the same infected mouse. Data represent a pool of at least three
independent randomly selected experiments with equal numbers of
midguts. The efficiency of gene KD (%) on average, the total midgut
numbers (midguts #), mean, and standard error of oocyst numbers
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(Mean * SE), range of oocyst numbers (range), n-fold difference of
the mean oocyst numbers between gene KD and control (GFP)
mosquitoes, and the p value from Kolmogorov-Smirnov test and
Mann-Whitney test are presented. The repressive (—) effects of genes
on parasite survival are shown in parentheses, with asterisks
indicating the statistical significance at the 95% confidence level.
NS indicates not significantly different. For calculation of mean
oocyst numbers, midguts with zero oocysts were excluded.

Found at DOIL: 10.1371/journal.ppat.0020052.st006 (89 KB DOC).

Table S7. List of Selected ML Proteins for Phylogenetic Analysis
Found at DOI: 10.1371/journal.ppat.0020052.st007 (45 KB DOC).
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