
S 1.  Multiple recrudescence of virus shortens the stochastic delay before the exponential 

growth Phase. 

Early stochastic events may play a role in delaying the time-to-detection of virus after an initial 

reactivation event. This may occur because, when there are only small numbers of infected cells, 

it is possible for the number of infected cells to expand, contract, or occasionally continue at low 

levels for some time before expanding (leading to a delay before exponential growth 

commences). Here we analyse data from a previous study of stochastic delay, and show that the 

delay from the first rebound of virus to the exponential growth phase is generally small, and also 

that it decreases with increasing frequency of viral reactivation.  

In order to illustrate the effects of rebound frequency on stochastic delay, we will consider only 

the first two consecutive rebounds after ART-interruption. Let Xi  be the random variable that 

defines the delay due to stochastic processes of the i -th virus reactivation, and the distribution of  

Xi  is defined by CDF Fi(x), i=1,2. Since we detect the virus with the shortest stochastic delay  Xi  

(assuming the same growth rate, after the stochastic part), we need to find the distribution 

function G(Y) of the random variable  Y=min(X1, X2). Using the definition of the distribution 

function and assuming that we can write the following derivations given Xi are independent, 

i=1,2: 
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  (S1.1) 

We first sought to approximate the distribution of delays due to stochastic events expected from 

a single reactivation event, using the distribution derived by Pearson et al (18) and 

approximating this with a lognormal distribution with parameters  μ= 0.513 and σ= 0.307 which 

is correspond to the mean delay of 1.75 days and standard deviation of 0.55 days (extracted from 

the Figure 11 in reference 18).   

Thus X1 has a lognormal distribution.  However, X2 incorporates the delay until the second 

rebound of virus, so X2= S1+E1, where S1 is distributed lognormally and E1 has exponential 

distribution with the parameter λ corresponding to daily rate of rebound. The CDF of  X2 will be 

the convolution of  CDF of exponential distribution and PDF of lognormal distribution. 
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Where Fexp(λ, i, t) is CDF of an exponential distribution with the rate parameter λ and fln (μ, σ, x) 

is the PDF of a lognormal distribution with parameters μ and σ. 

Variables X1  and  X2 are independent so we can apply formula (S1.1) to find the distribution of 

minimal delay (Figure S1.1).  

 

 

Figure S1.1. The fraction of patients with a given duration of the stochastic phase. If we 

consider only the delay from the first viral reactivation, then we would expect around 1/3 of 

reactivations to have a delay of 3 days or greater (blue line). However, if we have a high 

frequency of reactivation, then it is likely that the second reactivation has a shorter stochastic 

delay than the first, and actually starts exponential growth first. At a rebound rate k = 5 day
-1

, the 

probability of a stochastic delay of >2 days becomes much smaller, and the expected duration of 

the stochastic phase shortens with an increasing number of rebounds considered.    

 


