
SUPPORTING INFORMATION 

 

The Mutation Rate Estimates are Robust to Different Choice of Parameters 

In the results presented in the main text and our estimation of the mutation rate, we made certain 

assumptions about model parameters. Here we show that many of these assumptions are not critical or 

are conservative, in the sense that they lead to higher estimated mutation rates than other parameter 

possibilities. In each case, we vary only the parameter discussed, and keep all others at the values 

indicated in the main text and in Table 1. 

We show, in Figure S1A, the effect of considering other values for the maximum number of replication 

complexes, RCM, within a cell. In the main text we used RCM=40, but for values above 10 (we show 10, 

20, 40 and 80) there is almost no difference, and the result is certainly within the expected variation, in 

the predicted viral load profile (left panel) and pattern of accumulation of mutations (right panel). 

Moreover, analysis of the model shows that there is a trade-off between RCM and the number of 

infected cells at the plateau (Iss), explaining why different values of RCM do not change much the 

predictions of the model. In the case of a mechanism of replication akin to a “stamping machine”, i.e. 

RCM=1, we find that the maximum predicted accumulation of mutations is lower than that observed in 

the data. At the same time, the virus rises faster than seen in the data. This can be understood, because 

with RCM=1 all newly synthesized RNA is exported as virions (so k is larger). At the same time, all virions 

coming from an infected cell have, on average, the same number of mutations, because all virions result 

from two passages of the polymerase +RNA to –RNA to +RNA. This number of mutations is much less 

than when multiple replication complexes exist inside that cell. 

Next, we varied the initial time it takes for the first RNA to be synthesized upon cell infection (Figure 

S1B). Again, for a range of realistic values between 12 h and 48 h, there is very little difference in the 

results predicted by the model. It is only when  is unrealistically high (here 5 days) that a significant 

delay is observed. Even in this case, though, we observe only a shift in the profiles of viral load and of 

accumulation of mutations. If indeed, the delay in first production of RNA were that large, then one 

would predict that each individual was infected a few days earlier than the infection date on the graph. 

With such shift of time zero, the model would still fit the data accurately. 



We also varied the fraction of mutations that are considered to be lethal, and that lead to non-

productive RNA synthesis, , (Figure S1C). For our baseline results we used =0.4. However, if we take 

this fraction to be 0, 0.2, or 0.8, this does not affect the viral load profile during primary infection (left 

panel). This may be expected as the RNAs with lethal mutations are a very small fraction of the total 

number of RNAs produced, since they correspond to 40% of the ~10-5 mutated RNAs. On the other hand, 

the effect of different  on the expected accumulation of mutations is large (right panel). If the fraction 

of lethal mutations is less than the original 0.4, then the model predicts more mutations than observed 

in the data, and to fit the latter we would need even smaller mutation rates than those estimated in the 

baseline scenario (Table 1). If the fraction of lethal mutations is larger than our original assumption of 

=0.4, say =0.8 (Figure S1C), then the model predicts a slower accumulation of mutations and to fit the 

data we would need a larger value for the mutation rate. Still, even in this extreme case, the median 

estimated mutation is only 5.5×10-5 per nucleotide per replication cycle, about twice our estimate for 

=0.4. However, the value of =0.4 used here is already high, corresponding to the maximum reported 

in the literature to date [1]. 

 

Estimating the Mutation Rate from Stop Codon Frequencies 

Classical genetics shows that for a population in mutation-selection balance the frequency, f, of single 

point mutations with selection disadvantage s is given by f=/s, where  is the mutation rate. For lethal 

mutations, s=1, and the frequency of these mutations is simply f=, since they must have been 

generated at the last replication cycle. Cuevas et al. [2] proposed using this approach to estimate the 

mutation rate of HCV, using non-sense mutations, i.e. stop codons (UAA, UAG, UGA) as a proxy for lethal 

mutations.  

There are 18 codons that upon mutation may generate a stop codon. These are: UUA, UUG, UCA, UCG, 

UAU, UAC, UGU, UGC, UGG, CAA, CAG, CGA, AAA, AAG, AGA, GAA, GAG, GGA. Following the notation in 

[2], in each codon we underline the nucleotide that is the mutation target, for a total of 19 non-sense 

mutation targets – NSMT (note that UGG has two targets). A priori, each of these targets can mutate to 

any of the other 3 nucleotides, but in most cases only the mutation to one of those 3 will generate a 

stop codon (for example, UGU -> UGA). In a few cases the underlined nucleotide can mutate to 2 of the 

3 possibilities and generate a stop codon, and we use boldface to indicate such cases (for example, UAU 

-> UAA or UAG). We can now count in the data the number of NSMT (M), the number of stop codons 



(N), and the parental NSMT of each stop codon, such that we have N1 stop codons generated by 

mutation of non-boldface, underlined nucleotides and N2 stop codons originated by mutation of 

boldface, underlined nucleotides. 

Cuevas et al. [2] then used the following reasoning. Let us assume that there are M1 codons 

(underlined), for which a single nucleotide substitution leads to a stop codon; M2 codons (underlined, 

boldface), for which two possible mutations lead to stop codons, with M= M1 + M2; and that the 

mutation rate per nucleotide per replication cycle is . Then in one replication cycle, we can write 
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N M N   , where the 1/3 comes from the fact that only one of the three 

possible nucleotide changes leads to a stop codon, and similarly for the 2/3 when two of the three 

possible changes lead to a stop codon. Note also that we added N1 to M1 and N2 to M2, because the 

codons that did mutate were also targets before this replication cycle, and since they mutated they 

were not counted in M1 or M2. However, because N1 and N2 are about 105-fold smaller than M1 and M2, 

respectively, to simplify we can also neglect the N1 added to M1 and the N2 added to M2. Upon 

rearrangement of the two expressions, this simplification allows us to use the same formula as in Cuevas 

et al. [2]: 
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By counting each stop codon appropriately and the total number of NSMT, one can use this formula to 

directly estimate the mutation rate, as we do in the text. 

It is important to note that each of the two expressions alone would allow us to estimate  (i.e., 

=13N1/M1 or =2(3/2)(N2/M2)). By using both together, we are in a way averaging those two 

individual mutations estimates. We now propose a slightly different way to estimate  (i.e., in effect a 

different linear combination of those two expressions), by summing the expressions defining N1 and N2 

to obtain 
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This expression for  has a simple interpretation. We divide the actual number of stop codons observed 

(N1+N2) by the total number of possible mutations leading to stop codons (M1+2M2). The factor 3 

corrects for the fact that for each stop codon mutation observed, it is equally likely that the original 

nucleotide mutated to a non-stop codon nucleotide, which we did not count [3]. The two expressions 

that we derived for  give very similar estimates as shown in the main text, and we can show that in the 

limit of infinite data they are the same. Further, as we show below, the second expression is statistically 

a more efficient estimator, because it has a smaller sampling variance.  

Since both 1 and 2 are independent estimates of , we can use the weighted average 1+(1-2 for 

any weight  (0<<1) as an estimator of . The sampling variances of the two starting estimators are, 

however, different in general, and hence, the sampling variance of these averages depends on  In 

particular, since  is small, we can ignore the possibility of multiple mutations within a single codon, and 

the distributions of N1 and N2 are binomial with rates  and 2 and sizes M1 and M2, respectively. 

The variances of N1 and N2 are then M1(/3)(1- /3) and M2(2/3)(1- 2/3), respectively. However, from 

the definitions of 1 and 2, N1= M1 1/3andN2  2M22/3thus the variance (Var) of Var(N1) = Var(M1 

1/3)= (M1/3)2 Var(1) and similarly Var(N2)=(2M2/3)2 Var(2). The resulting sampling variances of 1 and 

2 are then given by 31(1-1/3)/M131M1 and 32(1-22/3)/2M232/2M2, respectively. The sampling 

variance of the weighted average is then 3[2/M1+(1-)2
2M2]where we have used  in place 1 and 

2), which is minimized when  M1/(M1+2M2). The use of this optimal weight for the weighted average 

of the two estimates 1 and 2 leads to our second expression above for estimating This result can be 

trivially generalized to an arbitrary number of independent binomial processes with rates proportional 

to a single parameter,  to be estimated: when the rates are small, the minimal variance estimator is 

given by the total number of observed events divided by the expected number per unit  

We note that both expressions for  are still an approximation, because they assume that all types of 

substitutions are equally likely, which is not correct. For example, transitions are preferred over 

transversions, and indeed we found that this bias is 18 to 1 (=18) in our data set, when corrected for 

available sites [4]. One way to implement this correction in the last formula for  is to count the possible 

mutations according to whether they represent transitions (T) or transversions (V), so that M1=M1
T+M1

V 

and M2=M2
T+M2

V. The codons that can mutate by transition to a stop codon are: CGA, CAA, CAG, and 

UGG; all others require a transversion. Then one uses the bias ratio () to weigh the mutations, such 

that we have a new effective number of allowed mutations M1
*=(M1

T+M1
V)/ and 



2M2
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T+2M2
V)/. In the same way, the factor 3, which assumes that any nucleotide 

substitution is equally likely, has to be replaced by (+2)/, since a nucleotide can mutate by a 

transition or two transversions. Thus, we have 
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and if =1, i.e. transitions occur at the same rate as transversions, one recovers the previous formula for 

. In the other limit, if transversions were not allowed, then  is infinite, and =(N1+N2)/(M1
T+M2

T). In 

the same spirit, other corrections, such as codon usage or matrices for favored mutations, could also be 

accounted for. 

In Table S1, we present the details of the stop codons found in our data set. In Table S2, we show the 

NSMT in the data set. With this data, we can calculate the mutation rates presented in the text. Thus, if 

instead of assuming that transitions and transversions occur at the same rate, we assume the limit case 

of allowing only transitions, then we obtain = 3.4 × 10-5 (95% CI [1.6,6.3]), just slightly larger than the 

2.8× 10-5 mutations/nucleotide/replication shown in the main text. 

  



 

Table S1. Stop codons found in the acute infection data set (1617 half genomes, 556 1st quarter and 

363 2nd quarter genomes). Thirteen stop codons were observed but 4, bolded in the table, were at the 

same site and apparently from a single replication complex so they were counted only once. 

Patient ID Sequence ID Codon From To Mutation Type 

P10051 10051.11.2B8 733 GAG UAG G->U Transversion 

P10051 10051.11.2B9 733 GAG UAG G->U Transversion 

P10051 10051.14.2C2 733 GAG UAG G->U Transversion 

P10051 10051.14.2C3 733 GAG UAG G->U Transversion 

P106889 106889.5.02D16 66 UGG UAG G->A Transition 

P10003 10003_07B8 304 UGG UAG G->A Transition 

P10003 10003_07NC18 1196 CAG UAG C->U Transition 

P10012 10012.06.5Q1.TB9 700 UGG UGA G->A Transition 

P10017 10017.10.E13 702 UAC UAG C->G Transversion 

P10017 10017.14.C4 388 CAA UAA C->U Transition 

P10021 10021.14.TD2 759 UGG UGA G->A Transition 

P10021 10021.08.5Q2.B12 110 UGG UAG G->A Transition 

P10029 10029.08.5Q1.2B27 621 GAG UAG G->U Transversion 

 

 

Table S2. Number of NSMT in our data set. We indicate in bold those codons that can mutate to a stop 

codon by a transition, the others require a transversion. Note that UGG should be counted twice, as 

explained in the text. 

CGA CAA CAG UGG UUA AGA UCA GAA AAA 

15073 38590 63846 87519 12869 19716 21173 21334 25591 

UCG UGU GGA UAU AAG UUG GAG UGC UAC 

29033 41344 42651 43488 59069 60905 66622 79750 82243 

 

 

  



Figure S1. Changes in viral load and mutation profile predicted by the model for different values of the 

(A) maximum number of replication complexes (RCM) in an infected cell, (B) time until the production of 

the first RNA (), and (C) proportion of lethal mutations (). 
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