Text S1: Supporting Information

Strain	Relevant feature	Gram	HMB-PP	Fosmidomycin MIC (µg/ml)
Escherichia coli	[Clontech, Cambridge, UK]			
<i>E. coli</i> wt	Parental laboratory strain BL21	_	+	ND
E. $coli$ - gfp^+	BL21 expressing GFP (pAcGFP)	-	+	ND
Mycobacterium smegmatis	[ref. 34]			
M. smegmatis wt	Parental laboratory strain mc ² 155	+	+	ND
M. smegmatis-gfp ⁺	mc ² 155 expressing GFP (pFLAME7)	+	+	ND
$M.\ smegmatis$ - $gcpE^+$	mc ² 155 expressing GcpE from <i>M. tuberculosis</i>	+	+++	ND
Listeria innocua	[refs. 35,36]			
L. innocua wt	Parental laboratory strain APC	+	-	ND
L. innocua-gfp $^+$	APC expressing GFP	+	_	ND
L. innocua- $gcpE^+$	APC expressing GcpE from Bacillus subtilis	+	+++	ND
<i>L. innocua-gcpE</i> ⁺ / <i>lytB</i> ⁺	APC expressing GcpE, LytB from B. subtilis	+	+	ND
Clinical isolates	[this study]			
Acinetobacter baumannii	Strain 48-694D	_	+	> 128
Chryseobacterium indologenes	Strain S281	_	_	> 128
Enterobacter cloacae 'A'	Strain 48-12346	_	+	1
Enterobacter cloacae 'B'	Strain 69-7329	_	+	1
Enterococcus faecalis	Strain IQA 7/09	+	_	> 128
Klebsiella pneumoniae	Strain WCH7	_	+	32
Pseudomonas aeruginosa	Strain 75-3755A	_	+	8
Staphylococcus aureus	Strain S288	+	_	> 128

Table S1. Bacteria strains used in the present study.

ND, not determined

	Stable		Acute peritonitis	
	Cardiff (UK)	Cardiff (UK)	Stoke-on-Trent (UK)	ANZDATA (Australia)
Total number	8	39	385	2,424
Study period	2008-2010	2008-2010	1987-2008	2003-2008
Age (mean ± SD)	61.4 ± 19.5	66.3 ± 11.3	57.0 ± 16.0	58.4 ± 16.7
Women (%)	37.5	35.9	43.1	44.8
Days on PD (mean ± SD)	1088.5 ± 936.2	1106.1 ± 984.9	532.0 ± 581.9	738.7 ± 502.5
14 th day mortality (%)	_	2.6	3.6	1.2
14 th day technique failure (%)	_	12.5	9.6	13.4
90 th day mortality (%)	_	10.3	8.8	1.8
90 th day technique failure (%)	_	28.2	19.0	16.8
Culture-positive infections (%)	_	64.1	61.5	85.8
HMB-PP ⁺ organisms among positively identified species (%)	-	50.0	26.4	38.6

Table S2. Characteristics of all patients analyzed in the present study.

90 th day technique failure	Stoke-on-Trent (UK)	<i>p</i> value	ANZDATA (Australia)	<i>p</i> value	ANZDATA + Stoke-on-Trent combined	<i>p</i> value
Reference: culture-negative	1.0		1.0		1.0	
HMB-PP ⁻	2.0	*	0.8	n.s.	1.0	<i>n.s.</i>
$HMB-PP^+$	7.4	***	3.4	***	4.1	***
Reference: HMB-PP [−]	1.0		1.0		1.0	
Gram ⁺ HMB-PP ⁺	3.1	n.s.	2.0	0.066	2.1	*
Gram ⁻ HMB-PP ⁺	3.8	***	4.3	**	4.0	***
90 th day mortality						
Reference: culture-negative	1.0		1.0		1.0	
HMB-PP ⁻	2.1	n.s.	2.3	n.s.	1.3	n.s.
$HMB-PP^+$	6.3	***	5.4	*	2.8	**
Reference: HMB-PP [−]	1.0		1.0		1.0	
Gram ⁺ HMB-PP ⁺	2.9	n.s.	2.8	n.s.	2.4	n.s.
Gram [–] HMB-PP ⁺	3.0	*	2.4	**	2.2	**

Table S3. Odds ratios for risk of technique failure and mortality within 90 days after infection, depending on the causative pathogen.

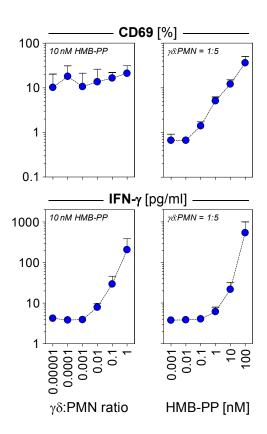
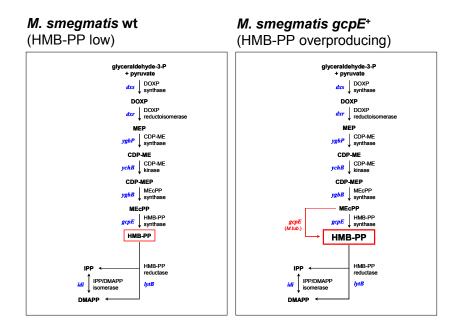



Figure S1. Activation of $\gamma\delta$ T cells and dose-dependent secretion of IFN- γ in neutrophil- $\gamma\delta$ T cell co-cultures. Expression of CD69 by $V\gamma9^+$ CD3⁺ T cells was determined after 20 hours in culture by flow cytometry; supernatants were analyzed after 20 hours by ELISA. Data shown are mean values + SEM from independent experiments using three different donors.

Figure S2. Isoprenoid biosynthesis in the *Mycobacterium* strains used in the present study. *M. smegmatis* possess a fully functional non-mevalonate pathway and hence is capable of producing HMB-PP. Transfection of *M. smegmatis* with an additional copy of *gcpE* from *M. tuberculosis* leads to a 2-3 fold accumulation of HMB-PP compared to the wildtype [35].

Abbreviations: CDP-ME, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol; CDP-MEP, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol 2-phosphate; DMAPP, dimethylallyl pyrophosphate; DOXP, 1-deoxy-D-xylulose 5-phosphate; HMB-PP, (*E*)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate; IPP, isopentenyl pyrophosphate; MEcPP, 2-*C*-methyl-D-erythritol 2,4-cyclopyrophosphate; MEP, 2-*C*-methyl-D-erythritol 4-phosphate.

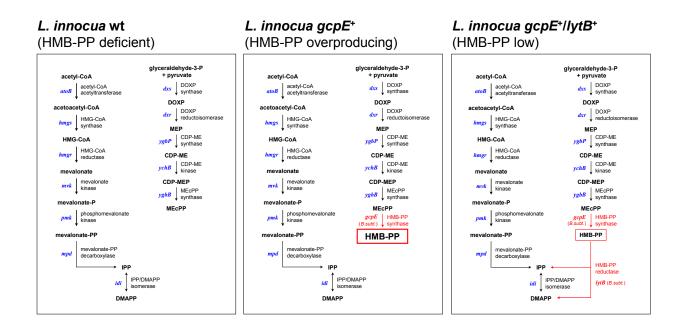


Figure S3. Isoprenoid biosynthesis in the *Listeria* strains used in the present study. *L. innocua* utilizes the mevalonate pathway (left) but also possesses a rudimentary non-mevalonate pathway (right) leading to the production of MEcPP but not of HMB-PP. Transfection of the wildtype strain with a copy of the *gcpE* (*ispG*) gene from *Bacillus subtilis* confers the ability to produce and accumulate HMB-PP; co-transfection of *L. innocua gcpE*⁺ with the *lytB* (*ispH*) gene from *B. subtilis* rescues the non-mevalonate pathway in *L. innocua* and leads to intermediate HMB-PP levels due to reduction of HMB-PP into IPP and DMAPP [36,37].

Abbreviations: CDP-ME, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol; CDP-MEP, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol 2-phosphate; DMAPP, dimethylallyl pyrophosphate; DOXP, 1-deoxy-D-xylulose 5-phosphate; HMB-PP, (*E*)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; IPP, isopentenyl pyrophosphate; MEcPP, 2-*C*-methyl-D-erythritol 2,4-cyclopyrophosphate; MEP, 2-*C*-methyl-D-erythritol 4-phosphate; P, phosphate.

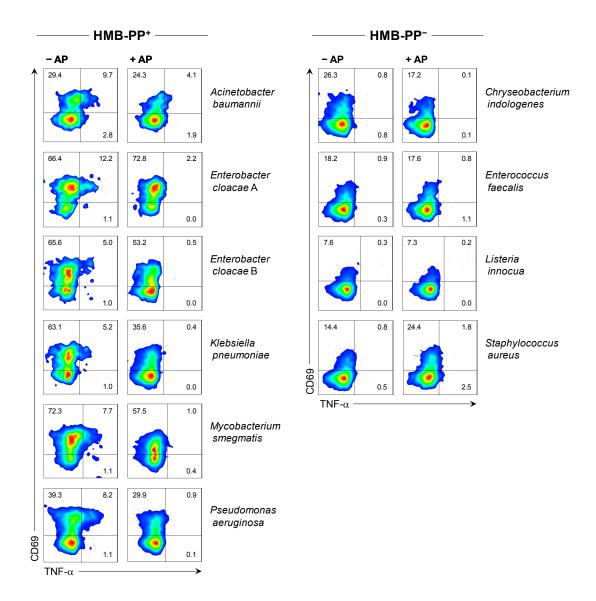


Figure S4. $V\gamma 9/V\delta 2$ T cells respond to alkaline phosphatase-sensitive molecules released by phagocytosed HMB-PP producing bacteria. Activation of $\gamma\delta$ T cells by neutrophils harboring a range of different bacteria: Gram⁻ HMB-PP⁺, *Acinetobacter baumannii, Enterobacter cloacae* (two different strains tested), *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*; Gram⁺ HMB-PP⁺, *Mycobacterium smegmatis*; Gram⁻ HMB-PP⁻, *Chryseobacterium indologenes*; and Gram⁺ HMB-PP⁻, *Enterococcus faecalis, Listeria innocua* and *Staphylococcus aureus*; in the presence or absence of alkaline phosphatase (AP). Data shown are representative from independent experiments using 2-5 different donors.

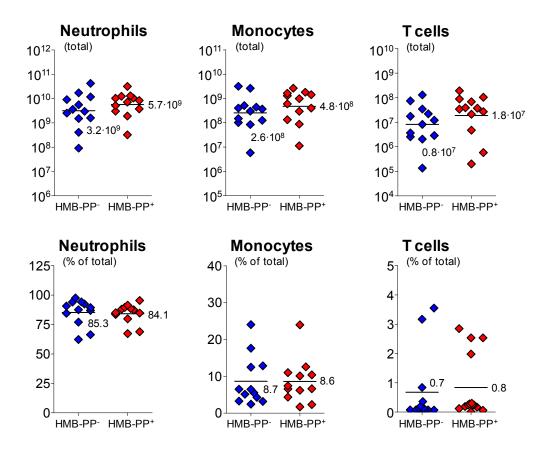


Figure S5. Neutrophil, monocytes and T cells in acute peritonitis are not influenced by the HMB-PP status of the causative pathogen. Total numbers and frequencies of peritoneal $CD15^+$ neutrophils, $CD14^+$ monocytes/macrophages and $CD3^+$ T cells in patients with PD-associated peritonitis on day 1 (the day of hospital admission with a cloudy effluent, *i.e.* before commencement of antibiotic therapy), depending on whether or not the causative pathogen was capable of producing HMB-PP.

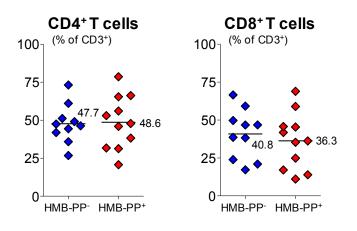


Figure S6. $CD4^+$ and $CD8^+$ T cells in acute peritonitis are not influenced by the HMB-PP status of the causative pathogen. Proportion of $CD4^+$ and $CD8^+$ T cells within all peritoneal $CD3^+$ T cells in patients with PD-associated peritonitis on day 1 (the day of hospital admission with a cloudy effluent, *i.e.* before commencement of antibiotic therapy), depending on whether or not the causative pathogen was capable of producing HMB-PP.

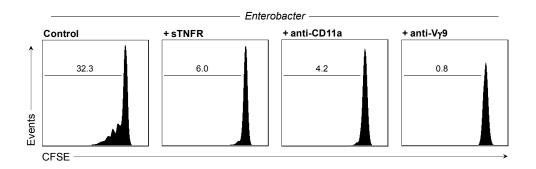


Figure S7. The V γ 9/V δ 2 T cells response to HMB-PP producing bacteria is TCR dependent. Proliferation after 5 days in culture of CFSE-labeled V γ 9/V δ 2 T cells in response to supernatants from neutrophils harboring *Enterobacter cloacae*, in the presence or absence of soluble TNF- α receptor (sTNFR) or antibodies against CD11a or TCR-V γ 9. Data shown are representative of independent experiments using cells from two different donors.

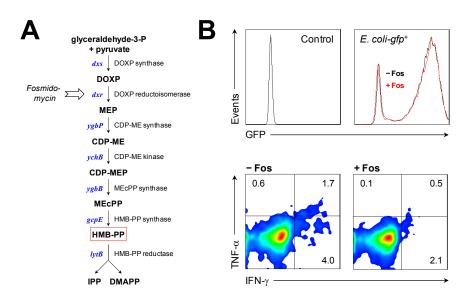


Figure S8. Fosmidomycin abrogates HMB-PP dependent $\gamma\delta$ T cell responses to phagocytosed bacteria but does not affect bacterial uptake by neutrophils. (*A*) Overview of the non-mevalonate pathway of isoprenoid biosynthesis. The bacterial genes encoding the enzymes indicated are highlighted in blue. Fosmidomycin blocks HMB-PP production by inhibiting the second step of the pathway. DOXP, 1-deoxy-D-xylulose 5-phosphate; MEP, 2-*C*-methyl-D-erythritol 4-phosphate; CDP-ME, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol 2-phosphate; MECPP, 2-*C*-methyl-D-erythritol 2,4-cyclopyrophosphate; IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate. (*B*) Phagocytosis by neutrophils of *E. coli-gfp*⁺ that had been pre-treated or not for 1 hour with 50 µg/ml fosmidomycin (control, neutrophils only). GFP fluorescence was determined 1 hour later. Neutrophil supernatants were collected after 5 hours and added to $\gamma\delta$ T cell-monocyte co-cultures for 20 hours. Data shown are representative of independent experiments using cells from two different donors.