

Figure S2. Ratios of chloroquine IC_{90} to IC_{50} values in pfcrt-modified lines. Ratios are presented as means \pm SEM, which were calculated from an average of 7 independent assays (range 4-10) performed in duplicate. Analysis of the chloroquine (CQ) $\mathrm{IC}_{90} / I C_{50}$ ratios for the different lines revealed a very different set of responses between the three CQ-sensitive genetic backgrounds. In 3D7, both mutant pfcrt clones revealed mean ratios of 2.0, the same as 7G8 and noticeably greater than the ratios of $1.3-1.4$ observed with $3 D 7^{C}(P<0.01)$ and 3D7. For D10, where mean CQ $I C_{50}$ values were unchanged compared to D10 ${ }^{\text {C }}$ (Table S1), the ratios were 1.8-2.3, a significant increase over the ratios of $1.3-1.4$ again observed with $\mathrm{D} 10^{\mathrm{C}}(P<0.01)$ and D 10 . Thus, in both these backgrounds the relatively modest increase in CQ C_{50} values appeared to be compensated by a substantial increase in the ability of these parasites to withstand high CQ concentrations. For the GC03 mutants, where the baseline CQ IC_{50} values were already high, the increase in the $\mathrm{IC}_{90} / \mathrm{IC}_{50}$ ratio was more modest (1.5 for both $\mathrm{GCO3}^{7 \mathrm{~GB}-1}$ and $\mathrm{GC} 03^{7 \mathrm{G8}-2}$ vs. 1.2-1.3 for the control CQsensitive lines GC03 ${ }^{\mathrm{C}}(P<0.05)$ and GC 03$)$, suggesting that the expression of mutant pfcrt rendered GC03 parasites intrinsically more resistant to CQ than was the case for 3D7 or D10 parasites. Statistical comparisons comparing mutant pfcrt-modified lines against recombinant control lines of the same genetic backgrounds were performed using one-way ANOVA with a Bonferroni post-hoc test.

