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Abstract

A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for
designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients’ plasma before
cART, during suppression on cART, and after viral rebound. Single-genome sequences of plasma HIV-1 RNA were obtained
from HIV-1 infected patients prior to cART (N = 14), during suppression on cART (N = 14) and/or after viral rebound following
interruption of cART (N = 5). Intra-patient population diversity was measured by average pairwise difference (APD).
Population structure was assessed by phylogenetic analyses and a test for panmixia. Measurements of intra-population
diversity revealed no significant loss of overall genetic variation in patients treated for up to 15 years with cART. A test for
panmixia, however, showed significant changes in population structure in 2/10 patients after short-term cART (,1 year) and
in 7/10 patients after long-term cART (1–15 years). The changes consisted of diverse sets of viral variants prior to cART
shifting to populations containing one or more genetically uniform subpopulations during cART. Despite these significant
changes in population structure, rebound virus after long-term cART had little divergence from pretherapy virus, implicating
long-lived cells infected before cART as the source for rebound virus. The appearance of genetically uniform virus
populations and the lack of divergence after prolonged cART and cART interruption provide strong evidence that HIV-1
persists in long-lived cells infected before cART was initiated, that some of these infected cells may be capable of
proliferation, and that on-going cycles of viral replication are not evident.
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Introduction

The HIV-1 lifecycle includes rapid and error prone nucleic acid

replication that results in large and genetically diverse virus

populations in vivo. The consequences of broad HIV-1 genetic

diversity include the presence of viral variants containing

mutations that escape immune responses or confer resistance to

individual antiretroviral agents. The use of antiretroviral agents in

combination results in potent suppression of HIV-1 replication

and reverses immune deficiency, at least in part. Despite the ability

of cART to inhibit HIV-1 replication, treatment does not

eradicate infection and plasma viremia persists at low levels in

the majority of patients [1,2]. If cART is discontinued, viremia

rapidly rebounds to pre-therapy levels [3,4]. Determining the

sources and mechanisms for viral persistence during cART and

rebound after interruption is essential for designing strategies to

eradicate infection.

The dynamics of HIV-1 decay after initiating cART can be

divided into four phases [1,2,5]. The first phase, reflecting rapid

clearance of ca 90% of productively infected cells with half-life of

1–2 days, is followed by a more gradual clearance of infected cells

with a half-life of 2–3 weeks. A study by Palmer, et al. described a

third phase consisting of long-lived, perhaps latently-infected, cells

with a half-life of 6–44 months as well as a fourth phase having a

slope not significantly different from zero [1]. The plateau in the

fourth phase suggests that long-term cART fully inhibits HIV-1

replication and that the source of persistent viremia is either long-

lived virus-expressing cells or activation of virus expression from

latently-infected cells. In this regard, studies by Dinoso et al.,

McMahon et al., and Gandhi et al. showed no decrease in the level

of persistent viremia in patients on long term suppressive therapy

before, during, or after intensification with an additional

antiretroviral suggesting the absence of ongoing new rounds of

replication during suppressive cART [6,7,8]. Bailey et al.
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investigated plasma viral sequences after long-term cART and

found that HIV-1 populations often contain sets of identical

sequences, referred to as ‘‘predominant plasma clones,’’ suggesting

that viral subpopulations are lost over the course of treatment [9].

Wagner, et al. found an increasing frequency of identical sequences

in blood cells during cART suggesting proliferation of infected

cells [10], and Joos, et al. showed that homogeneous populations

rebound after cART interruption [11]. These findings suggest that

a reservoir of long lived infected cells, perhaps capable of

expansion, may be responsible for persistent viremia and its

rebound following interruption of cART.

In contrast to these findings, other studies have indicated that

low-level virus replication may occur in specific anatomical

compartments despite suppression of plasma HIV-1 RNA by

cART [12,13,14,15,16,17,18,19,20]. For example, in 2008, Chun,

et al. suggested that phylogenetic clustering of sequences obtained

from different cellular compartments after long-term cART

demonstrated cross-infection between reservoirs, consistent with

full cycles of replication as a source of persistent viremia [13].

Although such phylogenetic clustering may be indicative of on-

going replication, it may also result from compartmental mixing of

infected cells before or subsequent to initiating therapy. Demon-

strating the emergence of new viral variants during cART without

corresponding increases in total HIV-1 RNA would provide clear

evidence of virus replication. Previous studies that demonstrated

genetic change during therapy were in the context of drug

resistance, rebound viremia, or stimulation following vaccination,

each occurring in subsets of study patients in conjunction with

increases in plasma HIV-1 RNA levels, likely reflecting ineffective

therapy [12,14,21,22]. Several studies using integrase inhibitors to

intensify cART have detected transient increases in 2-LTR circles

in peripheral blood lymphocytes, especially in individuals under-

going protease inhibitor-based cART suggesting that some cells

may be newly infected during treatment [23] [24]. However,

changes in 2LTR circles were not associated with decreases in viral

RNA levels and genetic analyses did not show divergence during

the intensification period [25]. Notably, all of these clinical studies

have been conducted with patients already undergoing cART for

prolonged periods. No studies have investigated HIV-1 popula-

tions prior to and following initiation of cART. Comparing pre-

and post-therapy populations can shed new light on HIV-1

reservoirs, the sources of persistent viremia, and changes in HIV-1

populations at each phase of viral decay after introducing cART.

To investigate further the effect of cART on virus replication,

we examined HIV-1 populations in patients prior to cART, during

each phase of viral decay including long-term cART (fourth

phase), and during viral rebound after interruption of cART. By

investigating the genetics of HIV-1 in all phases of viral decay and

comparing on-therapy populations to pre-therapy virus we were

able to directly assess HIV-1 replication and molecular evolution

during long-term suppressive cART. We found that both short

and long lived cellular compartments were seeded with the same

diverse virus populations and that new viral populations rarely

emerged after up to 15 years of cART.

Materials and Methods

Study participants
Participants were enrolled in prospective studies aimed at

determining the role of antiretroviral therapy on HIV-1 infection

(protocols 97-I-0082, 08-I-0221) or on HIV-1 population genetics

in infected individuals (00-I-0110) conducted at the NIH Clinical

Center in Bethesda MD [26] [27]. All participants were $18 years

of age at study entry, with chronic HIV-1 infection (Fiebig Stage

VI) and reported no prior antiretroviral therapy (Table 1). Study

participants were enrolled from 1997–2002; Patients 2–4 and 6–13

initiated therapy with 2 NRTIs + nevirapine + indinavir as part of

a study of HIV-1 decay kinetics [26] and Patients 1, 5, and 14

initiated therapy with 2 NRTIs + efavirenz as part of a study of

HIV-1 population genetics [27] (Table 1). Frequent plasma

samples were obtained prior to and following introduction of

cART (Supplemental Table S1). Patients are described in Table 1

and samples analyzed in Supplemental Table S1. Patients were

categorized into three partially overlapping groups according to

their sample collection and treatment history (Table S1). Blood

samples were collected prior to initiating cART in all patients

(N = 14). In 10/14 patients (group 1) frequent samples were

collected during short-term treatment (up to one year on cART).

In 5 patients (group 2), samples were collected after long-term

therapy (average 9 yrs on cART), and in 5 patients (group 3),

samples were collected after a patient-initiated treatment inter-

ruption as well as after re-suppression in 3/5 (Table S1). Results

from the sequence analysis from all groups were compared to data

obtained using the same methods from a cohort of elite controllers

(data previously published) [28]. The elite controllers served as

untreated controls since they have similar levels of viremia (mean

0.8 copies/ml) without cART.

Ethics statement
All participants in this study were enrolled in clinical protocols

(00-I-0110, 97-I-0082, 08-I-0221) approved by the NIAID

Institutional Review Board (FWA00005897) administered at the

NIH Clinical Center in Bethesda, Maryland. Individuals under-

went an informed consent process and provided written consent

for participation.

HIV-1 genetic analyses of plasma samples
HIV-1 RNA levels were determined using bDNA Versant

version 3.0 (Bayer, Inc) as previously described [29]. Single-

genome sequencing (SGS) of a portion of HIV-1 gag-pro-pol

amplified from plasma HIV-1 RNA was performed as previously

described [30,31,32]. Sequences were aligned using ClustalW.

Population genetic diversity and divergence were calculated as

average pairwise difference (APD) using MEGA5 [33] (http://

www.megasoftware.net) and an in-house program [32]. Shifts in

Author Summary

Anti-HIV compounds are highly effective for preventing
the onset of AIDS but they do not cure infected
individuals. Very low levels of virus remain detectable in
the blood of most patients despite antiviral treatment and
levels surge if treatment is stopped. It is crucial to
understand why current treatments are not equipped to
cure HIV infection so that new therapies addressing these
shortcomings can be developed. By characterizing genetic
sequences of HIV in patients before and during antiviral
treatment, we found that the low levels of virus detected
in the blood of treated patients did not result from newly
infected cells but originated from cells, or the daughters of
cells, that were already infected when treatment was
initiated. This finding demonstrates that HIV present in
blood after prolonged antiviral treatment is derived from
cells infected prior to treatment which likely expanded
over time through cell division. Such long lived, infected
cells are likely the critical target for developing strategies
to cure HIV infection.

No HIV-1 Evolution during Antiretroviral Therapy
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population structure were calculated using a subdivision test for

panmixia with a significance cut off level of p,1023 as described

by the original report to account for the high number of

comparisons between sequences and nucleotide sites [34,35]

[27]. The probability of 1023 for assigning a significant change

in intra-patient HIV populations was derived statistically taking

into consideration that every nucleotide position is compared in

every two possible sets of sequences. This approach results in more

than 1012 comparisons between populations of only 10 sequences.

The test was derived from a geographic population structure test

proposed by Hudson et al. [36]. It compares the APD in single-

genome sequences obtained from samples taken at different times

(or places) to distances calculated from imaginary populations

containing the same sequences randomly reassigned to two groups.

Random mixing of the populations to be compared, reassignment,

and distance comparisons are performed 10,000 times, generating

a p-value for the probability that the randomized populations’

structures are the same between sets of sequences. Neighbor-

joining phylogenetic analyses were performed using MEGA5 [33].

Trees were rooted on the subtype B consensus sequence (http://

www.HIV-1.lanl.gov). Tests for molecular evolution were done

with BEAST [37] (http://beast.bio.ed.ac.uk) using the HYK+G

model with a relaxed clock, uncorrelated log normal and constant

size, followed by estimating the root to tip distances with

TreeStat1.2 (www.tree.bio.ed.ac.uk/software/treestat). Linear re-

gression was used to determine the slopes for the root-to-tip

analyses.

To investigate if genetic bottlenecks occurred after initiating

cART, we evaluated changes in the number of heterozygous sites

over time [38]. A genetic bottleneck was present if the number of

heterozygous sites in equal numbers of sequences in post-therapy

samples were in excess (chi-square probability ,0.05) compared to

those in pre-therapy. We also investigated if CTL escape

mutations were enriched or depleted during cART by calculating

the allele frequencies at each amino acid position in pre-therapy

and post-therapy data in patients in group 1 and 2 with 7 or more

sequences at distal time points (N = 8). Positions with amino acids

undergoing significant change in frequency after cART (Fisher

exact test 0.05) were identified and mapped onto predicted CTL

epitope maps [39]. Changes within the 9 amino acid peptide or in

+1 and -1 amino acids flanking the peptide were considered to be

part of the CTL epitope. The predicted binding affinities of the

pre- and post-therapy peptides were compared to determine if

amino acid changes occurring after initiating cART resulted in

decreased binding affinity; $10 fold decreases in affinity were

considered escape; $10 fold increases were considered return to

wild-type allele.

Results

Effect of cART on plasma HIV-1 diversity
To investigate the effect of cART on plasma HIV-1 diversity,

we assessed HIV-1 genetics by single-genome sequencing of

plasma HIV-1 RNA in individuals undergoing cART. Plasma

samples were obtained prior to and following introduction of

cART; and, for some patients, after planned patient-initiated

treatment interruptions. Single-genome sequences were obtained

at time points throughout the study period, and population

genetics parameters were measured. Genetic diversity was

measured by APD of virus populations in patients’ plasma prior

to treatment, during each phase of viral decay, and during viral

rebound (Figures 1, 2). Group 1 patients were sampled during the

first and second phases of HIV-1 decay on cART (up to 200 days)

to investigate the effect of declining viremia on virus diversity

(Figure 1a, 2a). Group 2 patients were sampled on long term

cART (c. 4–12 years) without treatment interruption during the

third and/or fourth phases of viral decay (Figure 1b, 2b). Group 3

patients with long-term suppression of HIV-1 underwent brief

planned treatment interruptions and were sampled before and

after treatment initiation and after virus rebound (Figure 1c, 2c).

Most patients (13 of 14) showed no significant difference in APD

of HIV-1 populations during any phase of viral decay, after long-

term therapy, or after viral rebound, compared to pre-therapy

virus populations (Figure 1, 2). This finding shows, in most cases,

that HIV-1 plasma diversity is not associated with the level of

viremia (Figure 2), with the duration of cART, or with viral

rebound after stopping cART. Figure 1 shows the diversity of

plasma HIV-1 populations in each patient before and during or

after interruption of cART (the value above the bar in Figure 1

shows the number of years the sample was collected after initiating

cART). Of 14 patients, only one (PID 8) showed a significant

reduction in viral diversity after treatment with cART (Figure 1b,

2b). The mean virus diversity across patients in each group and as

a whole did not change after initiation of cART or during cART

(Figure 1d), indicating that plasma virus diversity is sustained

during each phase of viral decay despite the large decreases in the

replicating population size. This result suggests that the cellular

reservoir of persistent viremia in most patients is seeded with the

same highly diverse replicating population of virus that exists prior

to therapy. This observation is in contrast to elite controllers who

have significantly lower levels of diversity than noncontrollers

(p = 0.005) [28] correlating with their lower levels of viremia. The

contrasting results suggest that the infected cell population in

patients treated with cART is large while the reservoir of infected

cells in elite controllers is likely to be significantly smaller.

Effect of cART on number of alleles
Although HIV-1 populations revealed no significant change in

APD with cART, genetic bottlenecks may occur in large, diverse

populations without producing a detectable change in the overall

diversity. During a bottleneck, low frequency alleles, which do not

contribute substantially to overall diversity or to phylogenetic

signal, are lost [38]. As a result, the total number of alleles is

decreased while the diversity is maintained. Because bottlenecks

will have substantial effects on the occurrence of low frequency

alleles, we specifically investigated the total number of alleles prior

to and following introduction of cART (Table 2) in patients with

sampling during viral RNA decay on therapy (N = 9). We found a

significant decrease in the numbers of alleles in only a single

patient (PID 1), suggesting that a genetic bottleneck occurred in

this patient alone. In two patients (PID 2 and 7), a modest but

detectable increase in alleles occurred suggesting genetic shifts but

not population contraction. The remaining patients had no

changes in the numbers of alleles (Table 2), indicating that, for

the majority of individuals, no genetic bottleneck accompanies the

profound decrease in HIV RNA after initiation of cART.

To specifically investigate whether prolonged HIV-1 suppression

resulted in changes in amino acid sequences, we investigated

nonsynonymous changes alone in patients from groups 1 and 2 for

which there were more than 7 sequences at time points with ,50

copies/ml (N = 8) (Table S2). We found that amino acid frequencies

were remarkably stable during cART. In fact, virus populations in

4/8 patients had no significant change at any of the PR or RT loci.

As all enrolled patients underwent HLA testing, we were able to

investigate, using in silico techniques, the predicted positions of all

the CTL epitopes in the HIV-1 sequence as well as the estimated

binding affinity of all the HIV-1 peptides at each epitope site [39].

As shown in Table S2, there was no consistent trend to enrich or

No HIV-1 Evolution during Antiretroviral Therapy
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deplete CTL escape mutations after prolonged cART suppression,

including in those patients who underwent a significant population

shift (e.g., PID 1). Taken together, these data suggest that the

population of virus-producing cells present after prolonged

suppression is not shaped in a substantial way by new CTL

selection following introduction of cART. This finding is in stark

contrast to the strong selection at CTL epitopes in elite controllers

ranging from 11–66% of epitopes carrying escape mutations [28].

Figure 1. Measurements of HIV-1 diversity calculated as APD before, during and/or after cART in all patients in (A) Group 1 - short-
term cART (B) Group 2 - long-term cART (C) Group 3 - cART with treatment interruptions and (D) the average of all groups. Duration
of treatment is shown in years in parentheses above the bar with the diversity measurement. Overall, HIV-1 plasma diversity did not change with
initiation of therapy.
doi:10.1371/journal.ppat.1004010.g001

No HIV-1 Evolution during Antiretroviral Therapy
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Effect of cART on HIV-1 population structure and
divergence

Divergence of HIV-1 populations during cART could result

either from on-going cycles of replication leading to the emergence

of new variants or as a consequence of shifts in the viral variants

present in the plasma during suppression, indicating a dynamic

reservoir. To investigate the possibility of population shift

(divergence) during cART, we used a test for panmixia to detect

changes in the population structure during therapy compared to

pretherapy virus. The panmixia test compares populations of

single-genome sequences obtained from longitudinal samples and

provides a p-value for the probability that the populations are the

same [34]. Probabilities of ,1023 were considered to indicate

significantly different populations, taking into account the large

numbers of comparisons. Figure 3 and Table 3 show the panmixia

results for single-genome sequences from group 1 (Figure 3a,

Table 3), group 2, (Figure 3b, Table 3), and group 3 (Figure 3c,

Table 3) compared to pretherapy sequences. Panmixia probabil-

ities of virus populations in samples collected from patients on

cART compared to pre-therapy populations did not achieve

significance (Figure 3a) in 8/10 patients from group 1. These

results indicate that there is typically no significant shift in the

plasma virus population during the first and second phases of

decay after initiating cART despite up to 10,000-fold declines in

levels of viremia. Two patients in group 1 (PID 6, 7), however, did

show a significant change in population structure after 173 and

193 days on therapy. Additional analyses describing the nature of

these changes are presented below. Three of 5 patients in group 2

(long-term cART) showed a significant change in population

structure during cART for 4–12 years with no treatment

interruptions, suggesting either that new variants emerged during

therapy or that the reservoir for persistent viremia is dynamic.

Figure 2. HIV-1 plasma RNA copy numbers and diversity as calculated by APD in longitudinal samples prior to and during cART in
selected patients on (A) short-term cART (Group 1) (B) long-term cART (Group 2) and (C) cART with treatment interruptions (Group
3). We found no relationship between HIV-1 RNA copy number and viral diversity in the plasma.
doi:10.1371/journal.ppat.1004010.g002

No HIV-1 Evolution during Antiretroviral Therapy
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Four of 5 patients in group 3 (long-term cART but with brief

treatment interruptions) showed a significant shift in population

structure using the panmixia test. The results from group 2 and 3

show that, although plasma HIV-1 populations do not typically

change in the early phases of viral decay, shifts in virus populations

(without a change in overall diversity) are readily detectable after

long-term therapy and in rebound viremia. They imply that either

a compartment allowing on-going cycles of replication exists

during cART or subsets of infected cells expressing virus particles

shift over the course of treatment (through proliferation and/or

death).

Effect of cART on HIV-1 phylogenetic structure
To further determine if the population shifts detected in the

plasma of some patients during and after long-term cART were

the result of on-going cycles of virus replication or were due to a

shift in the population of cells that express virus particles during

therapy, we performed phylogenetic analyses and tests for

molecular evolution. Such tests can detect with high sensitivity

the emergence of new viral variants indicative of full cycles of

replication during cART. We used neighbor-joining trees to first

evaluate the direct relationship of the sequences obtained prior to,

during, and after therapy and we subsequently used tests for

molecular evolution and calculations of root-to-tip distances to

detect the emergence of new virus populations during cART.

Figure 4a shows two examples of the population structure in

patients in group 1 who had no detectable shift in the virus

population using the test for panmixia or the divergence analysis.

Consistent with the panmixia results, the structure of sequences

obtained during viral decline (gray triangles) and early suppression

on cART (black triangles) showed no change from pre-therapy

virus (open circles). Figure 4b shows the neighbor-joining trees for

the two additional patients in group 1 (PID 6, 7) whose virus had a

detectable shift in the population during short-term treatment with

cART using the test for panmixia. It is evident from the trees that

the shift in population and significant panmixia resulted from

clusters of identical sequences that were revealed when levels of

viremia were ,50 copies/ml (circled black triangles). To confirm

that the identical sequences found in PID 6 and 7 resulted in the

population shift measured by the test for panmixia, we collapsed

the alignment to include only one of each identical sequence and

repeated the test. The collapsed alignments resulted in p values of

0.044 and 0.011, respectively, for panmixia (not significant),

rejecting the null hypothesis. The revealing of populations of

identical sequences during therapy suggests that either a single

infected cell is proliferating and releasing virus resulting in a

dominant variant appearing in the plasma or that a single variant

is expanding through full cycles of replication despite cART.

Additional analyses to investigate this question are presented later.

Phylogenetic trees of virus sequences from 6 patients on long-

term cART are shown in Figure 4c–d. Trees from representative

patients in group 2 (long-term suppression - Figure 4c) and group 3

(re-suppression after brief treatment interruption - Figure 4d) show

that the population shift detected by the test for panmixia in these

groups resulted from clusters of identical sequences in the plasma

(black triangles), and not from additional accumulation of

mutations. As noted above, patient 8 was the only one who also

showed a significant change in the diversity of the virus population

during therapy. The phylogenetic analysis shows that the loss of

diversity of the virus population in this patient also resulted from

over-representation of identical sequences in the plasma, possibly

masking the presence of other viral variants. The presence of

identical sequences after long-term cART suggests a proliferating

infected cell population as a major source of persistent viremia

during therapy. These data also suggest that the virus-producing

reservoir of HIV-1 infection may contract during prolonged

Table 2. Allele frequency during cART.

Patienta
Therapy
Period

Number of
Sequences

Total Number
of Alleles

Total Number of
Homozygous Sites Heterozygosity Chitest

1 Pre therapy 38 546 978 0.13

1 Post therapy 38 415 986 0.13 0.0004

2 Pre therapy 12 146 1010 0.10

2 Post therapy 12 197 987 0.12 0.01

4 Pre therapy 49 124 1021 0.08

4 Post therapy 49 105 1062 0.05 0.14

5 Pre therapy 99 1077 885 0.21

5 Post therapy 99 1109 836 0.25 0.18

6 Pre therapy 45 323 1010 0.10

6 Post therapy 45 283 1009 0.10 0.16

7 Pre therapy 23 87 1056 0.06

7 Post therapy 23 117 1037 0.08 0.03

9 Pre therapy 31 128 1036 0.08

9 Post therapy 31 109 1021 0.09 0.29

11 Pre therapy 22 248 1016 0.10

11 Post therapy 22 262 1011 0.10 0.55

14 Pre therapy 20 130 1035 0.08

14 Post therapy 20 129 1038 0.08 0.94

aAnalysis includes only patients who had sampling during viral RNA decay on cART.
doi:10.1371/journal.ppat.1004010.t002
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cART. In addition to the identical sequences, there were also some

unique sequences detected in patients in groups 2 and 3 after long-

term suppression. The presence of unique variants in the plasma

during long-term treatment in PID 1 (Figure 4c) may indicate that

on-going replication is another source of residual viremia during

therapy in this patient. However, unique variants present in PID

11 (Figure 4c) are more likely due to replication that occurred

during the brief treatment interruption in this patient.

Figure 3. Measurements of the probability of panmixia before and after cART in (A) Group 1 - short-term cART (B) Group 2 - long-
term cART (C) Group 3 - cART with treatment interruptions. We considered a panmixia p value of ,0.001 to be statistically significant
according to the original publication of the method (1). Significance reveals a shift in population over time on cART and was found primarily in
patients on long-term cART.
doi:10.1371/journal.ppat.1004010.g003
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The genetics of rebound viremia are shown in two patients

from group 3 (PID 2, 9) in Figure 5; and demonstrate that

rebounding virus is primarily due to populations of identical

sequences, as seen during cART, suggesting a stable, non-

evolving reservoir as a likely source of rebound viremia. The

presence of multiple populations of rebounding virus argues

against the identical sequences persisting during suppression

being the source of viral rebound since, in most patients, we

detected only a single population of identical variants during

suppression. Rebound viremia in these two patients also

includes unique variants, some of which may be recombinants

between the rebounding rakes of identical sequences and

accumulation of new mutations that occurred after interrupting

cART.

Neighbor-joining analyses allowed us to visualize the plasma

virus populations present during cART compared to those in

pretherapy, but cannot be used to determine if the variants

present during treatment are newly emergent resulting from full

cycles of replication or if they are merely the expression of

variants from cells infected prior to treatment. For this purpose,

we applied a test for molecular evolution using Bayesian analysis

as implemented in BEAST (http://beast.bio.ed.ac.uk) to deter-

mine if the plasma virus populations present during therapy were

newly emergent variants or were pre-existing. The molecular

evolution test was performed by measuring the distances from the

root of the tree (rooted on consensus B) to the tip of each branch

(Figure 6a–d). If the population structure results from the

emergence of new variants, then those sequences will be on

branches that are more distant from the root of the tree

than variants present in pre-therapy, resulting in positive

slopes in Figure 6 as shown in Table 3. The molecular

evolution test revealed slopes that were close to 0 (med-

ian = 16102564.561025 nt/day) with no significant differences

between groups (t-test between groups 1 and 2 had p

value = 0.72, between groups 2 and 3 p = 0.67, and between

groups 1 and 3 p = 0.74), showing that the variants present during

the second and third phases of decay and after prolonged therapy

were not more distant from the root of the tree than variants

present prior to initiating therapy. In a few cases the sequences

were actually slightly closer to the root (consensus B) resulting in a

negative slope. By contrast, the slopes in untreated elite

controllers with similar levels of viremia have significantly

positive slopes (median = 15 nt/day) (p = 0.009) when measured

over similar intervals [28]. These findings indicate that the viruses

with identical sequences that are revealed during cART are not

the result of full cycles of replication, but are likely being released

from a proliferating cell population that was infected prior to

therapy. Although all patients had root-to-tip slopes close to 0,

one had a slightly but significantly positive slope after long-term

treatment (PID 1, Figure 6a,b, Table 3) suggesting that there is a

subset of patients for whom treatment (for some period) is not

fully suppressive. The remaining 13/14 patients had slopes not

Table 3. Divergence from pretherapy virus.

PID Groupa Sample Description Probablility of Panmixia Root to Tip Sloped

1 1 26 days on cART 0.0134 0.2

2 1 41 days on cART 0.4505 20.03

3 1 80 days on cART 0.0609 20.0006

4 1 110 days on cART 0.4032 20.001

5 1 260 days on cART 0.1358 0.002

6 1 193 days on cART 0.0006* 0.0001

7 1 173 days on cART 0.0003* 20.0009

9 1 136 days on cART 0.258 20.0002

11 1 23 days on cART 0.4927 20.02

14 1 111 days on cART 0.0733 20.0007

1 2 1566 days on cART ,0.000001 0.02

4 2 3650 days on cART ,0.000001 0.00009

8 2 3437 days on cART ,0.000001b 0.00008

10 2 4380 days on cART 0.3311 0.00003

12 2 3215 days on cART 0.573c 20.002

2 3 Rebound viremia after 2624 days on cART ,0.000001 0.005

3 3 Rebound viremia after 2013 days on cART 0.0085 0.0009

9 3 Rebound viremia after 1497 days on cART ,0.000001 0.001

11 3 Rebound viremia after 3255 days on cART 0.00001 0.002

13 3 Rebound viremia after 755 days on cARY ,0.000001 0.002

aGroup definitions: Group 1 - Samples analyzed pre-cART and ,1 yr on cART. Group 2 - Pre-cART and after long-term suppression on cART (average 9 yrs on cART).
Group 3 - Pre-cART and after treatment interruption.
b4 Sequences only.
c3 Sequences only.
dnt/day multiplied by 1000.
Bold - significant p value.
doi:10.1371/journal.ppat.1004010.t003
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Figure 4. Neighbor-joining trees of single-genome plasma sequences from select samples from (A) Group 1 - short-term cART with
no significant divergence of virus population from pre-therapy virus (B) Group 1 - short-term cART with significant divergence of
virus during suppression on cART (C) Group 2 – long-term cART and (D) Group 3 – long-term cART, resuppression after a brief
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significantly different from zero consistent with complete

suppression of viral replication.

Discussion

The source(s) of persistent viremia during suppressive antiret-

roviral therapy remains uncertain, and there have been a number

of studies to investigate whether repeated full cycles of virus

replication occur during adherence to cART or if low-level

viremia present in the plasma of successfully treated patients is the

result of viral expression from long-lived cells infected prior to

treatment. Population genetics and phylogenetic approaches

represent powerful techniques to detect genetic change in

temporally spaced samples, but in the setting of relatively high

genetic diversity it is often difficult to determine whether observed

change represents molecular evolution from ongoing replication or

a shift in the population of reservoir cells producing virus. One

way to resolve this issue is to compare HIV-1 populations prior to

and following initiation of cART and to compare temporal

changes in viral populations in treated patients to untreated elite

controllers with similar levels of viremia and duration of control.

In this study, we investigated HIV-1 gag-pro-pol populations in

infected individuals before, during, and after cART by analyzing

the effect of cART on viral genetic diversity and population

structure and compared the results to similar data set from a

cohort of elite controllers [28]. We previously showed that viral

treatment interruption. Phylogenetic analyses reveal populations of identical plasma sequences after long-term cART suggesting virus release
from a long-lived proliferating cell population.
doi:10.1371/journal.ppat.1004010.g004

Figure 5. Neighbor-joining trees of single-genome plasma sequences from rebound viremia in patients in Group 3. Phylogenetic
analyses reveal populations of identical plasma sequences in rebound viremia after interrupting long-term cART.
doi:10.1371/journal.ppat.1004010.g005
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replication and molecular evolution occur in spontaneous HIV-1

elite controllers at levels that are not significantly different from

non-controllers [28]. This finding demonstrates that our analytical

methods are sensitive enough to detect the emergence of new viral

variants despite very low levels of viremia. In fact, with these

methods, we are able detect the emergence of new variants even if

evolutionary rates are only 10% of those measured in elite

controllers (15 nt changes/day). To address the question of

ongoing replication during cART, we applied the same analytical

approach used in the elite controller cohort [28] to HIV-1

populations in non-controllers on cART for evidence of molecular

evolution during treatment. In contrast to our findings in elite

controllers, we found clear evidence for virus molecular evolution

in only one patient on long-term cART (without treatment

interruptions) while we found no evidence for the appearance of

new variants in any of the other suppressed patients.

First, we investigated virus populations in samples collected

within the first 6 months of initiating cART and compared these

populations to the viral sequences obtained from pretherapy

samples. We found no change in the diversity, divergence, or

phylogenetic structure in populations obtained before and after 6

months of ART, and no evidence of any genetic bottleneck in 8/9

patients on study. These results indicate that both short- and long-

lived cellular compartments are seeded with the same viruses and

that these compartments are sufficiently large to support highly

diverse populations of HIV-1 genomes. The sustained diversity of

HIV-1 populations over months of suppressive therapy without a

genetic bottleneck or loss of low frequency alleles also implies that

pre-existing low-level drug resistance mutations are not likely to be

lost during antiretroviral therapy.

To investigate the genetics of persistent HIV-1 during long-term

cART, we also sequenced plasma virus populations during 4–15

years of suppressive therapy; and again, compared these popula-

tions to those obtained from pretherapy samples. In contrast to

earlier samples on cART, we found clusters of identical sequences

in plasma samples collected after long-term treatment. However,

using phylogenetic tests for molecular evolution (root-to-tip

distance analyses), we found no evidence for the appearance of

new variants during long-term cART and the clusters fit within the

phylogenies of virus populations present before therapy (with the

exception of one patient). The presence of identical sequences

during ART suggests that virus particles are being produced by an

HIV-1 infected clonal cell population, such as stem cell-like CD4+
memory T-cells or other proliferating cell types. These conclusions

are consistent with previous studies that indicate that persistent

plasma viremia during cART is derived from viral expression in

long-lived cells [9,11] [1] [6,7,8]. The specific cell populations

giving rise to plasma viremia during cART have not yet been

determined but one study nicely demonstrated significantly

different populations structures between residual viremia and

resting CD4+ cells in 11/13 patients [40] suggesting alternative

sources for persistent viremia.

Given that long term therapy reduces the average level of

viremia from about 30,000 to about 1–3 copies of RNA per ml on

average [1] and that a minority (up to about 1/3) of the sequences

in patients on long term therapy are clonal, we can estimate that

the cells that produce such virus represent about 1 in 100,000 of

Figure 6. Evolutionary distances of each single-genome
sequence from pre-cART and during and after cART compared

to the consensus subtype B HIV-1 sequence and plotted over
(A) short-term cART (B) long-term cART (C) long-term cART
with brief treatment interruptions and (D) rebound viremia.
Positive slopes indicate the emergence of new variants and on-going
replication during cART. Only one patient (PID 1) showed a positive
slope and evidence of molecular evolution during cART.
doi:10.1371/journal.ppat.1004010.g006
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the total virus-producing cell population in an untreated individ-

ual. Our findings also suggest that these cells are neither expanded

nor depleted during therapy as a result of CTL selection. Our

observations and those of others (14) that rebound viremia after

long-term cART contains homogeneous populations suggests that

rebound viremia results from the expansion of identical sequences

present during suppression or from a small number of founder

viruses (as seen in acute infection). Further experiments are

required to determine the relationship of virus populations that

persist during therapy to those that rebound after treatment

interruption.

The conclusion that cART effectively and completely halts

HIV-1 replication in those infected cells that are responsible for

viremia is consistent with prior studies by us and others showing

that low levels of viremia on therapy are independent of the

therapeutic regimen used and they cannot be further suppressed

by additional drugs [6,7,8]. Our conclusions are also consistent

with the initial observations of Persaud and coworkers who

demonstrated that drug resistant mutations do not emerge in

patients with suppressed viremia [41]. Several observations,

including transient increases in 2LTR circles in some cART

treated patients undergoing raltegravir intensification, and studies

measuring relative levels of HIV-1 RNA in specific compartments

[42] have suggested the presence of localized, limited HIV-1

replication. However, the relationship between the 2-LTR circles

and low level viremia has not been firmly established. It is likely

that a very small fraction of the virions released during suppressive

cART give rise to the 2 LTR circles and that these represent dead-

end events, not continuous replication, most likely related to the

use of a specific antiviral treatment regimen [42]. Our findings

here suggest that low level viremia persisting during cART results

primarily from expression of virus in expanding cell populations

infected prior to initiating therapy. Cure of HIV-1 infection will

require strategies that either eliminate the extremely rare cell

population that can chronically produce infectious virus or prevent

regrowth of virus from these reservoirs following cessation of

cART.
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