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Abstract

The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly
defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected
cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in
vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the
E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously
showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an
activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the
hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not
tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that
alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of
IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin
topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less
efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce
particles. The findings reported here identify properties of the E protein that are important for its function, and provide
insight into how the E protein may perform multiple roles during infection.
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Introduction

Coronaviruses (CoVs) are enveloped, positive strand RNA

viruses that infect a variety of mammalian and avian species. In

humans, CoVs are responsible for nearly 20% of common cold

cases. CoVs can also lead to more serious disease as seen during

the outbreak of the severe acute respiratory syndrome coronavirus

(SARS-CoV) in 2003. To better prepare for the emergence of

another highly pathogenic CoV it is important to increase our

understanding of CoV biology.

The CoV virion consists of a helical nucleocapsid, made up of

the CoV N protein and the genome, surrounded by a lipid

envelope. Three structural proteins are embedded in the virion

envelope. The CoV S protein is a type I transmembrane protein

and is responsible for the attachment and fusion of the virion

during entry. The CoV M protein has three transmembrane

domains and drives the organization of the virion through its

interactions with the other structural proteins [1]. The CoV E

protein is small (76–108aa), is predicted to contain a single

hydrophobic domain (HD), and is a minor component of the

virion envelope. CoV E and CoV M drive the assembly of the

virion [2]. CoV assembly occurs intracellularly at the endoplasmic

reticulum-Golgi intermediate compartment (ERGIC) [3]. This

results in fully assembled infectious particles within the lumen of

the Golgi complex and downstream secretory organelles. Thus,

virions must use the host secretory pathway in order to reach the

plasma membrane and be released from infected cells.

In addition to its role in assembly, CoV E may have other

functions during infection. Studies in planar lipid bilayers have

shown that CoV E has ion channel activity [4,5]. These studies

also showed that the small molecule hexamethylene amiloride

(HMA) inhibits the ion channel activity of mouse hepatitis virus

(MHV) E and human coronavirus 229E (HCoV 229E) E. While

there is no direct evidence that CoV E acts as an ion channel

during infection, addition of HMA to either MHV or HCoV 229E

infected cells inhibits viral replication, and mutations introduced

into the HD of MHV E impair virus production suggesting that

the putative ion channel activity may play a role during infection

[5,6]. If CoV E acts as an ion channel, it must form higher order

structures because it contains only one predicted transmembrane

domain. Indeed, structural and computational studies have

suggested that CoV E forms a homo-pentamer in the membrane

with a pore in the middle [7–9]. Understanding the role of a

pentameric E ion channel is an important question in the field.

The membrane topology of CoV E is of considerable debate.

CoV E has a short (,10aa) hydrophilic N-terminus followed by a
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long hydrophobic domain (,25aa) and a hydrophilic C-terminus.

The N-terminus does not contain a canonical ER signal sequence

[10]. The hydrophobic domain is unusually long for a protein

targeted to the ERGIC/Golgi complex, but does not appear to be

long enough to span the lipid bilayer twice [11]. These properties

make it difficult to predict the topology based on the primary

sequence. Complicating matters is the fact that multiple topologies

have been reported in the literature for different CoV E proteins.

Both IBV E and SARS-CoV E have been reported to exist as a

type III transmembrane protein (Nexo, Ccyto) [12,13]. Other

investigators have reported the opposite topology for SARS-CoV

E and transmissible gastroenteritis virus (TGEV) E (Ncyto, Cexo)

[14,15]. Yet another topology reported for CoV E is a membrane

hairpin, where the hydrophobic domain bends into the cytoplas-

mic leaflet of the membrane with the N- and C-termini in the

cytoplasm. The hairpin topology has been reported for MHV E

and SARS-CoV E [15–17]. These discrepancies suggest that CoV

E may adopt more than one membrane topology. If this is the

case, CoV E may perform distinct functions depending on how it

is inserted into the membrane. For example, a transmembrane

version of CoV E could oligomerize and act as an ion channel,

whereas a membrane hairpin could drive virion budding.

Since CoVs assemble intracellularly, their virions must pass

through the host secretory pathway for egress. How or if the

secretory pathway is modified in infected cells is not well

understood, but may involve the E protein. A version of TGEV

lacking the E protein was unable to produce infectious particles,

but electron microscopy revealed that immature virions were

present in secretory organelles of infected cells [18]. Alanine

insertion scanning mutagenesis of the HD of MHV E produced

mutant viruses that showed a defect in the release of infectious

particles [6]. These results demonstrate that CoV E is important

for virion trafficking, but did not identify the mechanism. It has

long been appreciated that CoV infection drives a rearrangement

of host cell membranes including the Golgi complex [19]. More

recently it was shown that during CoV infection virions appear in

large virion-containing vacuoles derived from Golgi/ERGIC

membranes [20]. Recently we showed that the E protein of IBV

promotes the release of infectious particles. We also observed that

expression of IBV E results in the disruption of anterograde

protein traffic and causes the Golgi complex to disassemble, and

that all of these effects were dependent on the HD of IBV E [21].

This finding linked the efficient release of particles to the alteration

of the host secretory pathway, and demonstrated that IBV E has a

role during infection beyond assembly.

In the present study we set out to determine what properties of

the HD of IBV E were important for disrupting the secretory

pathway. We performed alanine scanning mutagenesis on the HD

and identified a key residue required for disrupting the secretory

pathway. We also addressed the role of topology in disrupting the

secretory pathway by designing mutant versions of IBV E that

adopted either a transmembrane or a membrane hairpin topology.

This allowed, for the first time, functional analysis of the two

specific forms.

Results

A Single Polar Uncharged Residue in IBV E is Necessary
for Disrupting Protein Trafficking

When the HD of IBV E (GenBank ID: CAC39117) is modeled

as an alpha helix and viewed in a helical wheel projection, polar

uncharged amino acids cluster on one side (Figure 1A). If the

cluster of polar uncharged residues is important for the

disruption of the secretory pathway, mutating them to alanine

should inhibit their effect, while mutations on the opposite side

of the helix should have no effect. To test this hypothesis, single

alanine mutations of the polar uncharged residues as well as

residues on the opposite side of the helix were made. The mutant

proteins were transiently expressed in HeLa cells and their

expression was confirmed by immunoblot (Figure 1B). Next, we

determined whether the mutants disrupted protein trafficking.

The mutant proteins were expressed along with the model cargo

protein vesicular stomatitis virus glycoprotein (VSV G). Traf-

ficking of VSV G was measured using metabolic labeling in a

pulse-chase assay coupled with endoglycosidase H (endo H)

digestion. Since glycoproteins become resistant to digestion with

endo H in the medial-Golgi, this assay monitors the rate at which

a glycoprotein moves through the Golgi complex. All of the

alanine mutants disrupted trafficking with the exception of IBV

E T16A (Figure 1 C and D). Thus, a single polar uncharged

residue within the HD of IBV E is necessary for disrupting

protein trafficking.

T16 Is Required for Disruption of the Golgi Complex
In addition to disrupting protein trafficking, IBV E expression

disrupts Golgi morphology [21]. As with the trafficking defect,

the disruption of the Golgi complex is dependent on the HD of

IBV E. We reasoned that if the trafficking defect and Golgi

complex disruption were occurring by the same process, T16

would be necessary for both effects. Indirect immunofluorescence

microscopy was performed on cells transiently expressing IBV E

or the mutant proteins. Cells were stained for IBV E and GM130,

a marker of the Golgi complex. All of the mutant proteins

disrupted the Golgi complex like IBV E with the exception of

T16A, which had no effect on Golgi complex morphology

(Figure 2A and B). These results, along with the data shown in

Figure 1, demonstrate that a single polar uncharged residue

within the HD of IBV E (T16) is necessary for the disruption of

the secretory pathway.

T16 Does Not Tolerate Substitution of Conserved Amino
Acids

We next determined if there was any flexibility in the amino

acid required at position 16 in IBV E. A multiple sequence

Author Summary

Coronaviruses are enveloped viruses that bud and
assemble intracellularly, and therefore must use the host
secretory pathway for release. Coronavirus E is a small
protein that contains a single predicted hydrophobic
domain and is targeted to the Golgi region. The E protein
has been implicated in the assembly of coronavirus
particles, as well as in virus release after assembly. The
mechanism of action is not understood, but may involve
ion channel activity. The membrane topology of the E
protein is also unclear, and the protein may adopt distinct
topologies that have different functions. We previously
showed that the E protein from the infectious bronchitis
virus could disrupt the secretory pathway to the apparent
advantage of the virus. Here we have mapped this activity
to a single, essential residue within the hydrophobic
domain. Additionally, we developed mutant versions of
IBV E that adopt a single membrane topology, and showed
that a transmembrane topology is required for disruption
of the secretory pathway. Our results broaden the
understanding of E protein function and will impact the
development of antiviral strategies.

Multiple Functions of the Coronavirus E Protein
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alignment of several different CoV E proteins showed that a

polar uncharged residue is conserved at position 16 (Figure 3A).

We introduced mutations at position 16 in IBV E that replaced

the threonine with serine, asparagine or glutamine. The mutant

proteins were transiently expressed along with VSV G to

determine their effect on protein trafficking. None of the

proteins disrupted trafficking of VSV G, showing that these

residues could not substitute for threonine (Figure 3B). We

examined the morphology of the Golgi complex in cells

expressing the mutant E proteins using indirect immunofluo-

rescence microscopy. Corroborating the trafficking results,

none of the conserved mutations disrupted Golgi complex

morphology as judged by GM130 staining (Figure 3C). Thus,

there is a strict requirement for threonine at position 16 in IBV

E.

E Proteins with Mutations at T16 Support Virus-Like
Particle Production

Previously we reported that replacing the sequence of the HD of

IBV E does not affect virus-like particle (VLP) production [22].

However, since these earlier experiments were carried out using a

different cell type and expression system, we wanted to confirm

that mutating T16 did not impair VLP production. We co-

expressed IBV E and the T16 mutants along with plasmids

encoding IBV M and IBV N in HeLa cells. The supernatant and

cells were collected separately, and VLPs were purified from the

supernatant via centrifugation over a sucrose cushion. The level of

VLPs produced was measured by immunoblotting and comparing

the signal for M in the VLP fraction to the cell fraction. We found

that none of the mutations had a significant impact on steady-state

VLP production as judged by the amount of M released (Figure 4A

Figure 1. A single polar uncharged residue in IBV E is required for disruption of cargo trafficking. (A) A helical wheel diagram of the HD
of IBV E. Polar uncharged residues are shown in blue; residues mutated to alanine are outlined in red. (B) An immunoblot shows that the alanine
mutants of IBV E are expressed and run at a similar molecular weight when transiently expressed in HeLa cells. (C) VSV G was transiently co-expressed
with the indicated protein in HeLa cells. 18–22 hours after transfection the cells were pulse-labeled with 35S-methionine/cysteine and chased for 0,
25, and 50 min. VSV G was immunoprecipitated from each sample and digested with endoglycosidase H. The mature (**) and immature (*) forms are
indicated. Data from control, IBV E, S13A, and T16 A is shown. (D) Quantification of (C) showing that the T16A mutation inactivates the trafficking
block. At each time-point the signal intensity for the mature and immature bands was measured. The percent of endo H resistant VSV G was
calculated by dividing the signal for the mature band by the total signal (mature+immature). Data are from at least two independent experiments.
Error bars represent +/2 SEM.
doi:10.1371/journal.ppat.1002674.g001
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and B). Thus, T16 is required for altering the secretory pathway,

but is not required for VLP production.

Effect of Other CoV E Proteins on the Secretory Pathway
CoVs fall into three distinct groups based on genome

similarities, alpha, beta and gamma. IBV is a gamma-CoV, and

we wanted to determine if the effect on the secretory pathway was

a property of other CoV E proteins. We transiently expressed the

E proteins from the beta-CoVs SARS-CoV (GenBank ID:

NP_828854.1) and MHV (GenBank ID: ACO72886) as well as

the alpha-CoV TGEV (GenBank ID: ABG89321) in HeLa cells.

Using antibodies directed against the various CoV E proteins or

GM130, the morphology of the Golgi complex was examined.

Somewhat surprisingly, none of the other CoV E proteins caused

the Golgi complex to disassemble (Figure S1). Other markers for

the Golgi complex were also distributed normally (data not

shown). We determined if any of the other CoV E proteins

impacted protein traffic through the Golgi complex using the

pulse-chase endo H assay described above. VSV G trafficking was

unaffected by expression of any of these E proteins (data not

shown). Taken together these data indicate that the effect of

SARS-CoV E, MHV E, and TGEV E on the host secretory

pathway may be different than that of IBV E, and potentially point

to an important difference in the function of the proteins.

However, we found that the half-life of IBV E was longer (3.6 h)

than that of MHV E (2 h), SARS-CoV E (2.1 h), or TGEV E

(2.6 h) (data not shown). Additionally, we could not compare the

absolute expression level of each protein (since the antibodies to

detect each one are different). Thus, it is possible that MHV E,

SARS-CoV E and TGEV E do not accumulate to as high a level

as IBV E in this expression system, and therefore do not

demonstrate the disruption in the secretory pathway observed

for IBV E.

Generation of IBV E Mutants That Adopt Either a
Transmembrane or Membrane Hairpin Topology

Multiple groups have proposed different membrane topologies

for the CoV E protein, either as a transmembrane protein or as a

membrane hairpin (Figure 5B, cartoons) [10,12–16]. It is possible

that CoV E may adopt multiple membrane topologies, each with

distinct function(s). To test the role of topology in IBV E function,

mutant versions of IBV E were created with either a transmem-

brane or membrane hairpin topology. To promote a transmem-

brane topology we added a canonical cleavable N-terminal signal

sequence onto the N-terminus of IBV E (ssIBV E), which will force

the cleaved N-terminus into the ER lumen [23,24]. To produce a

potential membrane hairpin we added a FLAG tag onto the N-

terminus (FLAG-IBVE). The rationale for this was that other N-

terminally FLAG tagged CoV E proteins adopt a membrane

hairpin topology [15,16]. We transiently expressed IBV E, ssIBV

E, and FLAG-IBV E in HeLa cells and probed their membrane

topology using selective permeabilization of the plasma membrane

with digitonin, followed by indirect immunofluorescence micros-

copy. As a control we co-expressed a luminal ER protein (CFP-

KDEL) along with a protein present on the cytoplasmic side of the

Golgi complex (golgin160-Myc). As expected, the cytoplasmic

epitope of golgin160-Myc was accessible after either Triton X-100

or digitonin permeabilization, whereas the luminal epitope of

CFP-KDEL was not accessible when cells were permeabilized with

digitonin (Figure 5A). For IBV E and ssIBV E we stained for either

the N- or C-terminus using antibodies directed to either end of the

protein. We found that both IBV E and ssIBV E largely existed as

transmembrane proteins with the N-terminus in the lumen and the

C-terminus in the cytoplasm (Figure 5B). For FLAG-IBV E we

used a similar approach but stained for the N-terminus with an

anti-FLAG antibody because our anti-IBV E N-terminal antibody

was unable to recognize the modified N-terminus. The results

showed that FLAG-IBV E had both the N- and C-termini in the

cytoplasm (Figure 5B). We also found that the mutations did not

affect the targeting of either construct, as both colocalized with

Golgi complex markers (Figure 6A and data not shown). We

quantified the difference in the staining intensity under the

different permeabilization conditions by measuring the fluores-

cence signal for the N- and C-termini in the same cell. After

subtracting the background signal, the N:C ratio was calculated,

and normalized to the ratio from the Triton X-100 samples for

ease of comparison (Figure 5C). As expected the ratio dropped

dramatically for both IBV E and ssIBV E, but not for FLAG-IBV

E. Thus, mutant IBV E proteins predominantly adopt either a

transmembrane or membrane hairpin topology. It is worth noting

that the N:C ratio was lower for ssIBV E than for IBV E. While

this difference was not statistically significant, we speculate that

Figure 2. T16 is required for Golgi complex disruption. (A)
Indirect immunofluorescence microscopy of HeLa cells transiently
expressing IBV E, S13A, or T16A. IBV E is shown in green, GM130 is
shown in red and nuclei are shown in blue. (B) Quantification showing
the extent to which IBV E and the HD mutants disrupt Golgi complex
morphology. To determine the extent of Golgi disruption, the area
encompassing GM130 staining was measured in non-transfected cells
and in cells expressing the various E mutants as described in Materials
and Methods. Scale bars, 10 mm. Data are from three independent
experiments, N$54 for each condition. Error bars represent +/2 SEM,
and the asterisk denotes a significant increase in Golgi disruption
compared to the control by Student’s t-test (p#5.461023).
doi:10.1371/journal.ppat.1002674.g002
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there may be a small population of IBV E that is inserted as a

membrane hairpin.

A Transmembrane Topology is Required for Disrupting
the Secretory Pathway

Having developed versions of IBV E that adopt a unique

orientation in the membrane, we determined if topology was

important for disrupting the Golgi complex. IBV E, ssIBV E, and

FLAG-IBV E were transiently expressed in HeLa cells and

subjected to indirect immunofluorescence microscopy. Staining for

IBV E and GM130 revealed that ssIBV E disrupted Golgi

complex morphology to a similar degree as IBV E (Figure 6A and

B). However, FLAG-IBV E had no effect on Golgi complex

morphology (Figure 6A and B). This result suggests that the

transmembrane topology is necessary for inducing Golgi complex

disassembly. Since IBV E with mutations at T16 did not disrupt

the secretory pathway, it was important to confirm that these

mutations did not disrupt topology. Indeed, the selective

permeabilization assay demonstrated that the topology of IBV

E-T16A was identical to IBV E (Figure S2).

Next we tested whether expression of the topology constructs

affected protein trafficking. We found that ssIBV E disrupted

protein trafficking similar to IBV E (Figure 7A and B). FLAG-IBV

E did not disrupt trafficking to the same extent as ssIBV E or IBV

E but still had some effect (Figure 7A and B). This could indicate

the IBV E hairpin does have some effect on trafficking, albeit to a

smaller degree. It is also possible that a portion of FLAG-IBV E is

inserted in a transmembrane topology and this small pool of

protein is sufficient to alter trafficking, but insufficient to disrupt

the morphology of the Golgi complex.

The addition of a FLAG tag to the N-terminus of IBV E could

result in a number of effects beyond changing the topology of IBV E.

Thus, we generated a version of IBV E that had a canonical signal

sequence, followed by a FLAG tag on the N-terminus (ssFLAG-IBV

E). When transiently expressed in HeLa cells, ssFLAG-IBV E was not

targeted as well to the Golgi complex as the other constructs (Figure

S3A). Also, selective permeabilization showed that a larger portion of

the N-terminus was in the cytoplasm compared to ssIBV E (Figure

S3B). These observations suggest that the FLAG tag may alter

insertion and targeting when added behind a cleaved signal sequence.

However, even with these caveats, ssFLAG-IBV E still disrupted

trafficking similarly to IBV E and ssIBV E (Figure S3D). ssFLAG-IBV

E also disrupted the Golgi complex, but to a lower degree than IBV E

or ssIBV E, possibly due to less efficient targeting (Figure S3C). These

results strongly support our interpretation of the importance of

topology and IBV E function.

Role of Membrane Topology in Assembly
To test how the membrane topology of IBV E affects particle

assembly, we assayed IBV E, ssIBV E and FLAG-IBV E in a VLP

Figure 3. Substitution with other polar uncharged residues is not tolerated at position 16. (A) Multiple sequence alignment of CoV E
proteins. Negatively charged residues are colored red, positively charged residues are colored in blue and polar uncharged residues are colored in
yellow. The box encompasses the hydrophobic domain of IBV E, and the arrow denotes position 16 in IBV E. (B) VSV G pulse-chase coupled with endo
H digestion as described in Figure 1. Mutation of T16 to S, N, or Q does not restore the ability of the protein to disrupt trafficking of VSV G through
the Golgi complex. Data are from at least two independent experiments. Error bars represent +/2 SEM. (C) IBV E protein with S, N or Q substituted for
T16 does not induce Golgi complex disassembly (See Figure 2 for description of quantification). Data are from 3 independent experiments, N$48 for
each condition. Error bars represent +/2 SEM, and the asterisk denotes a significant increase in Golgi disruption compared to the control by Student’s
t-test (p#361025).
doi:10.1371/journal.ppat.1002674.g003
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assay. We co-expressed the E constructs along with plasmids

encoding IBV M and IBV N in HeLa cells and determined the

amount of VLPs released into the supernatant by immunoblotting

(Figure 8A and B). Cells expressing ssIBV E produced less VLPs

than those expressing wild-type IBV E, suggesting that the

transmembrane topology can at least partially drive assembly,

possibly by inducing membrane curvature in a lattice of IBV M. In

support of this result, ssFLAG-IBV E also produced reduced levels

of VLPs (Figure S3E). Cells expressing FLAG-IBV E produced

almost no VLPs, indicating that the hairpin topology alone may

not support the production of particles. This result is harder to

interpret. It is not clear if the membrane hairpin is unable to drive

assembly, release, or both.

Discussion

We reported previously that replacing the entire HD of IBV E

with a heterologous sequence eliminated disruption of the

secretory pathway in transfected cells, and dramatically reduced

the release of infectious virus from infected cells [21]. Total

particle release was only modestly affected, however, suggesting

that the HD of IBV E is important for preventing damage to

virions during egress. Here we have shown that a single amino

acid in the HD of IBV E (T16) is critical for disruption of the

secretory pathway in cells expressing IBV E, but was not required

for VLP production. This result suggests that the alteration to the

secretory pathway is uncoupled from the role of E in assembly.

Additionally, we generated versions of IBV E that adopted either a

transmembrane or membrane hairpin topology. Using these

mutants, we showed that a transmembrane topology was required

for secretory pathway disruption. The residue equivalent to T16 in

SARS-CoV E, N15, is predicted to lie in the pore region of a

homo-pentamer [7]. Studies on a lysine-flanked peptide of the

SARS-CoV E HD showed that N15 was important for the ion

channel activity of the peptide in planar lipid bilayers [25]. Since

we found that a transmembrane topology and T16 are required

for disrupting the secretory pathway, and both are predicted to be

important for ion channel activity, it is certainly possible that the

disruption of the secretory pathway is due to the putative channel

activity of IBV E. Alteration of Golgi complex structure and

disruption of protein traffic occur when the ion balance at the

Golgi complex is disrupted [26–29]. While an active ion channel

at the Golgi complex could explain our observations, how altering

the ion balance of secretory organelles might facilitate release of

infectious particles remains unknown. We speculate that the

demands of trafficking large virion cargo require the expansion of

the Golgi complex cisternae, which may be achieved by changing

the luminal ion concentration. Alternatively, a change in luminal

environment may inactivate proteases present in the secretory

pathway, thus protecting the virions from degradation that could

render them non-infectious. The membrane rearrangements

observed in CoV-infected cells are likely due at least partially to

a disruption in the luminal microenvironment, although syncytia

formation also contributes [19,20]. Expression of the E protein in

the absence of infection allowed us to assess its contribution to

membrane rearrangements directly.

Many viruses encode small membrane proteins that have ion

channel activity [30]. As a group these proteins are referred to as

viroporins. The best studied viroporin is influenza M2, which

forms a tetrameric pH-activated proton channel [31]. The M2

channel acidifies the interior of the virion during entry to aid in

unpacking the genome [32]. For some strains of influenza virus,

M2 also plays an important role in the secretory pathway where it

raises the pH of the trans-Golgi to prevent the premature activation

of the fusion protein [29,33,34]. Hepatitis C virus (HCV), like

CoVs, assembles intracellularly and must navigate the secretory

pathway for release. Interestingly, HCV encodes a proton selective

viroporin, p7 [35–37]. While the exact role p7 is not fully

understood, it is important in the assembly and release of HCV

virions, and expression of p7 leads to the alkalinization of secretory

organelles [37–39]. It is possible that HCV-p7 and CoV E have

analogous roles during infection for altering the secretory pathway

to promote the release of virions. Viroporins appear to play

important roles in the assembly and trafficking of many viruses;

understanding their exact role(s) is important as they represent

good targets for therapeutic intervention via small molecule

inhibitors.

While T16 in IBV E is required for disrupting the secretory

pathway, it is not important for virus assembly as judged by VLP

production. Our VLP results also suggest that disruption of the

secretory pathway is not required for virus egress, since the T16A

mutant produced the same level of VLPs as the wild-type E

protein. However, the VLP assay does not allow measurement of

infectivity, which was greatly reduced for particles released from

Figure 4. Mutations at T16 in IBV E support VLP production. (A)
Immunoblot showing the amount of IBV N, M, and E in cells and
released as VLPs. (10% of cell fraction, 100% of VLP fraction) (B)
Quantification of immunoblot data showing the amount of M released
with no E, IBV E, T16A, T16S, T16Q or T16N. Data were normalized to the
amount of M expressed in each sample, and the amount of M released
with IBV E was set to 1 for ease of comparison. Data are from three
independent experiments. Error bars represent +/2 SEM, and the
asterisk denotes a significant decrease in VLP level compared to IBV E
by Student’s t-test (p,461023).
doi:10.1371/journal.ppat.1002674.g004
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cells infected with IBV carrying an E protein with a heterologous

HD [21]. Another difference between infection and the VLP assay

is that more particles are produced in a shorter time during

infection, it is likely then that the stress on the secretory pathway is

much more robust during infection. Thus, the VLP assay may not

accurately reflect virion trafficking during infection. To measure

the effect of T16 on virion trafficking, assays that measure both the

amount, rate, and route of infectious particle trafficking are

necessary. A future goal will be to analyze recombinant viruses

carrying mutations at T16 with quantitative trafficking assays.

If CoV E is important for the release of infectious particles, why

do some CoVs show only a modest reduction in infectivity when E

is deleted [40]? Moreover, why do we only observe a measurable

disruption in the secretory pathway with IBV E and not the E

proteins from other CoVs? The answer to these questions may lie

in the exact role(s) that the CoV E protein plays for each virus.

While the E proteins from different CoVs share a similar domain

structure, there is large variation in their primary sequence.

Additionally, the requirement of CoV E for the production of

infectious virus is not consistent between different CoVs. The E

Figure 5. Generation of IBV E mutants that adopt distinct membrane topologies. (A) When cells are permeabilized with Triton X-100 both
lumen (CFP-KDEL) and cytoplasmic (golgin160-Myc) epitopes are detected. Permeabilization with digitonin allows detection of the cytoplasmic
epitope, but not the luminal epitope. (B) Selective permeabilization of cells expressing IBV E, ssIBV E, and FLAG-IBV E. The N-terminus of IBV E and
ssIBV E was detected using a rabbit antibody to the N-terminus. The N-terminus of FLAG-IBV E was detected using a mouse anti-FLAG antibody. The
C-terminus of each construct was detected using a rat-antibody against the C terminus of IBV E. Scale bars, 10 mm. Cartoons at the bottom of each
panel show the predicted topology for each protein. (C) Quantification of topology shown as N-terminus to C-terminus fluorescence ratio (see
Material and Methods). The data are normalized to the ratio from the Triton X-100 permeabilized samples. Data are from at least 2 independent
experiments with N$17 for each condition. Error bars represent +/2 SEM, and the asterisk denotes a significant decrease in N:C between the Triton
X-100 and digitonin signal by Student’s t-test (p#3.461023).
doi:10.1371/journal.ppat.1002674.g005
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protein of the TGEV is essential for the production of infectious

virus [18]. However, a version of MHV lacking the E gene can

replicate, albeit at a greatly reduced titer [41]. Finally, a

recombinant version of SARS-CoV with E deleted shows only a

modest reduction in infectivity when passaged in cultured cell lines

[40]. These results suggest that CoV E may have evolved to

perform divergent functions in different CoVs. Somewhat

surprisingly then, it was reported that the E protein from several

different CoVs, including IBV E, could substitute for MHV E

during infection [42]. Even more striking, when MHV DE was

passaged, revertants were recovered with a partial duplication of

the M gene (consisting of the N terminus and three transmem-

brane domains but lacking the C-terminal tail) that were able to

largely compensate for the lack of E [43]. Taken together, these

results show that at least some function(s) of the E protein are

conserved among CoVs. However, the requirement for its

function(s) may vary significantly due to the compensatory action

of other viral proteins or differences in cell and tissue types

infected. Of all the CoVs whose E proteins were tested here, IBV is

the only one with an avian host. The requirements for assembly

and release in avian species may be slightly different than in

mammals. We tested whether the disruption of the secretory

pathway caused by IBV E occurred in DF-1 chicken fibroblasts

(cultured at 39uC), and found that the secretory pathway was

disrupted similar to HeLa cells (unpublished data). Another

potential difference is the cell type in which each virus replicates.

Figure 6. The transmembrane topology of IBV E promotes disruption of the Golgi complex. (A) Indirect immunofluorescence microscopy
of HeLa cells transiently expressing IBV E, ssIBV E, or FLAG-IBV E. The E protein is shown in green, GM130 is shown in red, and nuclei are shown in
blue. Scale bars, 10 mm. (B) Quantification of Golgi complex disruption in HeLa cells expressing IBV E, ssIBV E, or FLAG-IBV E (see Figure 2 for
description of quantification). Data are from 3 independent experiments with N$48 for each condition. Error bars represent +/2SEM, and the asterisk
denotes a significant increase in Golgi disruption compared to the control by Student’s t-test (p#7.861026).
doi:10.1371/journal.ppat.1002674.g006

Figure 7. The transmembrane topology of IBV E promotes disruption of protein trafficking. (A) VSV G pulse-chase coupled with endo H
digestion as described in Figure 1. The mature (**) and immature (*) forms are indicated. (B) Quantification of the pulse-chase data. Both ssIBV E and
IBV E dramatically affect protein trafficking, while FLAG-IBV E has a more modest effect. Data are from 3 independent experiments. Error bars
represent +/2 SEM.
doi:10.1371/journal.ppat.1002674.g007
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Certainly the requirements for virus egress in different tissues

could be an important factor. Another possibility is that the

compartmental localization of the E proteins may vary in the

absence of the other viral proteins and the impact of each CoV E

on the secretory pathway could depend on the Golgi subcompart-

ment in which it is localized. This possibility could be addressed by

immunoelectron microscopy on cells expressing the various E

proteins. There is a notable difference in the ion specificity and

channel behavior among the different E protein channels in planar

lipid bilayers [4,5]. Unlike the other CoV E channels character-

ized, the IBV E channel demonstrated rectification, where ions are

moved predominately in one direction [5]. Additionally, the IBV

E channel is insensitive to the small molecule HMA, unlike the

other CoV E proteins tested [5,9]. If the ion specificity or activity

varies between the CoV E proteins, it could certainly explain the

differences in behavior reported here. The best way to study these

differences would require electrophysiological measurements using

patch clamp analysis on purified Golgi membranes. This approach

would allow the direct measurement of the CoV E protein in its

natural membrane with the proper post-translational modifica-

tions, but will be very technically challenging. One last point is that

the sequences of the CoV E proteins are highly variable. Of note,

IBV E is significantly larger and contains more polar residues in its

HD than the other CoV E proteins (see Figure 3A). It will be

important to determine how these differences relate to the function

of the proteins. This could be addressed by determining how

chimeric proteins affect the secretory pathway and virus

replication.

Previous reports on CoV E protein topology have suggested that

it may exist either as a transmembrane protein or as a membrane

hairpin with both the N- and C-termini in the cytoplasm. The

ability to adopt multiple membrane topologies could be a

mechanism to increase the number of protein functions within

the constrictions of genome size. Here, we generated mutant

versions of IBV E that adopted either a membrane hairpin or

transmembrane topology. We found that the transmembrane

version of the protein behaved largely like IBV E, with the

exception that it was unable to drive VLP production to the same

degree. The membrane hairpin version of IBV E was unable to

disrupt the secretory pathway or drive VLP production. These

data suggest that IBV E largely functions as a transmembrane

protein, with no apparent role for the membrane hairpin.

However, such conclusions should be drawn with caution. While

we determined that ssFLAG-IBV E behaved largely like ssIBV E,

addition of the FLAG tag onto the N-terminus of IBV E could

have any number of off-target effects, especially when considering

the interaction of the E protein with M. We attempted to generate

a membrane hairpin using several different strategies, including

altering the charge distribution on either end of the HD, extending

the N terminus with different tags, and shortening the C-terminus.

Our only successful strategy was adding the FLAG tag onto the N-

terminus. It should be noted that all reports of CoV E

demonstrating that it adopts a membrane hairpin upon expression

have been carried out using N-terminally tagged proteins [15,16].

In fact the most recent data on the topology of SARS-CoV E using

the untagged protein and antibodies directed to either terminus

show that the predominant topology is Nexo, Ccyto [13]. What

remains unclear is if a membrane hairpin plays a role during

infection. It is possible that a portion of the E protein adopts a

membrane hairpin topology. We did observe a small difference

between ssIBV E and IBV E when we quantified the signal from

our selective permeabilization experiment. A small amount of

CoV E in the membrane hairpin conformation could play a

catalytic role during assembly, and while not necessarily required

for assembly, it may increase the efficiency of assembly. This

would explain why FLAG-IBV E could not support VLP

production on its own. This idea could be addressed by developing

infectious clones of IBV carrying the topology mutants of IBV E

and examining particle production biochemically and by electron

microscopy of infected cells. Also of interest is the mechanism for

generation of multiple topologies. A transmembrane topology is

likely generated through the canonical signal recognition particle

pathway like other type III membrane proteins [23], but the

generation of a hairpin could involve a different mechanism. One

could speculate that a hairpin could be generated through post-

translational insertion, possibly directly into the target membrane

[44].

Figure 8. Neither ssIBV E or FLAG-IBV E produce normal levels
of VLPs. (A) Immunoblot showing the amount of IBV N, M, and E in
cells and released as VLPs. (10% of cell fraction, 100% of VLP fraction) (B)
Quantification of immunoblot data showing the amount of M released
with no E, IBV E, ssIBVE, or FLAG-IBV E. Data were normalized to the
amount of M expressed in each sample, and the amount of M released
with IBV E was set to 1 for ease of comparison. Data are from at least
five independent experiments. Error bars represent +/2 SEM, and the
asterisk denotes a significant decrease in VLP level compared to IBV E
by Student’s t-test (p#0.01).
doi:10.1371/journal.ppat.1002674.g008
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The IBV E protein is a multifunctional viral protein that plays a

role in both the assembly and release of infectious virus. The exact

mechanism by which the protein alters the secretory pathway to

facilitate infectious particle release is still unknown, but may

depend on a single amino acid in the HD. Identification of the

mechanism will be a big step in understanding the interplay

between the secretory pathway and CoV trafficking. Also of

interest is how E protein function varies among CoVs and what

underlies any difference(s). Understanding these questions will

provide insight into both therapeutic approaches to CoV infection

and increase our understanding of how CoVs use the host

secretory pathway to their advantage.

Materials and Methods

Cell Culture and Transfection
HeLa cells were cultured in Dulbecco’s Modified Eagle Medium

(DMEM) (Invitrogen) with 10% Fetal Bovine Serum (FBS)

(Atlanta Biologicals), and 0.1 mg/ml Normocin (InvivoGen) at

37uC under 5% CO2. Transient transfection of HeLa cells was

performed using Fugene6 or XtremeGene 9 (Roche) according to

the manufacturer’s protocol. Experiments were performed 18–

22 hours post transfection unless noted otherwise.

Plasmids and Mutagenesis
The expression plasmids for IBV E, VSV G and IBV M have

previously been described [12,21,45]. The sequence for IBV N

was amplified by RT-PCR of RNA from IBV infected cells. The

sequence was inserted into pcDNA3.1 using BamHI and EcoRI

sites, and subcloned into pCAGGS using KpnI and XhoI.

Mutations of the HD of IBV E were introduced via Quikchange

(Stratagene) site directed mutagenesis. ssIBV E was generated by

inserting a BglII site directly upstream of the start codon of IBV E

using Quikchange mutagenesis. The vector was digested with

EcoRI and BglII and synthetic oligonucleotides encoding the

signal sequence of VSV G (MKCLLYLAFLFIGVNCRS) with

flanking EcoRI and BlgII sites was ligated upstream of the start of

IBV E to generate ssIBV E. The FLAG-IBV E construct was made

in a similar way. A sequence encoding an initiation codon and the

FLAG epitope (MDYKDDDDK) with flanking BglII sites was

ligated directly upstream of the start codon of IBV E. ssFLAG E

was generated by ligating the same FLAG epitope

(MDYKDDDDK) into the ssIBV E construct after digestion with

BglII. pCAGGS SARS E (Urbani) has been previously described

[46]. Plasmids containing the coding sequences for MHV E (A59)

and TGEV E (Purdue p115) were kindly provided by Paul Masters

(Wadsworth Center, Albany, NY). The coding sequence of MHV

E and TGEV E were PCR amplified and inserted into pCAGGS

using EcoRI and KpnI or EcoRI and XhoI respectively. The

CFP-KDEL expression vector was from clontech. The construct

consists of a signal sequence followed by the cyan fluorescent

protein and a KDEL ER retrieval sequence in the C-terminal tail

of the protein. Golgin160-myc has been previously described [47].

Antibodies
The following antibodies have been previously described:

Rabbit and rat antibodies recognizing the C termini of IBV E,

rabbit antibody recognizing the N terminal portion of IBV E [12],

rabbit anti-IBV M used for immunoblotting [48], and the rabbit

anti-VSV polyclonal antibody used for immunoprecipitation [49].

The rabbit anti-MHV E and rabbit anti-TGEV E used for

immunofluorescence were kind gifts from Paul Masters, and have

been previously described [42]. The rabbit anti-IBV N antibody

was a kind gift from Ellen Collisson and has been previously

described [50]. Mouse anti-GM130 was from BD Biosciences,

rabbit anti-GFP was from Molecular Probes, mouse anti-FLAG

M2 was from Sigma, and the monoclonal mouse anti-Myc

antibody (clone 9E10) was from Roche Molecular Biochemicals.

The Alexa Fluor 488 conjugated donkey anti-rabbit IgG, Alexa

Fluor 488 conjugated donkey anti-mouse IgG, Alexa Fluor 568

conjugated donkey anti-rabbit IgG and Alexa Fluor 568

conjugated anti-mouse IgG were from Molecular Probes. The

Texas Red conjugated donkey anti-rat was from Jackson

ImmunoResearch Laboratories. The horseradish peroxidase

conjugated donkey anti-rabbit antibody was from Amersham.

Multiple Sequence Alignment
Multiple sequence alignment of CoV E proteins was carried out

using ClustalW2 at the European Bioinformatics Institutes server

[51]. The figure was generated using jalview version 2 [52].

GenBank accession numbers of the sequences used in the

alignment are as follows: TGEV E (ABG89321), IBV E

(CAC39117), SARS E (NP_828854.1), MHV E (ACO72886),

FIPV E (AAY16378), HCoV HKU1 (YP_173240), PEDV

(NP_598312), PHEV (YP_459955), Bovine CoV (NP_150081),

HCoV OC43 (NP_937952), and HCoV 229E (NP_073554).

Pulse-Chase Endo H assay
HeLa cells were transfected with pCAGGS VSV G (1 mg) along

with either a control plasmid (0.5 mg pCAGGS IBV M) or a

pCAGGS E construct (0.5 mg). Cells were incubated in cysteine-

methionine free DMEM for 15 min, labeled with 50 mCi of

Expre35S35S [35S]-methionine-cysteine (Perkin Elmer) in cysteine-

methionine free DMEM for 20 min, and chased in normal growth

medium. Prior to collection, labeled cells were washed with PBS.

Samples were lysed in detergent solution with protease inhibitor

cocktail and clarified at 20,0006g. SDS was added to 0.2% and

the samples were pre-cleared with Staphylococcus aureus Pansorbin

cells. Rabbit anti-VSV antibody was added to each sample and

incubated for 209. Immune complexes were collected with 20 ml of

washed Staphylococcus aureus Pansorbin cells and washed two times

in RIPA buffer (10 mM Tris [pH 7.4], 0.1% SDS, 1% deoxy-

cholic acid, 1% NP40, 150 mM NaCl). Immune complexes were

eluted in 1% SDS [pH 6.8] at 100uC and digested in 75 mM Na-

citrate [pH 5.5] with 0.2 ml endo H (100 units) (New England

Biolabs) at 37uC overnight. Concentrated sample buffer (200 mM

Tris-HCl [pH 6.8], 8% SDS, 60% glycerol, 0.2% bromophenol

blue) was added to each sample prior to separation on 10% SDS-

PAGE. Labeled proteins were visualized by using a Molecular

Imager FX phosphorimager (Bio-Rad) and quantified using

Quantity One software (BioRad).

Indirect Immunofluorescence Microscopy
HeLa cells plated on glass coverslips were processed for

immunofluorescence 18–22 h after transfection. For assaying

Golgi disruption in cells expressing IBV E or the HD mutants

cells were fixed in 3% paraformaldehyde for 10 min. The fixative

was quenched with PBS containing 10 mM glycine (PBS/Gly).

The cells were permeabilized in 0.5% TX-100 for 3 min and

washed in PBS/Gly. Cells were stained with rabbit anti-IBV E

(1:1000) and mouse anti-GM130 (1:1000). Secondary antibodies

were Alexa Fluor 488 conjugated anti-rabbit IgG (1:1000), Alexa

Fluor 568 conjugated anti-mouse IgG (1:1000). DNA was stained

prior to imaging with Hoechst 33285 (0.1 mg/ml). All images were

collected using an Axioscop microscope (Zeiss) equipped for

epifluorescence using an ORCA-03G charge-coupled-device

camera (Hamamatsu, Japan). Data analysis was done using

iVision software (BioVision Technologies) and Microsoft Excel.
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To determine if the Golgi complex was disrupted in cells

expressing IBV E or its mutants, the staining for the Golgi

complex (as judged by the GM130 staining) was outlined. The

area encompassing the Golgi complex was measured for cells

expressing IBV E, the HD mutants, or non-transfected cells. A

normal Golgi was determined to be the average area of non-

transfected cells +/21.5 standard deviations. Cells with a staining

area larger than this were scored as disrupted. The percent

disrupted was calculated by dividing the number of cells scored as

disrupted by the total number of cells measured.

Selective Permeabilization of the Plasma Membrane
HeLa cells were transfected with CFP-KDEL (0.2 mg) and

golgin160-Myc (1 mg) for control samples or with IBV E (0.5 mg),

pCAGGS-ssIBVE (1.5 mg), pCAGGS-FLAG-IBV E (0.5 mg),

pCAGGS ssFLAG-IBV E (0.5 mg), pCAGGS IBV E T16A

(0.5 mg). For the Triton samples the protocol listed above was

followed. For selective permeabilization of the plasma membrane,

cells were washed with a cold KHM (20 mM HEPES [pH 7.4],

110 mM KOOCH3, 2 mM Mg(OOCH3)2) and kept on ice. The

cells were permeabilized with 75 mg/ml digitonin (EM Sciences)

for 10 min. The digitonin solution was removed and the cells were

rinsed twice with cold KHM. The cells were moved to room

temperature and fixed with 3% paraformaldehyde for 10 min.

The control cells were incubated with mouse anti-Myc (1:2) and

rabbit anti-GFP (1:500). The C-terminus of IBV E, ssIBV E, and

FLAG-IBV E were detected using a C-terminal rat anti-IBV E

antibody (1:500). The N-terminus of IBV E and ssIBV E was

detected using a rabbit anti N-terminal IBV E antibody (1:100).

The N-terminus of FLAG-IBV E was detected using a mouse anti-

FLAG antibody (1:500). Secondary antibodies were The Alexa

Fluor 488 conjugated donkey anti-rabbit IgG (1:1000), Alexa

Fluor 568 conjugated anti-mouse IgG (1:1000), and Texas Red

conjugated donkey anti-rat (1:500). DNA was stained prior to

imaging with Hoechst 33285 (0.1 mg/ml).

For quantitation, images of equal exposure time were taken of

both the Triton X-100 and digitonin samples for each antibody.

To obtain the staining intensity, an initial background measure-

ment was obtained on the C-terminal staining by drawing a region

of interest (ROI) around an untransfected cell and measuring the

fluorescence intensity. The exact same ROI and measurement was

then made on the corresponding N-terminal image. Next, an ROI

was drawn around a cell showing C-terminal staining and the

mean fluorescence intensity was measured. Again, the exact same

ROI was overlaid onto the corresponding N-terminal image and

the mean fluorescence intensity was measured. The ratio of N- to

C-terminal staining was calculated by first subtracting the

background from each measurement, and then dividing the N-

terminal value by the C-terminal value. For the data shown, the

final ratios were normalized so that the signal ratio in the Triton

X-100 samples was equal to 1.

Virus Like Particle Isolation
HeLa cells were plated in 6 cm dishes and transfected with a

combination of plasmids encoding IBV M (2 mg), IBV N (1.5 mg),

IBV E (0.1 mg), ssIBV E (0.4 mg), FLAG-IBV E (0.2 mg), ssFLAG

IBV E (0.2 mg), T16A (0.1 mg), T16S (0.1 mg), T16N (0.1 mg) and

T16N (0.1 mg). Samples were prepared 42–48 hours post

transfection. The medium was clarified via centrifugation at

45006g for 20 min. The supernatant was loaded onto a 20%

sucrose cushion and centrifuged at 234,0006g in a TLA-110 rotor

for 60 min. The supernatant was discarded and the pellet

containing the VLPs was resuspended in 16 glycoprotein

denaturation buffer (New England Biolabs) containing 100-fold

concentrated protease inhibitor cocktail (Sigma). To collect the cell

fraction, dishes were washed with cold PBS. The cells were

scraped off the dish in 1 ml PBS and pelleted at 40006g for 2 min.

The pellet was resuspended in detergent solution and insoluble

material was pelleted at 20,0006g for 1 min. 106 glycoprotein

denaturation buffer was added to 16. Both the VLP and cell

fractions were heated at 100uC for 1 min. Both samples were

digested with PNGase F (New England Biolabs) according to the

manufacturer’s protocol. After digestion concentrated sample

buffer was added to a final concentration of 50 mM Tris

[pH 6.8], 2% SDS, 0.05% bromophenol blue, 15% glycerol.

Samples were separated on 15% PAGE gels (10% of cell fraction,

100% of VLP fraction) and transferred to polyvinylidene fluoride

Immobilon membranes (Millipore). Proteins were detected using

rabbit anti-IBV N (1:10,000), rabbit anti-IBV M (1:5000) and

rabbit anti-IBV E (1:10,000) primary antibodies and horseradish

peroxidase conjugated donkey anti-rabbit IgG (1:10,000) second-

ary antibody. After incubation in secondary antibody, the

membrane was incubated with HyGlo Quick Spray chemilumi-

nescent detection reagent (Denville Scientific Inc.). Images were

collected using a Versa Doc model 5000 (Bio-Rad) and Quantity

One software.

Cycloheximide Chase to estimate half-lives of CoV E
proteins

HeLa cells were treated with 100 mg/ml cycloheximide (Sigma)

diluted into culture media at 18 hours-post transfection. Cells were

fixed and prepared for immunofluorescence as described above at

0, 3, and 6 hrs after cycloheximide treatment. Images were

collected from each time point at the same exposure time, and the

mean fluorescence intensity was determined for cells expressing

the E protein. The half-lives of each E protein were calculated by

plotting the signal intensity versus time on a semi-log graph.

Supporting Information

Figure S1 Expression of other CoV E proteins does not disrupt

Golgi complex morphology. Indirect immunofluorescence micros-

copy on cells expressing TGEV E, MHV E, or SARS-CoV E. The

E protein is shown in green, GM130 is shown in red, and nuclei

are shown in blue. Scale bars, 10 mm.

(TIF)

Figure S2 IBV E T16A has the same topology as IBV E.

Selective permeabilization was carried out on cells expressing IBV

E T16A. The N- and C-termini were detected using antibodies

specific to each terminus. The histogram shows quantification of

topology as a ratio of the N-terminus to C-terminus fluorescence

signal (see Material and Methods). The data are normalized to the

ratio from the Triton X-100 permeabilized samples. Data are from

at least 2 independent experiments with N$16 for each condition.

Error bars represent +/2 SEM, and the asterisk denotes a

significant difference between the Triton X-100 and digitonin

signal by Student’s t-test (p#2.561027).

(TIF)

Figure S3 ssFLAG-IBV E behaves similarly to ssIBV E. (A)

Indirect immunofluorescence microscopy on cells expressing

ssFLAG-IBV E. The E protein is shown in green, GM130 is

shown in red, and nuclei are shown in blue. Scale bar, 10 mm. (B)

Selective permeabilization was carried out on cells expressing

ssFLAG-IBV E. The N- terminus was detected using an anti-

FLAG antibody and the C-terminus was detected using a Rat anti-

IBV E antibody. The histogram shows quantification of topology

as a ratio of the N-terminus to C-terminus fluorescence signal (see
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Material and Methods). The data are normalized to the ratio from

the Triton X-100 permeabilized samples. Data are from at least 2

independent experiments with N$22 for each condition. Error

bars represent +/2 SEM, and the asterisk denotes a significant

difference between the Triton X-100 and digitonin signal by

Student’s t-test (p#161028). (C) Quantification of Golgi complex

disruption in HeLa cells expressing ssFLAG-IBV E (see Figure 2

for description of quantification). Data are from 2 independent

experiments with N$37 for each condition. Error bars represent

+/2SEM. (D) The graph shows the quantification of VSV G

pulse-chase coupled with endo H digestion as described in

Figure 1. ssFLAG-IBV E dramatically affects cargo trafficking.

Data are from 2 independent experiments. Error bars represent

+/2 SEM. (E) A VLP assay was performed and quantified as

described in Figure 4 for ssFLAG-IBV E. ssFLAG-IBV E was

compromised in the production of VLPs compared to IBV E. Data

are from at least five independent experiments. Error bars

represent +/2 SEM, and the asterisk denotes a significant

decrease in VLP level compared to IBV E by Student’s t-test

(p,1.461024).

(TIF)
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