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Abstract

Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV)
seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated
that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent
peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and
active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively)
compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete
multiple cytokines (IFN-c, TNF-a, IL-2 and MIP-1b) in inactive and active SLE patients compared to controls (P = 0.0003 and
0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a
expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not
found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a
consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the
dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV
reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation
appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that
autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the
perpetuation of immune activation in SLE patients.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disorder. Common manifestations include inflammation and tissue

damage of skin and joints as well as inner organs, such as brain

and kidneys, in severe cases. The disease can be fatal, but with

recent medical advances, mortality is reduced significantly. The

course of the disease is unpredictable, with peak periods of illness

(active SLE) alternating with periods of remission (inactive SLE).

SLE-related autoimmune symptoms can be triggered by

environmental factors, such as ultraviolet light, drugs and

viruses.[1,2] In this regard, it has been reported that lupus

patients have elevated antibody responses to the gamma-

herpesvirus EBV [3,4] and that this antibody response shows

cross-reactivity to nuclear self antigens.[5,6,7,8] Primary EBV

infection typically occurs during childhood without apparent

clinical symptoms and evolves into a non-symptomatic life-long

virus carrying latency. Rare cases of infection in early adulthood

lead to infectious mononucleosis (IM), which has been linked to

increased risk of Hodgkin’s lymphoma [9] and to the onset of

autoimmune diseases, such as Multiple Sclerosis (MS) [10] and less

documented cases of rheumatoid arthritis (RA) and SLE, as

reviewed by Münz et al.[2] Detectable levels of lytic EBV antigen,

BZLF1, were observed more frequently in SLE patients (35%)

than in healthy controls (0%), suggesting recurrent EBV

replication in SLE patients.[11] In line with this observation,

several groups demonstrated that EBV viral load is elevated in

SLE patients,[12,13] and that the number of infected B cells

monitored longitudinally is positively correlated with the SLE

disease activity index (SLEDAI).[11] However, the mechanisms

linking EBV to SLE immunopathology still remain elusive. On the

one hand, EBV-related disorders are often observed as a

consequence of immunodeficiency in hosts, such as bone marrow

transplant patients.[14] On the other hand, it is debated that EBV

transformation can support the survival of self-reactive B cells.[2]

It has furthermore been demonstrated that EBV nuclear antigen 1

(EBNA1) is capable of inducing T [15,16] and B cell responses

[5,6,7,8] cross-reactive to auto-antigens, and thus potentially

induce auto-immunity. Of note, IM patients have cross-reactive

antibody responses to EBNA1 and the common lupus spliceo-
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somal autoantigen Sm B’ during the most severe acute phase of

IM,[17] suggesting a connection between the immunopathology of

EBV-induced IM and SLE.[18]

It was reported in an early study that T cells from SLE patients

are unable to control immunoglobulin production from EBV-

exposed B cells.[19] Subsequently, Kang et al. observed that lupus

patients had elevated frequencies of interferon-c (IFN-c) secreting

EBV-specific CD4+ T cells, whereas no significant modification

was observed for IFN-c secreting EBV-specific CD8+ T cells.[12]

Similarly, Berner et al. reported that the frequency of EBV-specific

CD8+ T cells did not differ between SLE patients and healthy

controls, when analysed using peptide-MHC tetramer probes.

However, the capacity of EBV-specific CD8+ T cells to secrete

IFN-c seemed reduced in SLE patients compared to healthy

controls.[20] Altogether, whether the defective control of latent

EBV infection in SLE patients is related to a CD8+ T cell defect

remains controversial.[11,12,13] Furthermore, it is unclear

whether the defect is EBV-specific or global. Finally, the sequence

in which EBV re-activation and disease onset occurs is unresolved.

Here, we assess quantitative and qualitative attributes of EBV-

specific CD8+ T cells from SLE patients. We show that the

frequencies of IFN-c, tumour necrosis factor-a (TNF-a), interleu-

kin-2 (IL-2) and Macrophage Inflammatory Protein 1b (MIP-1b or

CCL4) secretion by EBV-specific CD8+ T cells upon antigen

stimulation are diminished in SLE patients compared to healthy

controls. We furthermore demonstrate that EBV-specific T cells

from SLE patients exhibit a marked impairment in their cytotoxic

granule exocytosis process. We finally associate the dysfunctional

T cell phenotype with the up-regulation of the inhibitory receptor

programmed death 1 (PD-1), and strengthen this association by

reversing the dysfunctional T cell phenotype through specific

blockade of the PD-1 signaling pathway. In line with previous

findings, EBV viral load was found to be elevated in SLE patients

compared to healthy controls. Interestingly, longitudinal monitor-

ing revealed that bursts of viral load always occurred in a delayed

manner with respect to disease flare onset.

Results

SLE patients have elevated EBV viral load
To study the impact of EBV infection on SLE immunopathol-

ogy, we established a cohort of SLE patients and age- and sex-

matched healthy controls. Patient characteristics and treatments

are presented in Table 1. We validated that the patients displayed

the EBV associated features identified in literature,[3,4] such as

increased EBV seroprevalance (P = 0.006) and augmented anti-

EBV antibody titers (P,0.0001) (Table 1). Furthermore, we

confirm that cell-associated EBV viral load is augmented in EBV

seropositive SLE patients, when compared with EBV seropositive

healthy controls.[12,13] Thus, cell-associated EBV DNA is more

frequently above detection threshold in SLE patients than in

healthy controls (Figure 1). In comparison, CMV was below

detection threshold in the majority of study subjects (Healthy: 0 of

18; SLE: 5 of 93, P = 0.59). We then explored whether cell-

associated EBV viral load is linked with disease activity. As shown,

EBV was as frequently detectable in inactive as in active patients

(Figure 1). EBV viral loads were not influenced by any treatment-

related parameters (corticosteroids, hydroxychloroquine and other

immunosuppressors – see Table 1) according to a multivariate

analysis (P = 0.40, 0.21 and 0.24, respectively, n = 118).

Expansion of EBV-specific CD8+ T cells counterbalanced
by lymphopenia

In order to address whether increased EBV viral loads in SLE

patients could be due to a T cell functional defect, we compared

phenotypic and functional characteristics of lytic (BMLF1,

BMRF1, BZLF1) and latent (EBNA3A and EBNA3B) EBV-

specific CD8+ T cell responses between patients with SLE and

healthy controls. Using HLA/peptide tetramers, we quantified

circulating lytic and latent EBV- and CMV pp65-specific CD8+ T

cells in patients and controls (Figure 2A and Figure S1A in Text

S1). As shown, inactive and active SLE patients have slightly

elevated frequencies of lytic EBV-, and comparable frequencies of

latent EBV- and CMV-specific CD8+ T cells compared to healthy

controls (Figure 2B and Figure S1B in Text S1). However, the

elevated lytic EBV-specific CD8+ T cell frequency is counterbal-

anced by a general lymphopenia (Figure S2A in Text S1). Thus,

absolute counts of lytic EBV-specific CD8+ T cells in SLE patients

are comparable (inactive SLE patients) or even slightly decreased

(active SLE patients) as compared to healthy controls (Figure S2B

in Text S1).

Defective EBV-specific CD8+ T cell cytokine secretion in
SLE patients

MHC class I tetramer positive EBV- and CMV-specific CD8+

T cells were then tested for their capacity to secrete IFN-c, TNF-a,

IL-2 and MIP-1b in response to stimulation with EBV and CMV

cognate antigens (Figure 2A). We found that CD8+ T cells from

inactive and active SLE patients specific for lytic EBV antigens are

functionally impaired in their capacity to secrete IFN-c (P = 0.003

and 0.021, respectively), TNF-a (P = 0.005 and 0.004, respective-

ly), IL-2 (P = 0.004 and 0.0001, respectively) and MIP-1b
(P = 0.001 and 0.0001, respectively) compared to T cells from

healthy controls (Figure 2C – upper panel). The impairment is also

observed as a decline in the absolute number of circulating

cytokine-secreting EBV-specific CD8+ T cells (Figure S2C in Text

S1). Moreover, the proportion of EBV-specific CD8+ T cells able

to secrete multiple cytokines is reduced in patients compared to

controls (Figure 2D – upper panel). Similarly, we observed that

CD8+ T cells from SLE patients specific for latent EBV antigens

tend to have reduced capacity to secrete IFN-c (Figures S1A and

Author Summary

Systemic Lupus Erythematosus (SLE) has been associated
with Epstein-Barr Virus (EBV) infection for decades,
however the mechanistic links have remained elusive.
Most human adults are infected by EBV and carry the virus
for life without clinical symptoms. However, for unknown
reasons EBV induces infectious mononucleosis in some
individuals, during which cross-reactive antibodies specific
for both virus and self have been detected. Interestingly,
such cross-reactive antibodies are also frequently found in
SLE patients. Since, EBV seropositivity and viremia are
more frequent in SLE patients than in healthy individuals, it
has been postulated that EBV trigger autoimmunity. Here
we show that SLE patients are indeed less capable of
controlling EBV viremia, since their EBV-specific CD8+ T
cells have diminished capacity to secrete effector mole-
cules (e.g. cytokines and chemokines) and to kill EBV-
infected targets as a consequence of their Programmed
Death 1 (PD-1) receptor up-regulation. Longitudinal
studies further reveal that disease flares precede EBV
viremia. Thus, contrary to expectations, EBV reactivation
appears to be an aggravating consequence, rather than a
cause, of SLE immunopathology. Our results pave the way
for immunological interventions that restore the host-EBV
balance, which may result in decreased levels of aggra-
vating cross-reactive antibodies and ultimately be benefi-
cial to SLE patients.

Impaired T Cell Suppression of EBV in SLE
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S1C in Text S1). In contrast, CMV-specific cytokine responses are

well preserved in inactive and active SLE patients (Figure 2C –

lower panel). Likewise, polyfunctionality of CMV-specific CD8+ T

cells do not differ significantly between patients and controls

(Figure 2D – lower panel). Importantly, impaired functionality of

EBV-specific CD8+ T cells is not related to treatments

(corticosteroids, hydroxychloroquine and other immunosupres-

sors) according to a multivariate statistical analysis (All treatment

parameters were non-significant for the prediction of IFN-c-, IL-

2-, MIP-1b- and TNF-a-secretion, n = 46).

Figure 1. Cell-associated EBV viral load in SLE patients. qPCR measurements of EBV genomes per 106 PBMCs from EBV seropositive healthy
controls (H, n = 29), inactive (iSLE, n = 76) and active (aSLE, n = 42) SLE patients. The absolute number and the frequency of individuals having viral
loads above the detection limit of 25 viral genomes per 106 PBMCs (dotted line) are indicated. Group comparisons are performed with Fisher’s exact
test.
doi:10.1371/journal.ppat.1002328.g001

Table 1. Cohort characteristics.

Healthy
controls (n = 31)

Inactive SLE
patients (n = 76)

Active SLE
patients (n = 42) P-value

Female Sex (%) 27 (87%) 71 (93%) 36 (86%) 0.32

Inclusion age (years), Median 33.0 34.3 34.6 0.92

[Range] [19–57] [16–61] [16–58]

SLEDAI, Median N/A 0 8 0.0001

[Range] [0–5] [6–23]

EBV Serology 29 (92%) 76 (100%) 42 (100%) 0.006A

CMV Serology 18 (58%) 58 (76%) 35 (83%) 0.035A

Anti-EBV IgG titersB, Median (RU/ml) 10500 17900 19300 ,0.0001A

[Range] [2400–25400] [2900–28900] [2800–35400]

Corticosteroid (%) N/A 73% 65% 0.49

Median (mg/day) [Range] 5 [0–55] 7.5 [0–60]

Hydroxychloroquine (%) N/A 89% 87% 0.76

Other immunosuppressors (%) N/A 23% 26% 0.81

N/A: not applicable, RU: Relative Units.
AHealthy controls versus all SLE patients.
BOnly titers from seropositive individuals are included.
doi:10.1371/journal.ppat.1002328.t001
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Impaired EBV-specific cytotoxic granule exocytosis in SLE
We then investigated whether EBV-specific CD8+ T cells

from SLE patients are also less cytotoxic than their healthy

counterparts. We measured the capacity of EBV-specific

CD8+ T cells to degranulate by monitoring the appearance of

degranulation marker LAMP-1 (CD107a) on the cell surface

(Figures 3A–B) and granzyme B release (Figures 3C–D), prior to

and following stimulation with cognate antigen. Surface exposed

CD107a is inversely correlated with granzyme B release, and thus

a marker of recent history of cytotoxic activity.[21] As shown,

Figure 2. Multiparametric functional assessment of EBV- and CMV-specific CD8+ T cells in SLE patients. (A) Representative
cytofluorometric detection (left) and functional analysis (right) of CD8+ T cells specific for one of the lytic EBV antigens tested (BZLF1) in a healthy
control (upper panel) and in an inactive SLE patient (lover panel) post peptide antigen stimulation of PBMC. Lytic EBV and CMV antigen-specific cells
were detected with peptide/MHC tetramer and anti-CD8 antibody (red box) and simultaneously analyzed for intra-cellular IFN-c, TNF-a, IL-2 and MIP-
1b content. Cytokine/chemokine gates were positioned according to control stains of non-stimulated virus-specific T cells. (B) Magnitude and (C)
functionality of EBV- (upper panel) and CMV-specific (lower panel) responses in healthy controls (H, n = 26 and 15, respectively), inactive (i, n = 19 and
10) and active (a, n = 27 and 11) SLE patients. (D) EBV-specific T cells (upper panel) are strikingly less polyfunctional in inactive (iSLE) and active (aSLE)
SLE patients compared to controls (healthy), while polyfunctionality of CMV-specific responses (lower panel) is preserved. Pie representations of virus-
specific CD8+ T cells represent the fraction of individual cells secreting none (0) or any (1, 2, 3 or 4) of the four cytokines IFN-c, TNF-a, IL-2 and MIP-1b
(color coded as indicated). E.g. the red pie slice indicates the proportion of cells producing four cytokines (IFN-c, TNF-a, IL-2 and MIP-1b). P-values
monitoring differences between healthy donors and SLE patients are calculated using a non-parametric Mann-Whitney test and pie comparison
statistics of the Spice software.
doi:10.1371/journal.ppat.1002328.g002

Impaired T Cell Suppression of EBV in SLE
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CD8+ T cells from SLE patients specific for lytic EBV antigens

carry similar loads of granzyme B (Figure 3D – upper left panel),

but are dramatically less able to degranulate (P = 0.0009,

Figure 3B upper panel) and release their cytotoxic content

(P = 0.0001, Figure 3D – upper right panel) following stimulation,

compared to EBV-specific CD8+ T cells from healthy controls. A

Figure 3. Lytic EBV antigen-specific T cells from SLE patients are impaired in their ability to release their cytotoxic granule content.
Representative analysis of (A) CD107a and (C) granzyme B expression in CD8+ T cells, specific for one of the lytic EBV antigens tested (BZLF1), from
healthy control and SLE patient either ex vivo (upper panel) or following cognate antigen stimulation (lower panel). As shown, EBV-specific CD8+ T
cells from SLE patients are much less able to mobilize surface CD107a and release their granzyme B content upon cognate antigen stimulation. (B)
Mobilization of CD107a on the surface of EBV- (upper panel) and CMV-specific (lower panel) CD8+ T cells upon cognate antigen stimulation over
night. (D) Ex vivo analysis of the frequency of granzyme B expression in EBV- and CMV-specific CD8+ T cells from healthy controls (n = 17 and 11,
respectively) and SLE patients (n = 14 and 12) (left panel), as well as the frequency of EBV- and CMV- specific CD8+ T cells positive for granzyme B
capable of releasing their granzyme B upon cognate antigen stimulation (right panel). Healthy controls are compared to SLE patients using a non-
parametric Mann-Whitney test.
doi:10.1371/journal.ppat.1002328.g003

Impaired T Cell Suppression of EBV in SLE
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similar impairment of cytotoxic activity was observed for CD8+ T

cells specific for latent EBV antigens (CD107a, P = 0.050)

(Figures S1A and S1C in Text S1). In contrast, CMV-specific

CD8+ T cells from SLE patients retain their cytotoxic potential

(Figures 3B and 3D lower panels). We conclude from this first set

of experiments that there is an EBV-specific CD8+ T cell

functional defect in SLE patients, the latter cells being impaired

in their capacity to secrete multiple effector cytokines and in their

cytotoxic granule exocytosis process.

PD-1 is upregulated on EBV-specific CD8+ T cells from SLE
patients

To investigate the mechanism of EBV-specific CD8+ T cell

dysfunction, we performed a comparative combinatorial analysis

of markers expressed by SLE versus control CD8+ T cells. We

measured expression levels of a range of differentiation

(CD45RA, CCR7, CD27, CD57, FoxP3), co-stimulatory/co-

inhibitory (CTLA-4, ICOS, PD-1, CD80, CD86, 41BBL, ICOSL

and PD-L1), activation (HLA-DR, CD69 and CD38) and

proliferation (Ki-67) markers on EBV-specific cells and total

CD8+ T cells. We found that the balance between central

memory, effector memory and naı̈ve CD8+ T cell subsets is not

altered in SLE patients, compared to healthy controls (data not

shown). However, proliferation (Ki-67) and activation (HLA-DR,

CD69 and CD38) markers are significantly up-regulated on total

CD8+ T cells in active SLE patients and less pronounced in

inactive SLE patients compared to controls (Figures S3A–B in

Text S1). Also EBV-specific T cells show a trend to be more

activated in SLE patients compared to healthy controls (Figure

S3C in Text S1). In addition, we found that whereas inhibitory

receptor CTLA-4 expression is conserved (Figure S4A in Text

S1), PD-1 expression is up-regulated on total CD8+ T cells

(p = 0.005 and 0.008 for inactive and active SLE, respectively)

compared to healthy controls (Figure S4B in Text S1).

Interestingly, polyclonal stimulation of CD8+ T cells with

Staphylococcal Enterotoxin B (Figure S4C in Text S1), anti-

CD3 and anti-CD28 antibodies (Figure S4D in Text S1) or PMA-

Ionomycin (Figure S4E in Text S1) mounted lower responses in

SLE patients compared to healthy controls. Importantly, EBV-

specific CD8+ T cells represent one of the T cell subsets

expressing high PD-1 levels in SLE, compared to controls

(Figure 4A; p = 0.0004). In contrast, CMV-specific CD8+ T cells

from SLE patients do not express elevated levels of PD-1

(Figure 4A).

Figure 4. Blockade of PD-1 signalling revigorates EBV-specific T cell responses. Cytofluorometric analysis of PD-1 expression on lytic (black
circles) and latent (red triangles) EBV- (upper panel) as well as CMV-specific (lower panel) CD8+ T cells. (B) Overall cell growth, (C) virus-specific T cell
expansion and (D) IFN-c secretion by peripheral virus-specific CD8+ T cells from healthy controls (H) and SLE patients (SLE) stimulated for 10 days with
EBV cognate antigen in the presence (+) or absence (2) of PD-L1 and PD-L2 antagonistic antibodies. Statistical comparisons are performed using (A)
Mann-Whitney and (B–D) Wilcoxon matched pairs test.
doi:10.1371/journal.ppat.1002328.g004
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PLoS Pathogens | www.plospathogens.org 6 October 2011 | Volume 7 | Issue 10 | e1002328



PD-1 signaling constrains EBV-specific CD8+ T cells from
SLE patients

Since PD-1 expression has previously been associated with

impaired cellular functionality,[22] we then asked whether

increased PD-1 expression by EBV-specific CD8+ T cells from

SLE patients could account for their impaired functional capacity.

In HIV-infected patients, it was shown that blockade of the PD-1

inhibitory pathway can restore CD8+ T cell functionality.[23] We

therefore tested the influence of the PD-1 signaling pathway on

EBV-specific CD8+ T cells by blocking PD-1 signaling with

antagonistic antibodies specific for PD-1’s two known ligands, PD-

L1 and PD-L2. Blockade of PD-1 signaling during lytic and latent

EBV antigen stimulation substantially boosted general T cell

proliferation (Figure 4B), EBV-specific T cell expansion (Figure 4C)

and IFN-c secretion (Figure 4D) in PBMC cultures from SLE

patients but not from healthy controls. In contrast, blockade of

PD-1 signalling during CMV antigen stimulation neither boosted

general T cell proliferation (Figure 4B) nor CMV-specific T cell

expansion (Figure 4C) or IFN-c secretion (Figure 4D). We

conclude that the PD-1 inhibitory pathway appears to have a

particularly important deleterious impact on lytic and latent EBV-

specific CD8+ T cell responses in SLE patients.

EBV replication peaks post initiation of SLE disease flare
Although EBV replication was found increased both in active

and inactive patients, we reasoned that only longitudinal studies

would clearly decipher whether EBV viral bursts precede or follow

disease flares. In order to address this issue, SLEDAI and EBV

viral load were longitudinally recorded from initiation of disease

flare to clinical and biological recovery in 6 established SLE

patients (Figure 5A) and 5 healthy controls (Figure 5B). An

increase of EBV viral load was observed in all SLE patients

(Figure 5A). In contrast, EBV remained below detection levels in

the 5 healthy controls monitored during the 8 weeks follow-up

(Figure 5B). Importantly, viral replication peaked 1 week or more

post flare onset in all 6 patients followed longitudinally, EBV being

below detection level in 4 of these patients at time of hospital

admission (Figure 5A). We confirmed in the cross-sectional series

of flaring patients that EBV was below detection levels in 5 out of 7

cases studied at the time of their hospital admission. We conclude

Figure 5. Longitudinal monitoring of EBV replication following SLE flare onset. EBV viral load as genome copies per 106 PBMCs (black line)
and synchronous disease activity (gray shading, SLEDAI$6) in (A) 6 SLE patients and (B) 5 healthy controls.
doi:10.1371/journal.ppat.1002328.g005
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from these cross-sectional and longitudinal studies that early

clinical symptoms of SLE do not coincide with high EBV viral

load.

Discussion

Alterations in the control of EBV infection in individuals

susceptible to lupus are suspected to promote the development of

autoimmunity through multiple mechanisms, such as cross-

reactive antibody and T cell responses.[24] Here we show that

SLE patients have recurrent bursts of EBV viral load. We

furthermore associate this altered control of EBV infection with a

PD-1 induced impairment of T cell mediated immune surveillance

of EBV.

Virus-specific T cells play a crucial role in the control of EBV

infection, and have already been the focus of previous studies in

human SLE.[12,19] Berner et al. addressed the issue by combining

MHC-peptide tetramer staining with IFN-c ELISPOT analysis.

Based on these tests, it was suggested that EBV-specific T cells

from SLE patients might have impaired IFN-c secreting

capacity.[20] The latter study was however hampered by

limitations in cohort size, and by the fact that function and

frequency of EBV-specific CD8+ T cells were not monitored

simultaneously at the single cell level.

The present study was designed to concurrently assess the

quality and quantity of EBV-specific CD8+ T cell responses. This

was achieved by combining the analysis of IFN-c, TNF-a IL-2,

MIP-1b, CD107a and granzyme B on MHC class I tetramer-

stained EBV-specific CD8+ T cells stimulated with their cognate

antigen. Being able to enumerate not only frequencies of

responses, but also proportions of functional cells among EBV-

specific CD8+ T cells, we clearly establish that EBV-specific CD8+

T cells are present at slightly elevated frequency but functionally

impaired in SLE patients. Indeed, EBV-specific T cells from SLE

patients exhibit a reduced capacity to secrete IFN-c, TNF-a, IL-2

and MIP-1b and an impaired cytotoxic granule exocytosis process.

The increased frequency of CD8+ T cells specific for lytic EBV

antigens is most likely due to recurrent EBV replication. However,

the elevated frequency is counterbalanced by a global T cell

lymphopenia, which is a common clinical feature of SLE.[25]

Furthermore, functional impairment at the single-cell level

coincides with a diminished absolute number of functional EBV-

specific CD8+ T cells in SLE patients. Interestingly, there was no

direct inverse correlation between EBV-specific cell function

(cytokine secretion and cytotoxicity) and EBV viral load (data not

shown). This is probably related to the fact that EBV viral loads

fluctuate relatively rapidly (Figure 5) and frequently enough to

have a long lasting imprint on T cell functions.

A link between CMV and SLE has also been debated due to the

fact that more frequent CMV seropositivity and elevated CMV

viral loads have been reported in SLE patients in a single

study.[26] SLE patients from the present study were also found

more frequently seropositive for CMV than healthy controls

(Table 1). However, CMV viral loads were not found elevated and

dysfunctional anti-CMV T cell responses were not observed in

SLE patients, compared to healthy controls. Altogether, the

immune alterations described in our study affect preferentially

EBV-specific responses and not responses to another herpesvirus,

CMV.

The impaired functional status of EBV-specific T cells in SLE

patients could be due to an alteration in their phenotype, possibly

caused by recurrent exposure to EBV antigens. We observed

(Figure S3 in Text S1) that proliferation marker Ki-67 and

activation markers CD69, HLA-DR and CD38 were up-regulated

on CD8+ T cells from SLE patients as previously reported.

[20,27,28] Taken together, this demonstrates that T cell hyper

activation and hyper proliferation are essential factors in SLE

pathophysiology.

PD-1 has previously been associated with diminished functional

capacity [22] and up-regulation is commonly observed on

chronically stimulated antiviral T cells.[23,29] Of note, a single

nuclear polymorphism (SNP) within the gene encoding the PD-1

receptor has been identified as an inheritable risk factor of

SLE.[30] We therefore reasoned that the PD-1 receptor could be

involved in the EBV-related immune alterations observed in SLE

patients. As shown, compared to control lytic EBV-specific CD8+

T cells, PD-1 surface expression levels are indeed up-regulated on

lytic EBV-specific CD8+ T cells from SLE patients. The functional

relevance of this marker was corroborated by the fact that blocking

PD-1 signaling restores both lytic and latent EBV-specific CD8+ T

cell function.

PD-1 expression is not only up-regulated on EBV-specific

CD8+ T cells but also, most likely, on pathogenic T cells, since

elevated PD-1 levels are observed on the global CD8+ T cell

compartments (Figure S4B in Text S1). We also observed that not

only EBV-specific T cells show signs of impairment in SLE

patients as polyclonal stimulation reveal significantly diminished

cytokine responses in the global CD8+ T cell compartment

(Figures S4C-E in Text S1). Therefore PD-1 up-regulation in

SLE patients might represent an important regulatory mecha-

nism, limiting the severity of pathogenic T cell responses. This

view is also supported by the fact that a recessive PD-1 knock-out

SNP is overrepresented in families of individuals suffering from

SLE,[30] suggesting a protective role for PD-1 regulation in SLE

immunopathogenesis.

It is still debated whether EBV reactivation is a cause or

consequence of SLE disease activity. We first noted that EBV

replication in our initial cross-sectional studies is usually

undetectable at time of hospital admission for SLE flare (5 out

of 7 cases). To address this issue more directly we longitudinally

followed patients starting at their first hospital visit after initiation

of disease flare until flare resolution. In this way we observed that

EBV replication is maximal post flare onset. The relatively narrow

window of EBV replication assessed through longitudinal analysis

suggests that cross-sectional studies most probably underestimate

the occurrence of EBV reactivation in active patients. This would

explain why no significant differences were recorded between

active and inactive patients in terms of EBV viral loads (Figure 1).

More longitudinal studies will be necessary to formally rule out the

implication of EBV in the triggering of SLE flares. In particular, it

would be interesting to monitor EBV not only at flare onset, but

also shortly before active disease. Nevertheless our results strongly

suggests that EBV replication is more likely a result of B cell

activation associated with active disease, rather than a triggering

factor for disease re-activation.

However, EBV can contribute to the vicious circle of

autoimmunity in several ways. As previously mentioned, EBV

can be responsible for the induction of cross-reactive B and T cell

responses.[15,16] Moreover, it was shown in healthy individuals

that EBV induces type 1 interferon (IFN) production by

plasmacytoid dendritic cells,[31] a subset of cytokines which are

central features of SLE active disease.[32] Thus, iterative episodes

of viral replication could account, at least in part, for the over-

expression of IFN and IFN-induced genes observed in

SLE.[33,34] The potential implications of EBV in SLE immuno-

pathology in relation to an impaired EBV-specific T cell response

suggest that pharmaceutical or immunological anti-EBV interven-

tions might potentially be beneficial to these patients.
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In conclusion we propose a model where autoimmune-driven B

cell activation [35,36] induces an activation of the EBV lytic cycle

in infected B cells, which leads to a burst of EBV replication. In

response, EBV-specific T cells are activated in order to control

viral replication and may eventually cross-react with self antigens

and lead to auto-immune manifestations. EBV-induced IFN may

also take part in SLE immunopathology. Repetitive episodes of

viral replication ultimately results in PD-1 mediated impairment of

EBV-specific cytotoxic and cytokine-secreting T cells. This

impairment partially limits the risks of cross-reactive tissue injuries,

but at the same time explains why EBV replication is less

suppressed in SLE patients.

Association between SLE and EBV has been studied for 40

years, and EBV remains suspected to induce SLE early on in

life.[37,38] In established SLE disease, it is debated whether

autoimmunity is triggered by reactivation of pathogens, such as

EBV or vice versa.[2] In our study of adults with established disease,

frequent EBV reactivation appears to be an aggravating

consequence, rather than a cause, of SLE immunopathology.

Future studies are needed to elucidate whether EBV contributes to

the initiation of disease in young healthy individuals.

Materials and Methods

Ethics statement
All samples were obtained following acquisition of the study

participants’ and/or their legal guardians’ written informed

consent. The study protocol was reviewed and approved by the

local ethics committees (Comité de Protection des Personnes Ile de

France VI).

Patients and healthy donors
We enrolled a total of 149 study subjects, including 118

consecutive SLE patients, defined according to the American

College of Rheumatology classification criteria,[39] as well as 31

healthy (H) control subjects. SLEDAI for individual SLE patients

was determined at the time of sample collection.[40] SLE patients

were subdivided in two groups consisting of 76 inactive

(SLEDAI,6) and 42 active (SLEDAI$6) SLE patients. Included

subjects were then selected according to their HLA genotype

(HLA-A*0201, A*1101, B*0702, B*0801), for which well charac-

terized EBV and CMV peptide antigens have been de-

scribed.[41,42,43,44]

EBV and CMV serology and quantification
The serological status of EBV and CMV were measured by

serum ELISA (BIO Advance, France) according to the manufac-

turer’s instructions. Both EBV and CMV DNA loads were

measured using in-house real-time PCR assays. EBV and CMV

PCRs were carried out on the same DNA extract obtained from

peripheral blood mononuclear cells (PBMCs) or total blood for

longitudinal studies, using the QIamp Blood DNA kit (Qiagen,

France) according to the manufacturer’s instructions. Real-time

quantitative PCRs based on hydrolysis probe technology were

carried out on a LightCycler 480 (Roche Diagnostics, France) as

previously described by Deback et al.[45] Real-time PCR accuracy

was previously confirmed by the Quality Control for Molecular

Diagnosis (QCMD) 2008 proficiency panel. The human albumin

gene was quantified in each DNA sample, to enable quantitation

of the copy number per million cells of EBV and CMV.

Antibodies and peptide/MHC tetramers
Directly conjugated and unconjugated antibodies were obtained

from the following providers: BD Biosciences (San Jose, CA): Ki-

67 [FITC], HLA-DR [PE–cyanin 7], CD38 [Alexa Fluor 700],

CTLA-4 [cyanin 5-PE], CD107a [cyanin 5–PE], Granzyme B

[A647], IFN-c [Alexa Fluor 700], IL-2 [APC] and TNF-a [PE–

cyanin 7]; R&D Systems (Abingdon, UK): MIP-1b [FITC], PD-1

[FITC]; Caltag (Burlingam, CA): CD8 [Alexa Fluor 405]; Dako

(Glostrup, Denmark): CD3 [cascade yellow] and BioLegend (San

Diego, CA): CD69 [APC-Cy7]. Peptide/MHC tetramers were

produced as previously described [41] and included the following

epitopes: HLA-A*0201 CMV pp65-NV9; HLA-A*0201 EBV

BMLF1-GL9 and BMRF1-YV9; HLA-A*1101 EBV EBNA-3B

IK9, EBNA-3B AK10; HLA-B*0702 CMV pp65-TM10; HLA-

B*0801 EBV BZLF1-RL8 and EBNA-3A-FL9.

Cytometry and polyfunctional analysis
PBMCs isolated on ficoll gradients (PAA, France) were stained

with titrated antibodies specific for cell surface markers, followed

by staining for intra-cellular Ki-67, according to manufacturer’s

recommendation.

For polyfunctional analysis, PBMCs were stimulated in the

presence of peptide antigen (5 mM) and PE-Cy5 conjugated anti-

CD107a antibody over night at 37uC in a 5% CO2 incubator.

Cytokine secretion was blocked by the addition of 2.5 mg/ml

monensin and 5 mg/ml Brefeldin A (Sigma-Aldrich, St. Louis,

MO). Cells were then stained with corresponding PE-conjugated

peptide MHC class I tetramer (0.5 mg per 106 cells) and directly

conjugated anti-CD3 and anti-CD8 antibodies. Cells were then

fixed and permeabilized with Cytofix/Cytoperm (BD Biosciences)

according to manufacturer’s instructions. Finally, cells were

stained with anti-cytokine antibodies and/or anti-granzyme B

antibody for 15 minutes at room temperature.

Samples were acquired on a BD LSRII flow cytometer (Becton

Dickinson) with appropriate isotype controls and color compen-

sation. Data were analysed with FACSDiva (BD Biosciences) and

FlowJo (TreeStar Inc) softwares. Unstimulated cells for each

sample, treated under the same experimental conditions served as

negative controls, and background values were subtracted from

the analysis of the stimulated samples.

Blockade of PD-1 signal pathway
PBMCs were cultured for 10 days at 37uC 5% C02, in RPMI

supplemented with 5% human serum and a cytokine cocktail mix

(20 ng/ml of IL-7 and 20 ng/ml IL-2 (R&D Systems, Minneap-

olis, MN)). Cells were stimulated with or without EBV or CMV

peptide (1 mg/ml) in the presence of either isotype control

antibodies or both anti-PD-L1 and anti-PD-L2 (10 mg/ml). On

day 10, cells were re-stimulated with peptide (1 mg/ml) overnight

and proliferation and functionality was assessed by cell counting

and flow cytometry. Antagonistic antibodies were kindly provided

by Pr. Gordon Freeman (Dana Farber Institute, Boston).

Data management and statistical analysis
Clinical information and flow cytometric analysis were gathered

in a database (Office Access 2003, Microsoft France, Issy-les-

Moulineaux, France).

Differences of continuous variables between patient groups were

tested using the Mann-Whitney U-test (unpaired) and the

Wilcoxon matched pairs test (paired). Differences of categorical

variables, such as sex and detectable viral load, between groups

were tested with Fisher’s exact test. All tests were 2-sided and a p

value ,0.05 was considered statistically significant. To exclude the

influence of treatment-related factors on EBV viral load and EBV

specific CD8+ T cell cytokine secretion we built multivariate

regression models. In these models, EBV viral load and EBV

specific CD8+ T cell cytokine secretion were used as dependent
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variables, and all treatment-related variables were included as

explanatory variables. Statistical analysis was performed using

GraphPad Prism Ver. 4.03 (GraphPad Software Inc), JMP7 (SAS

Software, NC, USA), Pestle Ver. 1.6.2 and Spice Ver. 4.2.3 (Mario

Roederer, ImmunoTechnology Section, VRC/NIAID/NIH) soft-

wares.[46]

Supporting Information

Text S1 Supplemental Materials and Methods and 4 supple-

mental figures.

(PDF)

Acknowledgments

We acknowledge Pr. Gordon Freeman and the Dana Farber Institute for

providing PD-L1 and PD-L2 blocking antibodies. We further acknowledge

Jørgen Larsen for Microsoft Access database support.

Author Contributions

Conceived and designed the experiments: ML DS ZA GG. Performed the

experiments: ML DS CD DB KD CP. Analyzed the data: ML DS.

Contributed reagents/materials/analysis tools: LP LA AM MM ZA. Wrote

the paper: ML DS LA VA ZA GG.

References

1. James JA, Harley JB, Scofield RH (2001) Role of viruses in systemic lupus

erythematosus and Sjogren syndrome. Curr Opin Rheumatol 13: 370–376.

2. Munz C, Lunemann JD, Getts MT, Miller SD (2009) Antiviral immune

responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 9:

246–258.

3. Evans AS, Rothfield NF, Niederman JC (1971) Raised antibody titres to E.B.

virus in systemic lupus erythematosus. Lancet 1: 167–168.

4. Alspaugh MA, Henle G, Lennette ET, Henle W (1981) Elevated levels of

antibodies to Epstein-Barr virus antigens in sera and synovial fluids of patients

with rheumatoid arthritis. J Clin Invest 67: 1134–1140.

5. Barzilai O, Ram M, Shoenfeld Y (2007) Viral infection can induce the

production of autoantibodies. Curr Opin Rheumatol 19: 636–643.

6. Poole BD, Scofield RH, Harley JB, James JA (2006) Epstein-Barr virus and

molecular mimicry in systemic lupus erythematosus. Autoimmunity 39: 63–70.

7. Vaughan JH, Valbracht JR, Nguyen MD, Handley HH, Smith RS, et al. (1995)

Epstein-Barr virus-induced autoimmune responses. I. Immunoglobulin M

autoantibodies to proteins mimicking and not mimicking Epstein-Barr virus

nuclear antigen-1. J Clin Invest 95: 1306–1315.

8. Sabbatini A, Dolcher MP, Marchini B, Bombardieri S, Migliorini P (1993)

Mapping of epitopes on the SmD molecule: the use of multiple antigen peptides

to measure autoantibodies in systemic lupus erythematosus. J Rheumatol 20:

1679–1683.

9. Hjalgrim H, Askling J, Rostgaard K, Hamilton-Dutoit S, Frisch M, et al. (2003)

Characteristics of Hodgkin’s lymphoma after infectious mononucleosis.

N Engl J Med 349: 1324–1332.

10. Thacker EL, Mirzaei F, Ascherio A (2006) Infectious mononucleosis and risk for

multiple sclerosis: a meta-analysis. Ann Neurol 59: 499–503.

11. Gross AJ, Hochberg D, Rand WM, Thorley-Lawson DA (2005) EBV and

systemic lupus erythematosus: a new perspective. J Immunol 174: 6599–6607.

12. Kang I, Quan T, Nolasco H, Park SH, Hong MS, et al. (2004) Defective control

of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol

172: 1287–1294.

13. Moon UY, Park SJ, Oh ST, Kim WU, Park SH, et al. (2004) Patients with

systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load

in blood. Arthritis Res Ther 6: R295–302.

14. O’Reilly RJ, Small TN, Papadopoulos E, Lucas K, Lacerda J, et al. (1997)

Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphopro-

liferative disorders in recipients of marrow allografts. Immunol Rev 157:

195–216.

15. Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-

mediated autoimmunity: viral peptides activate human T cell clones specific for

myelin basic protein. Cell 80: 695–705.

16. Lunemann JD, Jelcic I, Roberts S, Lutterotti A, Tackenberg B, et al. (2008)

EBNA1-specific T cells from patients with multiple sclerosis cross react with

myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med 205:

1763–1773.

17. McClain MT, Rapp EC, Harley JB, James JA (2003) Infectious mononucleosis

patients temporarily recognize a unique, cross-reactive epitope of Epstein-Barr

virus nuclear antigen-1. J Med Virol 70: 253–257.

18. Mascia MT, Sandri G, Guerzoni C, Roncaglia R, Mantovani G, et al. (2008)

Detection of autoimmunity in early primary Epstein-Barr virus infection by

Western blot analysis. Clin Exp Rheumatol 26: 1034–1039.

19. Tsokos GC, Magrath IT, Balow JE (1983) Epstein-Barr virus induces normal B

cell responses but defective suppressor T cell responses in patients with systemic

lupus erythematosus. J Immunol 131: 1797–1801.

20. Berner BR, Tary-Lehmann M, Yonkers NL, Askari AD, Lehmann PV, et al.

(2005) Phenotypic and functional analysis of EBV-specific memory CD8 cells in

SLE. Cell Immunol 235: 29–38.

21. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, et al. (2003)

Sensitive and viable identification of antigen-specific CD8+ T cells by a flow

cytometric assay for degranulation. J Immunol Methods 281: 65–78.

22. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, et al. (2006) PD-1

expression on HIV-specific T cells is associated with T-cell exhaustion and

disease progression. Nature 443: 350–354.

23. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, et al. (2006) Restoring
function in exhausted CD8 T cells during chronic viral infection. Nature 439:

682–687.

24. Posnett DN (2008) Herpesviruses and autoimmunity. Curr Opin Investig Drugs

9: 505–514.

25. Rivero SJ, Diaz-Jouanen E, Alarcon-Segovia D (1978) Lymphopenia in systemic

lupus erythematosus. Clinical, diagnostic, and prognostic significance. Arthritis
Rheum 21: 295–305.

26. Hrycek A, Kusmierz D, Mazurek U, Wilczok T (2005) Human cytomegalovirus
in patients with systemic lupus erythematosus. Autoimmunity 38: 487–491.

27. Jury EC, Flores-Borja F, Kalsi HS, Lazarus M, Isenberg DA, et al. (2010)

Abnormal CTLA-4 function in T cells from patients with systemic lupus

erythematosus. Eur J Immunol 40: 569–578.

28. Moulton VR, Tsokos GC (2010) Alternative splicing factor/ splicing factor 2
regulates the expression of the zeta subunit of the human T cell receptor-

associated CD3 complex. J Biol Chem 285: 12490–12496.

29. Sauce D, Almeida JR, Larsen M, Haro L, Autran B, et al. (2007) PD-1

expression on human CD8 T cells depends on both state of differentiation and

activation status. AIDS 21: 2005–2013.

30. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, et al. (2002) A
regulatory polymorphism in PDCD1 is associated with susceptibility to systemic

lupus erythematosus in humans. Nat Genet 32: 666–669.

31. Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE (2010) Epstein-Barr

virus promotes interferon-alpha production by plasmacytoid dendritic cells.

Arthritis Rheum 62: 1693–1701.

32. Banchereau J, Pascual V (2006) Type I interferon in systemic lupus
erythematosus and other autoimmune diseases. Immunity 25: 383–392.

33. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, et al. (2003) Interferon
and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med

197: 711–723.

34. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of

dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.
Science 294: 1540–1543.

35. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, et al. (2008) Activated
memory B cell subsets correlate with disease activity in systemic lupus

erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis
Rheum 58: 1762–1773.

36. Ten Boekel E, Siegert CE, Vrielink GJ, Van Dam VC, Ceelen A, et al. (2007)
Analyses of CD27++ plasma cells in peripheral blood from patients with

bacterial infections and patients with serum antinuclear antibodies. J Clin

Immunol 27: 467–476.

37. James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, et al. (1997)
An increased prevalence of Epstein-Barr virus infection in young patients

suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100:

3019–3026.

38. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, et al. (2005) Early
events in lupus humoral autoimmunity suggest initiation through molecular

mimicry. Nat Med 11: 85–89.

39. Hochberg MC (1997) Updating the American College of Rheumatology revised

criteria for the classification of systemic lupus erythematosus. Arthritis Rheum

40: 1725.

40. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992)
Derivation of the SLEDAI. A disease activity index for lupus patients. The

Committee on Prognosis Studies in SLE. Arthritis Rheum 35: 630–640.

41. Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB (2002) Epitope-

specific evolution of human CD8(+) T cell responses from primary to persistent

phases of Epstein-Barr virus infection. J Exp Med 195: 893–905.

42. Sauce D, Larsen M, Curnow SJ, Leese AM, Moss PA, et al. (2006) EBV-
associated mononucleosis leads to long-term global deficit in T-cell responsive-

ness to IL-15. Blood 108: 11–18.

43. Scotet E, David-Ameline J, Peyrat MA, Moreau-Aubry A, Pinczon D, et al.

(1996) T cell response to Epstein-Barr virus transactivators in chronic

rheumatoid arthritis. J Exp Med 184: 1791–1800.

44. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, et al. (1996) The
human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated

Impaired T Cell Suppression of EBV in SLE

PLoS Pathogens | www.plospathogens.org 10 October 2011 | Volume 7 | Issue 10 | e1002328



by structural protein pp65: frequency, specificity, and T-cell receptor usage of

pp65-specific CTL. J Virol 70: 7569–7579.
45. Deback C, Geli J, Ait-Arkoub Z, Angleraud F, Gautheret-Dejean A, et al. (2009)

Use of the Roche LightCycler 480 system in a routine laboratory setting for

molecular diagnosis of opportunistic viral infections: Evaluation on whole blood

specimens and proficiency panels. J Virol Methods 159: 291–294.
46. Roederer M, Nozzi JL, Nason MC (2011) SPICE: exploration and analysis of

post-cytometric complex multivariate datasets. Cytometry A 79: 167–174.

Impaired T Cell Suppression of EBV in SLE

PLoS Pathogens | www.plospathogens.org 11 October 2011 | Volume 7 | Issue 10 | e1002328


