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Abstract

Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in
innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma
exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in
bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control
subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-
kB- and a/b interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely
related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also
decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus
infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations.
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Introduction

Rhinovirus (RV) infections in healthy individuals manifest as

common colds but in asthma are strongly associated with acute

exacerbations [1,2]. Type I (a/b), II (c) and III (l) interferon (IFN)

responses are important in anti-viral immunity and increased

susceptibility to RV infection has been demonstrated in asthma in

vivo [2,3]. RV infection of asthmatic bronchial epithelial cells

(BEC) in vitro resulted in reduced IFN-b and -l production and

increased viral replication [4,5]. Monocytes/macrophages are also

infected and activated by RV [6] and macrophage IFN-l
production is also impaired in asthma and related to asthma

exacerbation severity and virus load in vivo [5]. Bronchoalveolar

lavage (BAL) cell IFN-c induction by RV is also impaired in

asthma and related to exacerbation severity in vivo [3].

IL-15 is important in linking innate and adaptive antiviral

immune responses, promoting natural killer (NK) and memory

CD8 T cell anti-viral immune responses [7,8] and monocytes/

macrophages produce IL-15 in response to virus infections [7-10].

There is little reported data on IL-15 in asthma. IL-15 mRNA

expression levels in bronchial biopsies in asthma are not increased

[11], while protein levels in sputum are undetectable in normal

subjects and steroid naı̈ve asthmatics, but detectable in steroid-

treated asthmatics [12]. There is a single report that IL-15 gene

expression is increased in asthma exacerbations in children [13]

but no data on IL-15 in RV infections. Since (i) a/bIFNs are

reported to induce IL-15 in dendritic cells and monocytes [14,15],

(ii) RV induction of IFN-b is reported deficient in asthma [4], (iii)

IL-15 is important in innate and acquired antiviral immunity and

(iv) there is increased susceptibility to RV infection in asthma [1–3]

we hypothesized that IL-15 production may be deficient in asthma

and related to asthma exacerbation pathogenesis.

We have therefore tested the hypotheses that RV infection of

macrophages in vitro induces IL-15 production and that this is

mediated by a/b IFNs and the transcription factor nuclear factor-

kB (NF-kB). In addition, we determined whether RV induction of

IL-15 ex vivo is deficient in macrophages from asthmatic subjects

and whether IL-15 levels in BAL fluid are deficient in asthma. We

also investigated whether IL-15 deficiency in asthma is related to

parameters of severity and virus load during experimental RV16

infection in vivo.

Results

RV up-regulates IL-15 production in macrophages
To investigate whether RV induces IL-15 release from

macrophages we used two models of monocyte-derived macro-

phages in which RV induces replication-dependent activation [6].
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We did not measure virus replication in this study however we

have previously reported that rhinovirus replication was produc-

tive in THP-1 macrophages, leading to release of infectious virus

into supernatants, but was limited in monocyte-derived macro-

phages [6]. IL-15 protein release into supernatants was signifi-

cantly induced by RV16, at 48 and 72 hours for THP-1-derived

macrophages and between 24 and 72 hours for monocyte-derived

macrophages (Figure 1A and B). RV9 (major group) and RV1B

(minor group) also induced IL-15 release from THP-1-derived

macrophages (Figure 1C) indicating that IL-15 induction was not

RV serotype- or receptor-dependent. IL-15 release was reduced

significantly by UV-inactivation, confirming that induction was

largely replication-dependent (Figure 1C).

Because IL-15 protein can be stored intracellularly in

macrophages and virus infection could simply trigger the release

of preformed protein we next investigated whether RV infection

up-regulated IL-15 mRNA expression and found that IL-15

mRNA was significantly induced by RV at 24 hours and 48 hours

(Figure 1D).

NF-kB activation is required for IL-15 induction in
RV-infected macrophages

The IL-15 promoter has been shown to have binding sites for

nuclear factor (NF)-kB and interferon regulatory factors (IRFs)

which are important for its activation by other stimuli [10,16–18].

To assess the role of NF-kB in RV-induced IL-15 production we

inhibited activation of the NF-kB pathway with a NF-kB

pharmacological inhibitor (AS602868) [6] at the time point of

maximal IL-15 production. We used the IKK2 inhibitor

AS602868 at a concentration of 5 mM, which we have previously

shown to be optimal for rhinovirus induced TNF-a inhibition and

without cell toxicity [6].

RV16-induced IL-15 production was significantly decreased in

THP-1-derived macrophages (p,0.01) and monocyte-derived

macrophages (p,0.01) (Figure 2A and B) in the presence of the

NF-kB inhibitor, confirming that RV-induction of IL-15 was NF-

kB-dependent in both cell types.

IFN-a/b induction in RV-infected macrophages is
dependent on NF-kB

As a/b IFNs are induced during viral infections and are

implicated in IL-15 induction in other systems, we next

investigated RV induction of IFN-a/b in macrophages. RV16

infection induced IFN-b production at 8 and 48 hours (p,0.05),

peaking at 24 hours (p,0.001, Figure 3A) while IFN-a was

induced at 24 hours (p,0.001) and 48 hours (p,0.01, Figure 3B).

RV9 and RV1B induced similar levels confirming that IFN-a/b
production in macrophages is not serotype- or receptor-dependent

and UV-inactivation completely abolished IFN-a/b induction

demonstrating that induction is replication-dependent (Figure 3C

and D). RV induction of IFN-a/b was also dependent on NF-kB

activation as the NF-kB inhibitor markedly decreased RV-

induction of IFN-b and IFN-a (Figure 3E and F, both p,0.01).

We previously reported that there is deficient IFN-b production

in bronchial epithelial cells in asthmatics upon RV infection [4]

and that macrophage production of IFN-l was similarly deficient

[5]. Therefore we wished to investigate if type I IFN production is

also deficient in alveolar macrophages from asthmatics. Cells were

obtained with bronchoalveolar lavage and the composition of the

lavage was ,90% macrophages in all subjects with no differences

in cellular composition between the asthmatics and the non-

asthmatics [5]. In vitro RV16 infection of BAL cells induced

significantly higher IFN-a levels compared with medium in

normal subjects (p,0.01) but infection of BAL cells from

asthmatics did not result in significantly up-regulated IFN-a levels

(Figure 3G). IFN-a levels produced by BAL cells from normals

were higher than levels from asthmatics but this difference was not

statistically significant (p = 0.09). No IFN-b could be detected in

supernatants of BAL cells at the 48 hour time point studied in

either normal or asthmatic subjects.

We attempted to confirm deficient production of these IFNs in

vivo, by measuring IFN-a and IFN-b directly in BAL fluid. Despite

using up to 30x concentrated BAL fluid, no IFN-a or IFN-b could

be detected in BAL fluid taken at the baseline, day 4 post-RV16

infection or the convalescence bronchoscopies.

RV induction of IL-15 in macrophages is IFN-a/b
dependent

Having demonstrated that RV induces IL-15 and IFN-a/b
production we next investigated whether IFN-a/b signalling is

required for RV induction of IL-15 in macrophages. Firstly we

investigated whether IFN-b could induce IL-15 secretion in

macrophages and found that recombinant human IFN-b induced

IL-15 secretion from both THP-1-derived and monocyte-derived

macrophages in a dose dependent manner (Figure 4A). Using a

blocking antibody against the IFN-a-receptor subunit 2 (IFNAR2)

we found that RV16-induced IL-15 production was almost

completely inhibited by blocking antibody, but not isotype control

in both THP-1-derived and monocyte-derived macrophages

(Figure 4B and C, p,0.01 and p,0.001 respectively). Since

interferon regulatory factor-1 (IRF-1) is induced by type I IFN [19]

and regulates IL-15 gene transcription in other systems [20] we

next investigated IRF-1 protein induction by RV. Unstimulated

THP-1-derived macrophages expressed low levels of IRF-1,

however both IFN-b and RV16 increased IRF-1 intracellular

protein levels as early as 4 hours, both remaining elevated to

24 hours (Figure 4D). Blocking the IFNAR, but not isotype control

markedly inhibited IRF-1 induction by RV16 (Figure 4E),

confirming that the IFN-a/b-IFNAR pathway was also required

for IRF-1 activation by RV in macrophages.

Author Summary

We previously reported deficiency in interferon production
in asthma, which correlated with disease severity and viral
load during experimental rhinovirus infection. Here we
show that macrophages produce IL-15 upon rhinovirus
infection and that IFN-b plays an important role in IL-15
production. In asthmatic subjects, there is a deficiency in
rhinovirus-induced production of IL-15 by macrophages,
which indicates immunodeficiency in asthma is surprising-
ly broad, also involving IL-15, an important cytokine that
bridges innate and acquired immunity. These results show
that IFN-b therapy in asthma exacerbations could be
effective not only due to direct anti-viral effects of IFN-b,
but also by inducing IL-15 production. We also show
induction of IFN-b and IL-15 to be NF-kB dependent, an
important finding which has implications for NF-kB
inhibitor drug development programmes as these drugs
have potential to worsen rather than improve asthma
exacerbation severity, by further enhancing deficiencies of
IL-15 and IFN-b. This study investigating the role of IL-15 in
rhinovirus infection and asthma has also major implica-
tions in other diseases, for example pandemic influenza,
where asthma is a major risk factor for severe disease and
death, and COPD and cystic fibrosis where IFN-b deficiency
is also present.

IL-15 Role in Asthma Exacerbations
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Figure 1. Rhinovirus infection induces IL-15 protein and mRNA production in human monocyte-derived macrophages. (A) THP-1-
derived macrophages and (B) peripheral blood monocyte-derived macrophages were infected with RV16 (closed squares) or incubated with medium
alone (open squares) at time 0. Supernatants were harvested at 4, 8, 24, 48 and 72 hours and levels of IL-15 released determined by ELISA. (C) THP-1-
derived macrophages were exposed to major group rhinovirus (RV16 and RV9), minor group rhinovirus (RV1B), medium alone and UV-inactivated
RV16 (UV RV16) at time 0 and supernatants harvested at 72 hours. (D) THP-1-derived macrophages were infected as for (A). Total RNA was extracted
from cell lysates at 4, 8, 24, 48 and 72 hours post-infection. IL-15 mRNA was quantified by PCR and results normalised to constitutive 18S ribosomal
RNA and expressed as fold induction over medium alone. Mean and SEM from at least four independent experiments (performed in triplicate) are
shown. * P,0.05, ** P,0.01, *** P,0.001 for live virus compared to medium, and # P,0.05 for live RV16 compared to UV-inactivated.
doi:10.1371/journal.ppat.1002114.g001

Figure 2. NF-kB-activation is required for rhinovirus induction of macrophage IL-15 production. (A) THP-1-derived macrophages and (B)
monocyte-derived macrophages were pre-treated for 1 hour with an inhibitor of NF-kB activation (the NF-kB inhibitor AS602868 5 mM) or diluent
control, before infection with RV16. The same concentration of drug/diluent was added to the medium after infection. Supernatants were harvested
at 72 hours and IL-15 release quantified by ELISA. Means and SEM from at least three independent experiments (performed in triplicate) are shown.
** P,0.01 for live virus infected cells, NF-kB inhibitor compared to diluent control.
doi:10.1371/journal.ppat.1002114.g002

IL-15 Role in Asthma Exacerbations
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Figure 3. IFN-b and IFN-a are induced by rhinovirus infection of macrophages via NF-kB-dependent mechanisms. (A–B) Monocyte-
derived macrophages were infected with RV16 (closed squares) or incubated with medium alone (open squares) at time 0, supernatants were
harvested at 4, 8, 24 and 48 hours and levels of IFN-b (A) and IFN-a (B) quantified by ELISA. Means and SEM from at least four independent
experiments (performed in triplicate) are shown. (C–D) Monocyte-derived macrophages were exposed to medium alone, UV-inactivated RV16 (UV
RV16) or infected with RV16, RV9 or RV1B, cultured for 24 hours, supernatants harvested and IFN-b (C) and IFN-a (D) quantified by ELISA. Means and
SEM from at least five independent experiments (performed in triplicate) are shown. P,0.05, ** P,0.01, *** P,0.001 for live virus compared to

IL-15 Role in Asthma Exacerbations
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RV induces IL-15 production in alveolar macrophages ex
vivo; induction is deficient in asthma and related to lower
respiratory symptom severity during RV infection

Having shown that RV infection induces IL-15 in two

macrophage models in vitro we next investigated if induction is

observed in alveolar macrophages infected ex vivo and whether

induction is deficient in asthmatics. Supernatants from BAL cells

(.90% alveolar macrophages) from normal and asthmatic subjects

exposed ex vivo to RV16 for 48 hours were assessed for levels of IL-

15 by ELISA. IL-15 levels were significantly increased by RV16 in

BAL cells from normal subjects (p,0.05), but not in cells obtained

from asthmatics, and levels in supernatants from RV16-infected

cells were significantly higher in normal compared to asthmatic

subjects (Figure 5A, p,0.01). IL-15 production by RV infected

macrophages was inversely related to lower respiratory symptom

severity on subsequent RV16 experimental infection in the same

subjects in vivo (r = 20.6, p = 0.022, Figure 5B). Although IL-15

levels were very low, they were above the lower limit of detection

Figure 4. IFN-b induces IL-15 in macrophages and rhinovirus induction is via IFN-ab receptor signalling. (A) THP-1-derived macrophages
(THP-1) or monocyte-derived macrophages were stimulated with diluent control (0), or recombinant IFN-b at concentrations of 10, 100 and 1000 IU/
mL, supernatants harvested at 72 hours and IL-15 quantified by ELISA. Means and SEM from at least three independent experiments (performed in
triplicate) are shown. * P,0.05, ** P,0.01 and *** P,0.001, compared with diluent control. (B) THP-1-derived macrophages and (C) monocyte-
derived macrophages were pre-treated for 1 hour with IFN-ab receptor blocking antibody (anti-IFNAR) or isotype control (both at 5 mg/mL), the same
concentration of antibody was added to the medium after infection with RV16, supernatants were harvested at 24 hours (C) and 72 hours (B) and IL-
15 quantified by ELISA. Means and SEM from at least four independent experiments (performed in triplicate) are shown. ** P,0.01 and *** P,0.001
compared with isotype control. (D) Lysates of THP-1-derived macrophages incubated with medium alone (medium), or stimulated with IFN-b (IFN-b)
at 1000 IU/mL or RV16 (RV16) were analysed for the presence of IRF-1 by Western blot at 4, 8 and 24 hours. A representative image of three
independent experiments with similar results is shown. (E) Monocyte-derived macrophages treated as in (C) were lysed after 24 hours and analysed
for IRF-1 by Western blot. RV16 induction of IRF-1 protein over medium control (medium) was clearly inhibited by prevention of ab IFN signalling
with an IFN-ab receptor blocking antibody (anti-IFNAR), but not by isotype control (IgG control), or diluent alone (control). A representative image of
three independent experiments with similar results is shown.
doi:10.1371/journal.ppat.1002114.g004

medium, and ## P,0.01 for live RV16 compared to UV-inactivated RV16. (E–F) Monocyte-derived macrophages were pre-treated for 1 hour with an
inhibitor of NF-kB activation (the NF-kB inhibitor AS602868 5 mM) or diluent control, before infection with RV16. The same concentration of drug/
diluent was added to the medium after infection. Supernatants were harvested at 24 hours and IFN-b (E) and IFN-a (F) quantified by ELISA. Means
and SEM from at least five independent experiments (performed in triplicate) are shown. ** P,0.01 for live virus infected cells, NF-kB inhibitor
compared to diluent control. G. BAL cells from the baseline bronchoscopy of normal (circles, n = 9) or asthmatic (squares, n = 7) subjects were
incubated for 48 hours with medium alone (open symbol, medium) or live rhinovirus (closed symbol, RV16) and IFN-a and IFN-b release into
supernatants assessed by ELISA. Bars are median values, ** P,0.01, RV16 vs medium.
doi:10.1371/journal.ppat.1002114.g003

IL-15 Role in Asthma Exacerbations
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(0.25 pg/mL) and differences observed were both statistically

significant and related to a number of different clinical parameters.

BAL IL-15 levels are deficient in asthmatics and related to
airway hyperresponsiveness and virus load during
subsequent RV infection in vivo

To investigate whether IL-15 levels are deficient in asthma in

vivo, IL-15 was measured in BAL fluid collected from asthmatic

and normal subjects when clinically stable prior to experimental

RV16 infection. The study recruited 15 non-atopic healthy and 10

atopic mild asthmatic subjects, all rhinovirus-16 serum neutraliz-

ing antibody negative and all non-smokers. The healthy control

group had a median age of 24, sex ratio 8 male/7 female and a

median baseline FEV1% predicted of 99% and the asthmatic

subjects were inhaled steroid naı̈ve, median age of 22, sex ratio 2

male/8 female and a median baseline FEV1% predicted of 104%

as previously reported [3].

IL-15 levels were significantly lower in asthmatic compared to

normal subjects (Figure 6A, p,0.05) and were significantly

correlated with airway hyperresponsiveness as measured by

baseline PC10 histamine (r = 0.47, p = 0.021, Figure 6B). IL-15

levels in vivo were also significantly related to virus loads in nasal

lavage (r = 20.57, p = 0.005), induced sputum (r = 20.44,

p = 0.041) and BAL (r = 20.61, r = 0.024) upon subsequent in vivo

RV16 experimental infection in the same subjects (Figure 6C–E).

Discussion

We report herein the first investigation of the role of IL-15 in

the pathogenesis of RV-induced asthma exacerbations. IL-15

production was induced by RV in macrophage cell lines in vitro, as

well as in primary alveolar macrophages. IL-15 induction by RV

was deficient in cells from asthmatic compared to normal subjects

and levels in BAL fluid deficient in asthmatics. IL-15 induction ex

vivo and levels in vivo were both related to airway hyperrespon-

siveness, lower respiratory symptom severity and virus load

following experimental RV16 infection in vivo. Finally, IL-15

induction was dependent on IFN-a/b and both IL-15 and IFN-a/

b induction were dependent on NF-kB.

These findings have important implications as they suggest IL-

15 as a novel candidate for development for treatment or

prevention of asthma exacerbations. As IL-15 is deficient in

asthma this suggests either or both of prophylactic or therapeutic

treatment approaches may have value. Further, IL-15 inducers

such as IFN-b may have additional benefit beyond directly

enhancing anti-viral immunity in bronchial epithelium, since, via

induction of IL-15 production, they may enhance other aspects of

both innate and acquired anti-viral immunity. Finally, NF-kB

inhibitors are in development as possible therapies for asthma

exacerbations, our data that IFN-a, IFN-b and IL-15 induction by

RV are all NF-kB dependent suggest that such approaches may

further impair already deficient responses in asthma.

Rhinoviruses are the respiratory viruses most commonly

associated with asthma exacerbations. Asthma is the most

common chronic respiratory disease, and it is increasing in many

countries. The major cause of asthma related morbidity and

mortality are acute exacerbations and current asthma treatments

are only partially effective at preventing asthma exacerbations.

Therefore, new approaches to treatment and prevention are

urgently required and these are likely to stem from a better

understanding of the pathogenesis of asthma exacerbations.

Asthma exacerbation pathogenesis is poorly understood,

however, it is clear that people with asthma have increased

susceptibility to respiratory virus infections [2,3]. We have

previously reported deficient IFN-b and IFN-l production in

response to RV infection of bronchial epithelial cells in asthmatics

[4,5], further these deficiencies were related to increased RV

replication in the same cells, and replacement with exogenous

IFN-b restored normal resistance to RV infection. Deficiency of

IFN-l induction by RV was observed in macrophages from

asthmatic subjects, and this was related to virus load, asthma

exacerbation severity and severity of airway inflammation in vivo

[5]. These findings led to inhaled IFN-b being developed as a

possible novel therapy to treat/prevent asthma exacerbations –

currently in a Phase II clinical trial.

Figure 5. Rhinovirus induction of IL-15 release from alveolar macrophages; induction is inversely related to severity of lower
respiratory symptoms following rhinovirus infection in vivo. (A) BAL cells were collected at bronchoscopy from normal (circles, n = 10) or
asthmatic (squares, n = 7) subjects. Cells were incubated for 48 hours with medium alone (open symbol, medium) or live rhinovirus (closed symbol,
RV16) and IL-15 release into supernatants assessed by ELISA. Bars are median values, * P,0.05, RV16 vs medium and ** P,0.01 RV16 asthmatic vs.
RV16 normal subjects. (B) Levels of IL-15 released ex vivo in RV16 infected cultures from normal (closed circles, n = 8) and asthmatic (closed squares,
n = 6) subjects were significantly related to severity of total lower respiratory symptoms during the 2 weeks following experimental infection with
RV16 in vivo.
doi:10.1371/journal.ppat.1002114.g005

IL-15 Role in Asthma Exacerbations
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Figure 6. IL-15 levels in BAL fluid in asthma are inversely related to airway hyperresponsiveness and virus load on subsequent in
vivo rhinovirus infection. Airway hyperresponsiveness was assessed and BAL fluid collected at a baseline bronchoscopy from normal volunteers
and asthmatic subjects. Two weeks later, the same subjects were experimentally infected with RV16 and virus load measured in nasal lavage, sputum
and BAL. (A) IL-15 levels were measured by ELISA in BAL fluid collected at bronchoscopy from normal (n = 14) and asthmatic subjects (n = 9). Bars are
median values, * P,0.05 for comparison between groups. (B) Levels of IL-15 in BAL fluid in asthmatic (n = 8) and normal subjects (n = 15) were
inversely related to bronchial hyperresponsiveness. (C–E) Levels of IL-15 in BAL fluid in asthmatic and normal subjects were inversely related to virus
load during a subsequent experimental RV16 infection in vivo: (C) peak virus load in nasal lavage, (D) virus load in induced sputum on day 3 post
infection, (E) virus load in BAL on day 4 post infection.
doi:10.1371/journal.ppat.1002114.g006

IL-15 Role in Asthma Exacerbations
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We have also recently reported deficient IFN-c production in

asthma and related impaired IFN-c production to greater virus

loads and reductions in lung function in a human model of asthma

exacerbation in vivo [3]. IFN-c is produced by both innate and

acquired arms of the antiviral immune system. As IL-15 is also

important in linking innate and adaptive antiviral immune

responses, and in other systems, has been shown to be induced

by type I IFNs we wished to investigate the hypothesis that IL-15

might also be deficient in asthma, and that deficiency might be

related to the pathogenesis of asthma exacerbations.

Alveolar macrophages are important immune cells in lung

antiviral immune responses and we previously reported that

monocytes/macrophages support RV replication, become acti-

vated and secrete immunomodulatory cytokines [3,6,21,22].

However, there are no published data on IL-15 induction in

macrophages by RV, nor on its possible importance in the

pathogenesis of asthma exacerbations. Consequently, we investi-

gated macrophage IL-15 and type I IFN responses during RV

infection in vitro and in vivo, in both asthmatic and normal subjects.

The most important findings of this study are the deficient

induction of IL-15 by RV in alveolar macrophages from asthmatic

subjects in vitro, deficient IL-15 levels in asthma in BAL fluid in vivo,

and the relationships of these to airway hyperresponsiveness,

severity of symptoms and virus load on subsequent RV infection in

vivo. The correlations between IL-15 levels in BAL fluid at baseline

and PC10 histamine at baseline and virus load during an

experimental rhinovirus infection were only statistically significant

when all subjects were included. There were no significant

correlations within the group of asthmatic subjects alone,

presumably due to the low numbers of asthmatic patients

included, and larger studies are required to confirm the link

between asthma exacerbation pathogenesis, virus replication and

IL-15. However these findings taken together suggest IL-15 as a

promising candidate for development as a novel therapy to

enhance deficient antiviral immunity in asthma, to correct the

increased susceptibility to virus infection present in this condition

[2,3] and in particular as a potential treatment to prevent/treat

asthma exacerbations.

IL-15, via the IL-2/IL-15 receptor b-chain and common c
chain receptor, promotes NK cell activation, as well as enhancing

memory CD8 T cell antiviral immunity [7,8,23]. In addition it

enhances type I (a/b) IFN production by dendritic cells and

macrophages [24,25] as well as IFN-c production by NK and

CD8 T cells [7,8,26]. Since induction of both IFN types is

deficient in asthma and related to asthma exacerbation severity,

IL-15 has potential to correct deficiencies present in antiviral

immunity in asthma.

Our findings also have important implications for development

of type I IFNs as potential therapies for asthma exacerbations, as

we show that RV infection of macrophages induces a/b IFNs, that

IL-15 is induced by IFN-b stimulation and that RV induction of

IL-15 in macrophages is dependent on IFN-a/b receptor

signalling. These data suggest that administration of a/b IFNs

in asthma is likely to enhance IL-15 baseline levels, as well as

enhancing induction upon RV infection, both of which we have

shown to be deficient in this report. Type I IFN administration

might therefore have benefits well beyond correcting the specific

deficit in anti-viral immunity in bronchial epithelial cells, indirectly

enhancing deficient IFN-c production, as well as other NK and

CD8 responses via correction of deficient IL-15 production.

These findings also have important implications for develop-

ment programmes for inhibitors of NF-kB [27]. This transcription

factor is implicated in many pro-inflammatory responses linked

with the pathogenesis of asthma exacerbations and many

pharmaceutical companies have active NF-kB inhibitor develop-

ment programmes. However we find that RV induction of IFN-a,

IFN-b and IL-15 are all profoundly suppressed by inhibition of

NF-kB. These data suggest that administration of such inhibitors

in asthma, while inhibiting pro-inflammatory mediator produc-

tion, is likely to further impair deficient type I IFN and IL-15

production, and therefore might have potential to increase rather

than decrease severity of virus induced asthma exacerbations.

Careful investigation of these outcomes, as well as their

relationships with clinical outcomes in human models of RV-

induced asthma exacerbations [3] may shed further light on these

possibilities.

Because signalling by IL-15 occurs via the IL-2/IL-15 receptor b-

chain (CD122) and common c chain receptor (CD132) expressed

primarily by NK and memory CD8 T cells [7,8,23,26], it will be of

great interest to determine the levels of these receptors on airway

NK and CD8 T cells in virus-induced asthma.

Finally, our findings of deficient IL-15 production in asthma,

combined with previous reports of deficient IFN-b [4], IFN-l [5],

IFN-c and IL-12 [3,22], suggest complex impairment of anti-viral

immune responses in asthma. The mechanisms behind these

complex deficiencies clearly require urgent investigation. These

findings also have major implications for management of

pandemic influenza, where asthma is a major risk factor for

severe disease and death [28], as replacing deficient anti-viral

immune proteins such as IFN-b and now IL-15, may have

therapeutic potential to ameliorate severity of disease and perhaps

prevent death.

Materials and Methods

Cells, viruses and cell infection/stimulation
HeLa and THP-1 cell lines (ECCC) were cultured in E-MEM

and RPMI-1640 (Invitrogen, Paisley, UK) respectively with 10%

foetal calf serum (FCS). RV serotype 16, 9 (major group) and 1B

(minor group) stocks were prepared and their identities confirmed

by neutralisation using serotype-specific antibodies (ATCC), UV-

inactivation was performed as previously described [29]. Periph-

eral blood monocyte-derived macrophages and THP-1-derived

macrophages were generated and infected with RV at a

multiplicity of infection (MOI) of 1 as previously described [6].

Recombinant human IFN-b (10–1000 IU/mL, R&D, Abingdon,

UK) was added to wells. Supernatants, RNA or protein lysates

were harvested and stored at 280uC.

IL-15 mRNA quantification
Total RNA was extracted with RNeasy Kit (Qiagen) and 2 mg

was used for cDNA synthesis (Omniscript RT Kit, Qiagen).

Quantitative RT-PCR was performed using specific primers and

probe for IL-15 (forward GGGAAAGTGATGTTCACCCC,

reverse CATCTCCGGACTCAAGTGAAATAA, probe ATC-

TGGATGCAAAGAATGTGAGGAACTGGA). IL-15 gene ex-

pression was normalized to 18S rRNA and presented as fold

induction relative to medium [30].

Ethics statement
Ethics approval (No 99/BA/345) was obtained from St Mary’s

Local Research Ethics Committee, London, UK. All study

participants gave written informed consent.

Human experimental model of RV-induced asthma
exacerbation

The exacerbation model, clinical details including allergy testing

and lung function, sampling and analysis are described in detail
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elsewhere [3]. The study recruited 15 non-atopic healthy control

and 10 atopic, inhaled steroid naı̈ve asthmatic subjects; all were

non-smokers. Assessment of airway hyperresponsiveness by

determination of the provocative concentration of histamine

inducing a 10% fall in FEV1 (PC10 histamine) and BAL were

performed at baseline ,2 weeks prior to experimental RV

infection as described [3]. Baseline BAL fluid was collected in a

single plastic chamber and transferred immediately to polypro-

pylene tubes on ice, transported to the laboratory, filtered

(100 mm), centrifuged at 1500 rpm for 10 min at 4uC, the fluid

decanted, aliquoted and stored at 280uC till analysed. Because we

could not detect IL-15 in un-concentrated BAL fluid, we

concentrated the BAL fluid 30 times as described below. Baseline

BAL cells were cultured and exposed to RV16 MOI 5/medium as

described [3]. After 48 hours, supernatants were harvested and

stored at 280uC.

Virus load on days 1–8 and 11 post-infection for nasal lavage,

on day 3 post-infection for sputum and on day 4 post-infection for

BAL were determined using quantitative PCR as described [3].

Lower respiratory symptom severity during the two weeks post

infection was derived using a chest symptom score as described

[3].

BAL fluid concentration for IL-15 ELISA
IL-15 levels were measured after concentrating the baseline

BAL fluid up to 30 times using a centrifugal filter with a nominal

molecular weight value of 3000 kD (Millipore, Centriplus YM-3).

Values were corrected for variability in dilution during lavage, and

during subsequent concentration using total protein concentration

of the concentrated BAL (Bradford method, Sigma) [31].

Western blot for IRF-1 expression
THP-1-derived macrophages were lysed into SDS sample buffer

(Invitrogen). Western blot was performed as previously described

[6]. After blocking, membranes were incubated with rabbit anti-

human IRF-1 (1/500) followed by HRP swine anti-rabbit antibody

(1/4000) (AbD Serotec). Bands were visualized by chemilumines-

cence with the ECL Western blotting detection reagent (GE

Healthcare).

IL-15, IFN-a and IFN-b ELISA
Levels of IFN-a and IFN-b were measured using ELISA kits

(BioSource International) (sensitivity 15 pg/mL and 5 IU/mL

respectively). For the IL-15 ELISA we used commercially available

paired antibodies (R&D Systems) at concentrations recommended

by the manufacturer and for the standard curve recombinant

human IL-15 (Biosource). The protocol recommended by the

manufacturer was modified by incubating the plates for 10

minutes with streptavidin-HRP (Biosource) at a concentration of

0.5 mg/mL. A TMB containing substrate solution was used to

develop the colour. Once optimised, we could reproducibly detect

levels of IL-15 over 0.25 pg/mL.

NF-kB and IFN - IFN-receptor pathway inhibition
The effect of NF-kB activation on IL-15 production was

evaluated using a NF-kB inhibitor (AS602868) as previously

described [6]. The role of type I interferons in IL-15 production

was assessed using a blocking antibody to IFNAR2, a matched

isotype antibody was used as control (Merck Chemicals). Cells

were pre-treated for 1 hour before infection with IFNAR2

blocking antibody/isotype control at a concentration of 5 mg/

mL. The same concentration of antibody was added to the

medium after infection.

Statistical analysis
The results were analyzed using GraphPad Prism version 4.00

for Windows (GraphPad Software, California, USA). For in vitro

experiments results expressed as mean6standard error of the

mean (SEM) and analyzed using ANOVA for multiple compar-

isons followed where appropriate by paired Student’s t tests for

paired comparisons. Differences between normal and asthmatic

groups were analysed using Mann Whitney tests and correlations

using Spearman’s rank correlation.
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