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Abstract

The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration
across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the
duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in
apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain
containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell
invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and
established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has
been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an
approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still
able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled
destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-
redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin
polymerization drives the directional movement required for productive penetration of parasites into host cells.
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Introduction

The phylum Apicomplexa encompasses pathogens of significant

medical relevance including those responsible for malaria and

toxoplasmosis. These parasites cross biological barriers and enter

cells by an active process that depends on a unique form of gliding

motility [1]. In Toxoplasma gondii, drugs that interfere with actin

assembly and dynamics have revealed that gliding critically relies

on an intact parasite actin cytoskeleton [2] and requires actin

polymerization [3]. Moreover, previous work using reverse

genetics highlighted that gliding is powered by the myosin XIV,

TgMyoA [4].

Paradoxically, visualisation of actin filaments under physiolog-

ical conditions, either by electron microscopy or by staining with

phalloidin, has proven very difficult in the phylum. Sedimentation

experiments suggested that actin is maintained in a globular form

(.98%) [5]. Work performed in vitro on purified or recombinant

actins revealed that preferentially short (0.1 mm) actin filaments

are assembled [6,7,8], hence actin might be tailored to undergo

rapid cycles of assembly and disassembly. Among the systems

orchestrating actin nucleation, the Arp2/3 complex, generates a

network of short, branched filaments, whereas the formin-profilin

system catalyzes the processive assembly of unbranched actin

filaments [9]. The Apicomplexans lack many actin-regulatory

proteins including the Arp2/3 complex [10]. In contrast, they

contain at least two formins and a profilin that have been

previously associated with parasite motility [11,12,13].

Formins constitute a large family of proteins involved in many

biological processes including cell polarity, cell-cell contact, cell

and tissue morphogenesis, cytokinesis, filopodia formation, stress

fiber formation, motility and in microtubule-actin cross talk to

maintain the cell cytoskeleton [14]. These proteins are composed

of multi-domains interacting with other cellular factors to promote

actin nucleation and polymerization. The common feature of all

formins is the FH2 domain, which nucleates actin assembly and

binds the barbed end at nanomolar concentrations allowing the

formation of linear and unbranched actin filaments [15,16].

The second domain catalyzing the activity of formins is the FH1

for ‘‘formin homology 1 domain’’. FH1 is typically positioned

immediately N-terminal to the FH2 domain and is composed of

poly-proline stretches that bind specifically to the profilin-actin

complex during barbed end filament elongation [14]. The FH2

domain associates with the barbed end (fast growing plus end of

actin filament) of actin filaments and in association with the FH1

domain promotes rapid processive barbed end assembly from

profilin-actin, increasing the association rate constant of profilin-

actin to barbed ends by 2 to 15 fold [14]. Profilin-actin is involved

in a rapid delivery step by which FH1-profilin-actin is transferred

directly to the FH2-associated barbed end [9]. Formin activity is

frequently regulated by autoinhibition, which is maintained by the
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binding of the C-terminal diaphanous autoregulatory domain

(DAD) segment to the diaphanous inhibitory domain (DID).

Binding of Rho to the GTPase-binding domain (GBD) releases the

autoinhibition to activate formin [9].

In T. gondii, TgPRF participates in barbed end growth and a

conditional knockdown of the gene established its vital role in

motility and invasion [13]. P. falciparum formins 1 and 2 (PfFRM1

and PfFRM2) nucleate chicken actin polymerization in vitro [12]

and localization of PfFRM1 at the site of contact between invading

merozoites and the host cell suggested a role in invasion [12].

Recently, a formin-like protein termed MISFIT was localized to

the nucleus of male gametocytes, zygotes and ookinetes of the

rodent malaria parasite Plasmodium berghei. This protein was shown

to regulate cell cycle progression from ookinete to oocysts but an

activity of actin nucleation has not been reported [17]. The T.

gondii genome does not contain a gene coding for MISFIT but

instead encodes a third putative formin (TgFRM3) that is only

found in coccidians and whose function is dispensable and not

linked to motility and invasion (Daher, unpublished).

In this study, we developed a genetic strategy based upon the

expression of dominant negative mutants to establish that both

TgFRM1 and TgFRM2 contribute to motility and invasion. This

approach was validated by biochemical analyses, which highlight-

ed the distinct properties of the two formins. TgFRM1 and

TgFRM2 promote and control growth of the filaments and

possibly stabilize their position and directionality to drive parasite

entry into host cells.

Results

TgFRM1 and TgFRM2 are differentially localized to the
pellicle

BLASTP analysis of the ToxoDB database (http://www.

ToxoDB.org) revealed the presence of three FH2 domain-

containing proteins in T. gondii with two of them, TgFRM1 and

TgFRM2 being conserved across the Apicomplexa phylum [12].

TgFRM1 and TgFRM2 are large proteins with a predicted

molecular weight of 552 kDa and 492 kDa, respectively. The FH2

domain is positioned at the extreme carboxy-terminus in case of

TgFRM1. The presence of a canonical FH1 is not apparent but

both formins possess a segment rich in proline residues upstream

of the FH2 (Figure 1A). These formins also lack the DAD and DID

regulatory domains, however, TgFRM1 possesses four tetratrico-

peptide repeats also present on PfFRM1 (Figure 1A). Specific

antibodies were raised against bacterially produced FH2 domains

of both T. gondii formins and western blot analysis confirmed that

TgFRM1 and TgFRM2 are expressed in tachyzoites and migrate

at their predicted sizes on SDS-PAGE (Figure 1B). Parasite lines

expressing the FH2 domains of either TgFRM1 or TgFRM2 were

used to confirm the specificity and the absence of cross-reactivity

of the two rabbit anti-sera (Figure S1B, S1C and S1D in

Supporting Information S1).

To investigate the function and importance of these formins,

conditional knockdowns were attempted in the TATi-1 strain,

using the tetracycline-based transactivator system previously

developed for T. gondii [4]. Given the unmanageable size of the

TgFRM1 and TgFRM2 cDNAs, we opted for a promoter exchange

approach instead of the two step knockout strategy that requires

the integration of a second inducible copy (Figure S2A in

Supporting Information S1). To select for the recombinant lines

of interest, a YFP expression cassette was inserted into the

knockout vectors allowing FACS sorting of the parasites that

underwent double homologous recombination (YFP negative)

[18]. The TgFRM1 promoter was replaced by the inducible

tetO7Sag4 and a myc-epitope tag was inserted at the N-terminus of

the TgFRM1 gene. Numerous attempts to replace the promoter of

TgFRM2 failed (18 transfections) and resulted only in a single

homologous recombination event at the locus (data not shown). In

contrast, positive mycTgFRM1-iKO (Table S2 in Supporting

Information S1) clones were identified by an indirect immunoflu-

orescence assay (IFA) and confirmed by genomic PCR (Figure S2B

in Supporting Information S1). Western blot analysis using anti-

FRM1 antibodies revealed that the level of mycTgFRM1i was

considerably higher (ca. 4 fold) than the endogenous level of

TgFRM1 in TATi-1 strain (Figure 1C). In the presence of

anhydrotetracycline (ATc), mycTgFRM1i was significantly down-

regulated to less than 15% but that still corresponded to ca. 45 to

50% of the endogenous level of TgFRM1 (Figure 1C; Figure S2C

in Supporting Information S1). Both TgFRM1 and mycTgFRM1i

localized to the periphery of replicating (intracellular) as well as

invading (extracellular) parasites (Figure 1D), In contrast with a

previous report [12], TgFRM1 was not found to be selectively

redistributed to the apical pole, but this discrepancy may be

explained by different fixation protocols (Figure 1D, and Figure

S2C in Supporting Information S1). In Baum et al., a methanol

fixation was employed, which may retain only a specific

population or may tend to modify the localization during fixation.

TgFRM2 showed the same subcellular localization as TgFRM1

(Figure 1E), however, when extracellular parasites were treated

with aerolysin, the two formins behaved differently. The pore-

forming toxin binds to glycosylphosphatidylinositol (GPIs) an-

chored proteins and induces an osmotic swelling that selectively

detaches the plasma membrane (PM) from the inner membrane

complex (IMC) [19]. Upon aerolysin treatment, TgFRM1

remained associated with the PM, whereas TgFRM2 stayed

preferentially connected to the IMC (Figure 1F). The nature of the

association of TgFRM1 and TgFRM2 with the PM and IMC,

respectively, was examined by fractionation at high pH. Complete

solubilisation of both formins indicated that electrostatic interac-

tions, either with membrane proteins or with the polar heads of

lipids, are responsible for their membrane association (Figure 1G).

The presence of TgFRM1 and TgFRM2 at the pellicle is

compatible with a contribution of both formins to actin

polymerization during invasion. In the malaria parasite, PfFRM2

was detected in trophozoites and its presence in late schizonts

could not be established [12,20]. To assess the expression of

PbFRM1 and PbFRM2 (Plasmodium berghei formins 1 and 2)

throughout the erythrocytic stages a myc epitope tag was inserted

at their C-termini of both formins via a knock-in strategy based on

single crossover recombination (Figure S3A in Supporting

Information S1). The modified locus of the transgenic parasites

was confirmed by genomic PCR (Figure S3B and S3C in

Author Summary

Gliding motility is a unique property of the Apicomplexa.
Members of this phylum include important human and
animal pathogens. An actomyosin-based machine powers
parasite motility and is crucial for parasite migration across
biological barriers, host cell invasion and egress from
infected cells. The timing, duration and orientation of the
gliding motility are tightly regulated to insure successful
establishment of infection. Controlled polymerization of
actin filaments is a key feature of motility, and we
demonstrate here the implication of two formins that
catalyse actin nucleation and fast assembly of filaments.
Both proteins are essential and act in concert during
productive penetration of the parasite into host cells.

Two Toxoplasma Formins Are Implicated in Invasion
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Figure 1. Expression and localization of TgFRM1 and TgFRM2 in tachyzoites. (A) Schematic representation of Toxoplasma gondii formin 1
(TgFRM1) and formin 2 (TgFRM2) showing the domains of homolgy to tetratricopeptide repeat (TPR) and the formin homology 2 domain (FH2).
Expanded sequences above protein schematic represent the potential formins 1 and 2 FH1 domains. The proline (P) residues are bolded. Numbers
indicate amino acid residues of the different domains. Scale bar represents 500 aa. (B) Western blot analysis of parasite lysates (RHDhxgprt, a type I
virulent strain) and HFF (Human Foreskin Fibroblasts) cells probed with rabbit antisera specific to TgFRM1 and TgFRM2. (C) Western blot analysis of
TATi-1 and MycTgFRM1-iKO strains in presence or in absence of ATc. Parasites were treated 4 days 6 ATc. Myosin A (MyoA) served as loading control.
The integrated densities of the bands measured using the ImageJ program, and the percentage of expression relative to TATi-1 in absence of ATc are
provided. (D) The peripheral localization of TgFRM1 was determined by IFA using anti-TgFRM1 on RH and anti-myc on mycTgFRM1-iKO. SAG1 and
GAP45 are used as markers of PM and IMC, respectively. RON4 is a marker of the moving junction (MJ). (E) TgFRM2 localized to the periphery of

Two Toxoplasma Formins Are Implicated in Invasion
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Supporting Information S1). Western blot analysis revealed that

both formins are present in schizonts, leaving open the possibly

that both formins play a role in invasion. However, the low level of

expression together with the high background of all myc

antibodies tested hampered the assessment of their localization

by IFA (Figure S3B and S3C in Supporting Information S1).

TgFRM1 contributes to gliding motility and invasion
The promoter exchange at the TgFRM1 locus leads to a partial

depletion in TgFRM1 upon ATc treatment. The phenotypic

consequences were first investigated by plaque assays. The lytic

cycle of the parasite is a multi-step process that involves invasion,

several rounds of replication and egress. The plaque assay

corresponds to plaques of lysis formed in a monolayer of human

forskin fibroblasts (HFF) that recapitulates multiple lytic cycles

over several days. When mycTgFRM1-iKO parasites were

depleted of mycTgFRM1i after six days of ATc treatment, the

plaques formed were significantly reduced in size, compared with

the untreated mutant and TATi-1 strain (Figure 2A and B).

Further analysis established that depletion in TgFRM1 was not

affecting parasite replication (Figure 2C) but caused a defect in

invasion (Figure 2D; Table 1). The importance of TgFRM1 for

parasite egress was investigated upon addition of the calcium

ionophore A23187 and only a modest impairment of 14% in

induced egress was recorded (Figure 2E and Table 1). To monitor

if parasites depleted in TgFRM1 could still accomplish the three

forms of gliding movement (helical gliding, circular gliding and

twirling), trails deposited by moving parasites on coated Poly-L-

lysine cover slips were scored by IFA. The mycTgFRM1-iKO

strain showed a significant reduction in trail formation after ATc

treatment (Figure 2F, 2G and Table 1). Taken together these

results indicated a role for TgFRM1 in invasion, although the

phenotype reported here is very modest compared to other

invasion factors such as TgMyoA and TgMIC2 investigated before

with the Tet-system [4,21]. Clearly, this system is not ideally suited

to study the function of weakly expressed genes. The partial

phenotype observed in the conditional knockdown of TgFRM1 is

likely due to the residual amount of mycTgFRM1 (13%) produced

in the presence of ATc that corresponds to almost 50% of

endogenous levels of TgFRM1. At this stage, it is not possible to

exclude that TgFRM1 and TgFRM2 are functionally redundant.

Expression and biochemical analysis of TgFRM1 and
TgFRM2 FH2 domains

Dimerization via the FH2 domain is essential for the processive

function of formins, with one subunit attached on the barbed end

of an actin filament while the other adopts an open configuration

to recruit the incoming actin subunit [22]. To examine if the two

T. gondii formins can nucleate actin filaments, the boundaries of

the FH2 domains were delineated (Figure S1B in Supporting

Information S1). Recombinant FH2 domains were produced and

purified from E. coli (Figures S4A, S4C, S5A, and S5B in

Supporting Information S1). The FH2 of TgFRM1 (His-F1L) and

TgFRM2 (His-F2) were analyzed by gel filtration on Superose 6

10/300 GL. F1L (amino acid positions 4582-5051) corresponds to

a N-terminal 48 amino acid extension of the FH2 domain, which

is enriched in proline residues and might constitute a divergent

FH1 domain (Figure 1A). F1L (56 kDa) and F2 (100 kDa)

fractionated as both monomers and dimers (Figure S5C and

S5D in Supporting Information S1).

A Ni-NTA-Sepharose bead pull-down assay demonstrated that

the FH2 domains bind to TgACT1 when incubated with parasite

lysates (Figures S4A, S4C, S5E, and S5F in Supporting

Information S1). Although both His-F1L and His-F2 contained

a proline rich region, no interaction with myc-TgPRF was

observed (Figure S5E and S5F in Supporting Information S1).

These results were confirmed in vivo by immunoprecipitation (IP)

of TgFRM1 and TgFRM2 under native conditions. While a

significant amount of TgACT1 was co-IPed with the two formins

(Figure S5G in Supporting Information S1), no TgPRF was

precipitated (data not shown). Finally, beads coated with His-F1L

or His-F2 failed to initiate processive actin assembly in the

presence of both bovine and Toxoplasma profilin proteins, in

contrast to the behaviour observed with mDia1-FH1-FH2-coated

beads [23]. However, the results observed regarding the processive

actin assembly in the presence of profilin do not exclude the

positive effect of Toxoplasma profilin on actin elongation by

Toxoplasma formins 1 and 2, and a new ranges of conditions need

to be tested in the future to clarify this point.

TgFRM1 and TgFRM2 FH2 domains exhibit distinct
biochemical properties as actin nucleators

The effect of F1 and F2 on actin assembly was tested in

spontaneous actin polymerization assays. A qualitative estimation

of the nucleating efficiency is derived from the formin concentra-

tion dependence of the initial rate of polymerization. F1 strongly

stimulated actin polymerization at nanomolar concentrations,

while higher concentrations of F2 were required to nucleate actin

assembly (Figure 3A, B and C). However, the exact number of

nuclei generated by formins cannot be determined from these

assays, which do not discriminate between effects on filament

nucleation and elongation rate constants. These results generated

with rabbit muscle actin, are in agreement with the activities

reported for PfFRM1 and PfFRM2 with chicken muscle actin

[12].

Crystal structure analysis of the Bni1p FH2 in complex with

actin has revealed that an FH2 dimer bridges three consecutive

actin subunits arranged along a pseudo-filament, with each FH2

arm contacting two actin subunits [24]. In the pseudo-filament

the barbed end is blocked by the FH2 arm, and a conforma-

tional change from this ‘‘closed’’ to an ‘‘open’’ configuration

had to be postulated to accommodate processive filament

growth [24]. The actin-FH2 contacts are made by two highly

conserved patches on the surface of the hemidimer. These two

sites correspond to Ile1431 and Lys1601 and mutation of either

of these residues completely abolishes the actin assembly activity

of Bni1 FH2 [24,25]. The corresponding Lys1601 (residue

R4867 in TgFRM1 and R3709 in TgFRM2) were mutated and

the resulting FH2 mutants His-F1-R/A and His-F2-R/A were

produced and analyzed in actin assembly assays (Figure S1B in

Supporting Information S1). Whereas His-F2-R/A lost at least

90% of its nucleating activity, His-F1-R/A still retained a

nucleating activity comparable to that of the wild type protein.

A second mutation corresponding to Ile1431 (residue I4713 in

TgFRM1) was introduced to create the His-F1-IR/AA double

mutant, which showed no nucleating activity up to 500 nM

(Figure 3C and D). Unexpectedly, the His-F2-IR/AA double

intracellular and extracellular parasites. Scale bars represent 2 mm. (F) IFA after aerolysin treatment. TgFRM1 and mycTgFRM1i colocalized with SAG1
at the PM, whereas TgFRM2 colocalized with IMC1. (G) Comparison of mycTgFRM1i and TgFRM2 solubility in PBS buffer and in PBS/Na2CO3 0.1 M
pH 11.5. Total lysate (T), the supernatant (S) and pellet (P) after fractionation.
doi:10.1371/journal.ppat.1001132.g001

Two Toxoplasma Formins Are Implicated in Invasion
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Figure 2. Phenotypic consequences of mycTgFRM1i depletion in mycTgFRM1-iKO. (A) Plaque assay performed on HFF monolayer infected
with TATi-1 or mycTgFRM1-iKO parasites. After 6 days 6 ATc, the HHF were stained with Giemsa. The scale bar represents 1 mm. (B) The area of 30
plaques formed by the individual strains 6 ATc were measured by using the ImageJ program. Values are means 6 SD. Statistical significance was
evaluated using the unpaired t test. ***P,0.0001. (C) Intracellular growth of TATi-1 and mycTgFRM1-iKO cultivated in presence or absence of ATc for
96 hours and allowed to invade new HFF cells. Numbers of parasites per vacuole (X axis) were counted 24 hours after inoculation. The percentages of
vacuoles containing varying numbers of parasites are represented on the Y-axis. Values are means 6 SD for three independent experiments. (D)
Invasion assay performed on mycTgFRM1-iKO pre-treated 6 ATc. IFA was performed with anti-SAG1 prior to permeabilization and with anti-GAP45
after permeabilization. The % of invaded (red) parasites is represented on the graph. Values are means 6 SD for three independent experiments.
Statistical significance was evaluated using the unpaired t test. ***P = 0.0003. (E) A23187 induced egress assay mycTgFRM1-iKO pre-treated 6 ATc.
Values are means 6 SD for three independent experiments. Statistical significance was evaluated using the unpaired t test. ***P = 0.0003. (F) Gliding
assay performed on mycTgFRM1-iKO pre-treated 6 ATc. White arrows show trails from both circular and helical gliding stained with anti-SAG1
antibodies. Scale bars represent 2 mm. (G) Parasites were monitored for trail deposition in gliding assay using SAG1 antibodies. Values are means 6
SD for three independent experiments. Results are displaced as % of total parasites. The trails depositions from 600 parasites were counted. Statistical
significance was evaluated using the unpaired t test. ***P = 0.0003.
doi:10.1371/journal.ppat.1001132.g002

Two Toxoplasma Formins Are Implicated in Invasion
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mutant (residue I3511 in TgFRM2) displayed a strong barbed

end capping activity in filament barbed end growth assays using

spectrin-actin seeds (Figure 3E). A value of 6 nM was derived

for the equilibrium dissociation constant of the complex of His-

F2-IR/AA with barbed ends (Figure 3F and G). This latter

result suggests that the double mutation prevents the postulated

conformational change of the FH2-barbed end complex that

allows processive elongation.

Interaction of these FH2 mutants with barbed ends of filaments

was further addressed by monitoring their effect on the initial rate

of dilution-induced depolymerization of filaments (Figure 3H).

His-F1 totally blocked barbed end depolymerization while His-F2

inhibited the rate of depolymerization by 75% at saturation. Both

proteins bound barbed ends with high affinity. His-F1-R/A

blocked filament depolymerization from barbed ends as efficiently

as His-F1. His-F1-IR/AA did not affect barbed end depolymer-

ization. The R/A mutation did not change the inhibition of

depolymerization of the F2, while the double mutation IR/AA

abolished the blockage of the barbed end depolymerization

harboured by F2 (Figure S5H in Supporting Information S1).

In conclusion, the FH2 domains of TgFRM1 and TgFRM2

display the barbed end binding property common to all formins

from other species, but each formin exhibits specific activities at

barbed ends. F1 is a more efficient nucleator of actin filaments

than F2, but it totally inhibits barbed end depolymerization, which

demonstrates its tight binding to the ADP-F-actin terminal

subunits that are become exposed during depolymerization. In

contrast, F2 only partially inhibits barbed end depolymerization,

similar to other formins like mDia1 or Bni1 [23,26].

Validation of mutated FH2 domains as dominant
negative mutants

Although a role in invasion could be established, the partial

depletion in TgFRM1 hampered a proper assessment of the

importance of the gene. Moreover, the lack of success in

generating a conditional knockout for TgFRM2 impeded a

functional assessment of its contribution. To overcome these

technical limitations, we developed an approach based upon the

conditional expression of a dominant negative mutant that would

be suited to study selectively the function of multiple formins in the

same cell. We reasoned that the expression of a FH2 domain

should lead to the formation of a defective heterodimer (FH2-

FRM). Given that the FH2 WT domain forms homodimers that

possess an unregulated capacity to polymerize actin, it was crucial

to prevent such activity by introducing mutations in the actin-

binding site (F1-IR/AA and F2-R/A). In this scenario both

homodimers and heterodimers are predicted to be inactive

(Figure 4A). As negative controls, truncated forms of FH2 (F1-

DH, and F2-DH) that lack the two helices required for

dimerization were generated (Figures S1B and S4 in Supporting

Information S1) [12,27].

To circumvent the anticipated deleterious effect caused by the

expression of these mutants on parasite survival, both the WT and

mutated FH2 domains were fused to the destabilization domain

Table 1. Phenotypic consequences observed in this study.

PhenotypeR ATc Intracellular growth Egress Gliding Invasion

StrainQ

TATi-1 2 Normal 88% 62 42% 66 77% 66

TATi-1 + Normal 93% 64 38% 670 71% 62

mycTgFRM1-iKO 2 Normal 89% 63 39% 67 76% 63

mycTgFRM1-iKO + Normal 77% 61 20% 68 53% 65

Strain Shield Intracellular growth Egress Gliding Invasion

RH-hxgprtKO 2 Normal 83% 63 33% 65 89% 63

RH-hxgprtKO + Normal 75% 65 33% 613 90% 617

DD-F1-IR/AA 2 Normal 80% 63 31% 65 96% 67

DD-F1-IR/AA + Normal 40% 62 16% 69 48% 66

DD-F2-R/A 2 Normal 82% 64 37% 610 98% 616

DD-F2-R/A + Normal 34% 64 14% 62 49% 68

DD-F1-IR/AA
DD-F2-R/A

2 Normal 92% 62 36% 68 97% 611

DD-F1-IR/AA
DD-F2-R/A

+ Normal 22% 62 10% 63 31% 65

DD-F1 2 Normal nd. nd. nd.

DD-F1 + Affected nd. nd. nd.

DD-F2 2 Normal nd. nd. nd.

DD-F2 + Affected nd. nd. nd.

DD-F1-DH 2 nd. nd. nd. nd.

DD-F1-DH + nd. nd. nd. nd.

DD-F2-DH 2 nd. nd. nd. nd.

DD-F2-DH + nd. nd. nd. nd.

Values listed in this table are summarizing the results presented in figures 2 and 5. nd: not done.
doi:10.1371/journal.ppat.1001132.t001

Two Toxoplasma Formins Are Implicated in Invasion
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Figure 3. In vitro activities of the FH2 domains of TgFRM1 and TgFRM2 in actin assembly. (A) Spontaneous assembly time course of actin
at 2.5 mM in the absence (control) and in the presence of 19 nM WT or mutated forms of F1 and F2 as indicated. (B) F1 concentration dependence of
the nucleating activity. Actin was polymerized at 2.5 mM in the presence of F1-WT as indicated. (C) Compared nucleating efficiencies of F1, F1-R/A, F2,
at different concentrations of formins. (D) The IR/AA double mutation abolishes the nucleating activity of F1. Actin was polymerized in the absence

Two Toxoplasma Formins Are Implicated in Invasion
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(DD) of FKBP. This small domain is known to confer instability to

proteins in the absence of the folding inducer shield molecule,

Shld-1 [28,29]. Transgenic parasites expressing WT, deletion

mutants unable to dimerize as well as site-specific mutants unable

to bind to actin, were generated for both formins in the type I RH

laboratory strain of T. gondii (Figure S4B and S4D in Supporting

Information S1; Table S2 in Supporting Information S1). The

tight control of DD-FH2 fusions by Shld-1 was assessed by western

blot and IFA (Figure S6A and S6B in Supporting Information S1).

Since formins generally form extremely stable dimers (except

maybe mDia2, [30]), the expression of DD-FH2 is not anticipated

to form hybrids from preformed endogenous dimers but only to

associate with newly synthesized proteins. Given the likely slow

turnover of such large proteins, the formation of DD-F1/FRM1

and DD-F2/FRM2 heterodimers was monitored 6 and 48 hours

following Shld-1 treatment. IP of DD-F1 and DD-F2 was

performed under native conditions and revealed that no

heterodimers were formed after 6 hours of Shld-1 treatment. In

contrast, significant amounts of heterodimers were detectable at

48 hours (Figure 4B, and 4C; Figure S6C and S6D in Supporting

Information S1). As anticipated, no heterodimers were formed

with DD-F1-DH and DD-F2-DH (Figure 4D; Figure S6C and

S6D in Supporting Information S1). These results highlight the

functional conservation of the elements required for the self-

association of formins across species [9]. In contrast, DD-F1-IR/

AA, and DD-F2-R/A mutants impaired in actin binding and

nucleating activity were associated with their corresponding

formins with the same efficiency as DD-F1 and DD-F2

respectively (Figure 4D, 4G, and 4H; Figure S6C and S6D in

Supporting Information S1). Importantly, the dimerization is

specific for each formin as DD-F1-IR/AA, and DD-F2-R/A were

exclusively associated with their corresponding formins, as shown

by Western blot analysis of the co-IPs in presence of both anti-

FRM1 and anti-FRM2 antibodies (Figure 4E, and 4F). Despite the

high level of DD-F1-IR/AA and DD-F2-R/A expression, the coIP

experiments revealed that endogenous TgFRM1 and TgFRM2

were not completely sequestered as heterodimers. Even after the

second coIPs, when DD-F1-IR/AA and DD-F2-R/A were

completely depleted in the second flow through (FT2), both

formins were still present TgFRM1 (ca. 30%) and TgFRM2 (ca.

17%) compared to the inputs (Figure 4G, and 4H; lanes

corresponding to FT2). Prior to the assessment of their dominant

negative effects in T. gondii, the FH2 constructs, expressed as His-

fusion and purified from E. coli, were assessed for binding to

TgACT1 by pull down assays with parasite lysates. While His-F1

and His-F2 bound efficiently to TgACT1, no binding was detected

with His-F1-DH, establishing that dimerization of the FH2

domains is necessary for actin association (Figure 4I upper panel).

His-F2-DH is very unstable after its purification from bacteria, and

was therefore not included in this analysis. In agreement with the

polymerization assays, His-F1-IR/AA did not bind to actin,

whereas His-F1-R/A showed residual binding (Figure 4I upper

panel). His-F2-R/A was considerably impaired in binding to

TgACT1, whereas His-F2-IR/AA showed an increased ability to

bind to TgACT1 consistent with the barbed end capper activity

detected in polymerization assays (Figure 4I upper panel). To

consolidate these results, we verified that all recombinant FH2

proteins bound quantitatively to the nickel column (Figure 4I

lower panel).

TgFRM1 and TgFRM2 contribute to parasite motility and
host cell invasion

The heterodimers formed between endogenous FRM1 and DD-

F1-IR/AA or FRM2 and DD-F2-R/A are predicted to be non-

functional and hence to mimic the knockdown of the correspond-

ing gene. In contrast, wild type F1 and F2 form active homodimers

that could lead to some pleiotropic effects as a consequence of

uncontrolled actin polymerization. Indeed, stabilization of DD-F1

and DD-F2 were severely impaired in plaque formation due to a

strong growth defect (Figure S7A, S7B, and S7C in Supporting

Information S1). Stabilization of DD-F1-DH and DD-F2-DH

showed no defect thus ruling out any deleterious effect resulting

from the stabilization of DD-FH2 without the ability to form a

functional dimer (Figure S7A in Supporting Information S1). To

monitor TgFRM2 function, we excluded DD-F2-IR/AA which

exhibits a yet unexplained capping activity (Figure 3E, F and G),

and used instead DD-F2-R/A, which is impaired in nucleating

activity (Figures 3E, and 4I). Generation of parasite lines

expressing both DD-F1-IR/AA and DD-F2-R/A allowed assess-

ment of TgFRM1 and TgFRM2 function simultaneously.

Stabilization of DD-F1-IR/AA and DD-F2-R/A highlighted the

importance of both formins by plaque assays (Figure 5A, and B).

Importantly, when compared to the same strains untreated with

Shld-1, these mutants did not alter intracellular growth, excluding

unspecific toxic effect (Figure S7D in Supporting Information S1).

In contrast, less than 50% of parasites expressing DD-F1-IR/AA

and 40% of those expressing DD-F2-R/A were able to egress

while only 23% of egress was observed for parasites expressing

both FH2 mutants (Figure 5C; Table 1). Invasion efficiency of

each mutant was normalized to the invasion efficiency of a YFP

strain (taken as 100%). With regards to egress, a partial defect was

observed with F1-IR/AA (50%) or F2-R/A (50%), and an

enhanced defect of 68% upon co-expression (Figure 5D;

Table 1). Similarly, parasites expressing DD-F1-IR/AA; DD-F2-

R/A and DD-F1-IR/AA+DD-F2-R/A showed a 49%, 62%, and

72% defect in trail formation, respectively (Figure 5E; Table 1).

Gliding defects were examined in more depth by live video

microscopy. In presence of Shld-1, DD-F1-IR/AA and DD-F2-R/

A parasites exhibited normal twirling motion but were defective in

circular and helical motion. Only 41% of the parasites expressing

DD-F1-IR/AA and 13% expressing DD-F2-R/A were able to

accomplish a complete multi-circular movement lasting up to one

minute (Figure 5F; Video S1). In contrast, up to 80% of non-

treated parasites exhibit normal circular gliding as previously

described [31] (Figure 5F; Video S1). While interference with

TgFRM2 function showed a more pronounced impairment on

circular gliding (Figure 5F; Videos S2 and S3), the inhibition of

TgFRM1 function caused a preferential defect in helical gliding

with 71% of the parasites expressing DD-F1-IR/AA being affected

compared to 43% of those expressing DD-F2-R/A (Figure 5G;

compare Video S4 with Video S5).

and in the presence of F1-WT or F1-IR/AA as indicated. (E) Effect of R/A and IR/AA mutations on the nucleating activity of F2. Actin was polymerized in
the absence and in the presence of F2-WT, F2-R/A or F2-IR/AA as indicated. (F) F2-IR/AA blocks barbed end growth with high affinity. Barbed end
growth of actin (2.5 mM) was initiated by spectrin-actin seeds in the absence and in the presence of F2-IR/AA at the indicated concentrations. (G) The
initial rate of barbed end growth (from panel F and additional data) was plotted versus the concentration of F2-IR/AA. Inset: double reciprocal plot of
the data, indicating that F2-IR/AA blocks barbed ends with a Kd of 6.5 nM. (H) Effect of F1 and F2 on depolymerization of filaments at barbed ends.
Depolymerization of filaments was measured by diluting 40-fold a 2.5 mM F-actin solution (70% Pyrenyl-labeled) in F buffer in the absence and
presence of F1-WT, F2-WT and F1-R/A as indicated.
doi:10.1371/journal.ppat.1001132.g003
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Figure 4. Expression of FH2 domains and their interaction with both endogenous formins and TgACT1 proteins. (A) Schematic
representation of the FH2 homodimers fused to DD and FH2/FRM heterodimers upon short and long-term stabilization with Shld-1. (B–C) FH2/FRM
heterodimers are formed 48 hrs post stabilization of the FH2 domain. Transgenic parasites were grown in presence of Shld-1 for 6 or 48 hrs prior to
harvesting of the parasites and IP with anti-myc antibodies. TgFRM1 (B) and TgFRM2 (C) were monitored by western blot using anti-FRM1 and anti-
FRM2 antibodies. Parasite total lysates (T), immunoprecipitated proteins eluted from beads (IP). (D) Schematic representation of FH2-DH mutants
fused to DD and lacking the two helices responsible for dimerization. Point’s mutations represented by asterisks caused a defect in actin binding
without affecting dimerization. (E–F) DD-F1-IR/AA and DD-F2-R/A formed selective heterodimers with their corresponding formin. Transgenic
parasites were grown in presence of Shld-1 for 48 hrs prior to harvesting of the parasites and IP with anti-myc antibodies. Membranes were probed
simultaneously with anti-FRM1 and anti-FRM2 antibodies. (G–H) Depletion of the total lysates from F1-IR/AA/FRM1, F1-IR/AA/F1-IR/AA, F2-R/A/FRM2,
and F2-R/A/F2-R/A by two sequential immunoprecipitations with anti-myc antibodies. Total lysates (T) or immunoprecipitated proteins eluted from
beads (IP1 and IP2) or lysates after immunoprecipitation (flow through 1 (FT1) and FT2) were analysed by Western blots. Membranes were probed
with either anti-FRM1 (G) or anti-FRM2 (H) antibodies. The integrated densities of the bands measured using the ImageJ program, and the values
expressed in percentage of the total input are provided after normalization for equal loading. (I) Nickel affinity pull-down assay, which measured the
ability of FH2 domains fused to His to bind to TgACT1. The amount of TgACT1 and FH2 domains were determined by Western blot analysis using
anti-actin and anti-His antibodies. The asterisk represents F2 domains degradation.
doi:10.1371/journal.ppat.1001132.g004
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Discussion

Gliding motility is a dynamic event involving temporally and

spatially controlled actin polymerization. Typically, formins

assisted by profilin, bind to an FH1 domain to facilitate a rapid

processive assembly of actin filaments [14,23,32]. Despite the

importance of TgPRF in parasite motility and invasion [13], none

of the parasite formins carry a canonical FH1 domain. Since the

region right upstream of FH2 domains of both formins is rich in

short stretches of proline residues their potential to act as binding

site for profilin was investigated but in vitro pull-down experiments

and in vivo coIPs failed to show interaction. New subclasses of

formins apparently lack FH1, suggesting that an FH1-independent

pathway may mediate actin assembly [9,33]. The crystal structure

Figure 5. Phenotypic analysis of parasites expressing FH2 domains. (A) Plaque assays on transgenic parasites upon stabilization of FH2 after
6 days. The scale bar represents 1 mm. (B) The area of 30 plaques formed by the individual strains 6 Shld-1 were measured by using the ImageJ
program. Values are means 6 SD. Statistical significance was evaluated using the unpaired t test. ***P,0.0001. (C) Egress assay on transgenic
parasites upon stabilization of FH2 for 63 hrs. Egress was triggered by 3 mM of A23187. The extent of vacuole lysis and parasite spreading were
scored by visual examination on IFA. Values are means 6 SD for three independent experiments. ***P,0.0001. (D) Invasion assay on transgenic
parasites upon stabilization of FH2 for 63 hours. Parasites were allowed to invade new HFF cells for 24 hours. Values are means 6 SD for three
independent experiments. ***P = 0.0007, ***P,0.0001, ***P,0.0001 respectively. (E) Parasites were treated as in (C) and monitored for trail
deposition in gliding assay using SAG1 antibodies. No difference in trail deposition was seen for RHDhxgprt strain upon Shld-1 treatment. Values
(n = 600 parasites) are means 6 SD for three independent experiments. **P = 0.0046, ***P = 0.0008, ***P = 0.0002 respectively. (F) Phenotypic analysis
of circular gliding movement in live gliding parasites; error bars represent standard deviation. Values (n = 30 parasites) are means 6 SD for three
independent experiments. ***P = 0.0007, ***P = 0.0007, ***P,0.0001, ***P,0.0001 respectively. (G) Phenotypic analysis of helical gliding movement
in live gliding parasites; error bars represent standard deviation. All data of this figure represent mean values of three experiments. Values (n = 30
parasites) are means 6 SD for three independent experiments. ***P,0.0001, ***P,0.0001, **P = 0.0025, **P = 0.0025 respectively.
doi:10.1371/journal.ppat.1001132.g005
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of the Plasmodium PRF in complex with an octa-proline peptide

was solved and implicated the N-terminal tyrosine residue (Tyr5)

in tethering to the poly-proline [34]. In our hands, all

apicomplexan PRFs showed either very low or no affinity for

poly-proline (Plattner F., unpublished). It is plausible that the

apicomplexan PRFs bind to a divergent unrecognizable domain

on formins and further work is required to unravel how TgPRF

contributes to actin filament formation.

TgFRM1 and TgFRM2 bind to TgACT1 and share biochem-

ical characteristics with their counterparts in Plasmodium [12].

Both formins are underneath the PM and aerolysin treatment

revealed their differential affinity to membranes within the narrow

space separating the IMC from the PM. Like TgMyoA, both

formins homogenously distribute at the periphery of invading

parasites, compatible with the notion that they may nucleate actin

at any time and at any point of contact between the parasite and

its substrate.

Conditional knockout of TgFRM1 established its role in motility

and invasion although the effects were modest and impact on

egress was minor. Despite multiple attempts, generation of a

conditional knockout for TgFRM2 failed. In the course of this

study, parasite lines were generated with triple Ty-1 tags inserted

at the C-terminus of each formin by single crossing over in the ku-

80-ko strain. RT-PCR analysis confirmed in frame integration of

the tags but no signal was detectable by IFA or Western blot in

these transgenic parasites (data not shown). These results indicate

that the endogenous levels of both formins are extremely low and

hence explain the weak phenotype observed upon mycFRM1i

depletion. In the same context, the lack of success in replacing the

endogenous TgFRM2 promoter with an inducible promoter might

be due to a deleterious effect of mycFRM2i expression if the level

is too high.

The function of TgFRM2 and possible redundancy with

TgFRM1 was assessed by the expression of FH2 mutants to

poison individually or simultaneously the two endogenous formins.

This strategy also showed some limitations since the co-IP

experiments revealed that 30% of FRM1 and 17% of FRM2

were not sequestered in defective heterodimers. This suggests that

the affinity and or the stability of the homodimers (FRM-FRM

and FH2-FH2) are higher than the heterodimer (FRM-FH2).

The FH2 WT, F1 and F2 are potent actin nucleators and their

overexpression had a severe impact on parasite replication that

was not dependent on TgFRM1 and TgFRM2. Points mutations

were introduced in the FH2 domains to disrupt actin nucleation

and hence eliminate this non-specific effect. As with Bni1p [25], a

single point mutation in TgFRM2 (F2-R/A) was sufficient to

abrogate its activity whereas a double mutation (F1-IR/AA) was

needed to abolish actin nucleation of TgFRM1. The IR/AA

double mutation conferred to F2 an unexpected barbed end

capping activity. This mutation may impair the flexibility of the

FH2 domain and prevent the switch from the closed to the open

configuration during elongation. To understand this phenomenon,

the resolution of the FH2 domain structure of TgFRM2 in

presence of actin would be necessary.

The different effects of the R/A, and IR/AA mutations on the

activities of TgFRM1 and TgFRM2 further testify that these two

formins have different modes of interaction with actin. The fact

that mutations affect differently barbed end growth and depoly-

merization processes, in which ATP/ADP-Pi-actin and ADP-actin

are respectively exposed at barbed ends, suggests that these

mutations may affect their interactions with ATP-actin and ADP-

actin differently. Similar differences have already been observed

with twinfilin, a capping protein that binds preferentially to ADP-

bound barbed ends [35]. The R/A mutation does not affect any of

the activities of TgFRM1. In contrast, the R/A mutation of

TgFRM2 may weaken its interaction with ATP-actin but not with

ADP-actin. The IR/AA double mutation abolishes all activities of

TgFRM1. The same double mutation transforms TgFRM2 into a

strong barbed end capper in nucleation and barbed end growth,

while leaving the barbed end depolymerization unaffected, which

suggests that the double mutation reinforces binding of FRM2 to

the ATP-terminal subunits in its ‘‘closed’’ configuration and

abolishes its binding to ADP-terminal subunits.

Stabilization of DD-F1-IR/AA and DD-F2-R/A did not affect

intracellular growth and revealed that both TgFRM1 and

TgFRM2 play a role in gliding, invasion and egress. All

phenotypes were aggravated when both dominant mutants were

expressed in the same parasite (Table 1). These results give a

strong indication that the two formins act in concert. However,

since the stabilization of each FH2 mutants failed to sequester all

the formins, invasion only dropped to 50% and in consequence it

is not possible to completely rule out some level of functional

redundancy between the two formins. Nevertheless the results

demonstrate that both TgFRM1 and TgFRM2 contribute

additively to the three vital aspects of the glideosome function

namely gliding motility, host cell invasion and egress from the

infected cells.

The refined analysis of the gliding motility phenotypes by video

microscopy revealed that interfering with TgFRM1 and TgFRM2

preferentially affected helical and circular gliding, respectively,

illustrating distinct contributions of the two formins in gliding.

This study revealed that TgFRM1 is preferentially positioned at

the PM, where fast nucleation occurs in close proximity to the

complex formed between actin filaments and the aldolase-MIC2

tail complex. The filaments likely elongate over only a short

distance with TgFRM2 potentially serving to stabilize and control

the size of the filament close to the IMC.

Given the importance of these formins for parasite infection, it

will be imperative to elucidate their mode of regulation and

interaction with profilin as these unique features might become

relevant therapeutic targets.

Materials and Methods

Parasites culture and cloning of genes
T. gondii tachyzoites (RH hxgprt-ko, or TATi-1) were grown in

human foreskin fibroblasts (HFF). Selections of transgenic

parasites were performed with mycophenolic acid (MPA) and

xanthine for HXGPRT selection [36]; chloramphenicol for CAT

selection [37]; anhydrotetracycline (ATc) for the inducible system

[38]; 1 mM Shld-1 for DD-fusion stabilization [29]; pyrimeth-

amine for DHFR-TS selection [39].

Toxoplasma and E. coli vectors
Primers used in this study are listed in the Table S1 in

Supporting Information S1. The ptetO7Sag4mycNtTgFRM1-

KO: A genomic fragment of 1513 pbs corresponding to the N-

terminal coding sequence of TgFRM1 gene was amplified by PCR

subcloned into NsiI and BamHI sites of ptetO7Sag4mycGFP. The

59 flanking region of TgFRM1 promoter was amplified by genomic

PCR and cloned into the ApaI in pTub5CAT. The ptetO7Sag4-

mycNtTgFRM1 cassette was subcloned into the SacI site of

pTub5CAT.

The ptetO7Sag4mycNtTgFRM2-KO: A genomic fragment of

2202 pbs corresponding to the N-terminal coding sequence of

TgFRM2 gene was amplified by PCR subcloned into NsiI and

BamHI sites of ptetO7Sag4mycGFP. The 59 flanking region of

TgFRM2 promoter (2633 pbs) was amplified by genomic PCR and
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cloned into the ApaI in pTub5CAT. The ptetO7Sag4-

mycNtTgFRM2 cassette was subcloned into the SacI site of

pTub5CAT.

The series of pTub8DDFKBPmycFH2 vectors were obtained by

cloning of the FH2 cDNAs into NsiI and PacI in pTub8DDFKBP-

myc vector.

To mutate the Isoleucine (I) or the Arginine (R) residues,

primers described in the Table S1 in Supporting Information S1

were used in a site-directed mutagenesis reaction using the

commercial QuikChange II Site-DirectedMutagenesis Kit (Stra-

tagene) and according to manufacturer’s instructions. All mutated

constructs were sequenced along the entire open-reading frame

(ORF) to confirm the correct sequence.

The bacterial expression was achieved by insertion of wild type,

truncated and mutated F1 and F2 between NcoI and EcoRI in both

pETHTB and pETM30 vectors. F1L (amino acids numbers 4582-

5051), F1 (amino acids numbers 4630–5051), F1-R/A (amino

acids numbers 4630–5051, R4867/A), F1-IR/AA (amino acids

numbers 4630–5051, R4867/A and I4713/A), F1-DH (amino

acids numbers 4684–5051), F2 (amino acids numbers 3317–4043),

F2-R/A (amino acids numbers 3317–4043, R3709/A), and F2-

IR/AA (amino acids numbers 3317–4043, R3709/A and I3511/

A) were cloned into pETHTB vector to generate recombinant

proteins fused to a His tag. F1L (amino acids numbers 4582–

5051), F1 (amino acids numbers 4630–5051), F1-R/A (amino

acids numbers 4630–5051, R4867/A), F1-IR/AA (amino acids

numbers 4630–5051, R4867/A and I4713/A), F1-DH (amino

acids numbers 4684–5051), F2 (amino acids numbers 3317–4043),

F2-R/A (amino acids numbers 3317–4043, R3709/A), F2-IR/AA

(amino acids numbers 3317–4043, R3709/A and I3511/A), and

F2-DH (amino acids numbers 3480–4043) were cloned into

pETM30 vector to generate recombinant proteins fused to both

His and GST tags. The pET3amycHisF1 and pET3amycHisF2

were used to produce the FH2 for immunization.

The knock-in constructs for P. berghei pSD141/CtPbFRM1 and

pSD141/CtPbFRM2 were generated by genomic PCR amplifi-

cation of 1800 bps and 1812 bps corresponding to the C-terminal

part of the PbFRM1 and PbFRM2 genes, respectively. The PCR

products lacking the stop codon were cloned between KpnI and

ApaI of pSD141 vector in fusion with two myc tags [40].

Generation of transgenic T. gondii and P. berghei strains
TATi-1 were transformed with 100 mg of 59flanking tetO7-

Sag4mycNtTgFRM1-KO vector (linearized with SfoI) and sub-

jected to chloramphenicol selection. YFP-negative parasites were

recovered using a FACS sorter to collect negative cells. DD-FH2

expressing parasites were obtained in RHhxgprt- and selected for

MPA resistance. F1-IR/AA expressing parasites were co-trans-

formed with linearized 90 mg pTUB8-DD-myc-F2-R/A and

10 mg p2854-DHFR.

Single crossing over events in PbFRM1 and PbFRM2 loci were

obtained as described [41,42]. The P. berghei ANKA strain clone

2.34 [43] was injected intraperitoneally into CD1 mice. The

parasitized erythrocytes were harvested after in vitro maturation.

Linearized plasmid DNA was transfected into purified schizonts

using Amaxa machine (Biorad company), and pyrimethamine

selection was performed [41]. Pools of parasites resistant to

pyrimethamine were genotyped and analyzed by Western blot.

Protein purification and analysis
His tagged proteins were purified on Qiagen Ni-NTA superflow

resin (30410) under native conditions [44]. GST tagged proteins

were purified on Amersham Glutathione sepharose 4 Fast flow

(17-5132-01) in Amersham 10/20 Tricorn column (18-1163-13).

GST-TgPRF was cleaved using the Prescission protease (Amer-

sham, 27-0843-01). The purified FH2 domains were eluted at the

rate of 0.4 ml/min with PBS-NaCl 0.15 M buffer, with a Superose

6 10/300 GL column using AKTA prime machine (Amersham

Pharmacia biotech) to determine their oligomeric state. To detect

TgFRM1 and TgFRM2, parasite lysate were fractionated on Tris-

Acetate 3–8% precast gels (Invitrogen) using the manufacturer’s

running buffer and electrophoresis was continued until the 71–

117 kDa marker reached the bottom of the gel. To compare the

amount of mycTgFRM1 protein in presence or in absence of ATc

with the endogenous level of expression of FRM1, a western blot

analysis was performed by loading an equal volume from the total

protein extracts derived from both TATi-1 and mycTgFRM1i

KO strains. The quantification of the bands was processed using

ImageJ program.

Antibodies and indirect immunofluorescence assay (IFA)
His-F1 and His-F2 were used to immunize rabbits (Eurogentec).

Anti-catalase (CAT), anti-TgPRF, anti-SAG1, anti-TgGAP45,

anti-IMC1, anti-MLC1, anti-ACT, anti myc (9E10) and anti-Ty

tag (BB2) were previously described [13,45,46]. Anti-RON4 was

kindly provided by Dr. Dubremetz. Immunoblots were visualized

using a chemiluminescent substrate (Amersham, GE healthcare).

HFF cells infected with parasites were fixed 15 minutes at room

temperature (RT) with 4% paraformaldehyde (PFA) in PBS or

4%PFA/0.05% glutaraldehyde (PFA/GA) in PBS depending on

the antigen to be labelled. Cells were neutralized 3–5 minutes in

0.1 M glycine/PBS, and then permeabilized with 0.2% Triton/

PBS for 20 minutes. Cells were then incubated with primary

antibody (diluted in 2%BSA/0.2% triton/PBS) for 1 hour at RT

on balance, washed 3 times with 0.2% Triton/PBS and incubated

with secondary antibody as above. Cells were washed 3 times,

stained for 5 minutes with DAPI (50 mg/ml in PBS) and washed

again. Coverslips were mounted with Fluoromount G (Southern

Biotech 0100-01) on glass slides [47].

Nickel affinity pull-downs
Parasites expressing mycPRF were used as source of PRF and

F1L, F1, and F2 were fused to GST and shown to polymerize

rabbit actin. Freshly egressed parasites (36108 parasites) were

harvested, washed once with buffer G (CaCl2 0.1 mM, Tris 5 mM

pH 7.8, ATP 0.2 mM, and DTT 1 mM), and resuspended in the

same buffer containing 0.5 mM ATP and protease inhibitors.

Successive rounds of freeze/thaw in liquid N2 were performed to

break the cells. After ultracentrifugation at 30000 rpm, the

supernatant was incubated for 2 hours at 4uC with 75 mg of the

bait protein (His-GST or His-GST-F1 or His-GST-F1-R/A or

His-GST-F1-IR/AA or His-GST-F1-DH or His-GST-F2 or His-

GST-F2-R/A or His-GST-F2-IR/AA) followed by incubation

with 50 ml of Nickel beads (Qiagen) for 1 hour at 4uC. Beads were

centrifuged and an aliquot of the supernatant was taken (flow

through). Beads were washed 3 times with buffer G (CaCl2
0.1 mM, Tris 5 mM pH 7.8, ATP 0.2 mM, and DTT 1 mM),

suspended in protein loading buffer, and analysed by western blot.

Immunoprecipitation
FRM1-DD-myc-F1 or FRM1-DD-myc-F1-IR/AA and FRM2-

DD-myc-F2 or FRM2-DD-myc-F2-R/A heterodimers complexes

were immunoprecipitated with monoclonal 9E10 anti-myc

antibodies. To achieve this, 36108 parasites were lysed in PBS/

0.2% triton-X100. Incubation for 1 hour at 4uC with an excess of

antibodies was followed by incubation with 25 ml of protein A

beads for 1 hour at 4uC. Beads were then washed 3 times with

washing buffer, suspended in protein loading buffer, and analysed
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by Western blot using rabbit polyclonal anti-FRM1 and anti-

FRM2 antibodies. To quantify how much endogenous formin was

sequestered by the corresponding FH2 mutant, two sequential

immunoprecipitation experiments were performed. The two

immunoprecipitated fractions and the two flow throughs were

analysis by Western blot. The quantification of the bands was

processed using ImageJ program and nomalized to the % of FRM

present in the input (total lysate).

Fractionation
Parasites were harvested and extracted in the following buffers:

PBS or PBS/Na2CO3 (0.1 M, pH 11.5). Extracts were then

centrifuged at 300006rpm for 1 hour at 4uC. Equivalent amounts

of total, supernatant, and pellet were run on Tris-Acetate 3–8%

precast gels (Invitrogen) for formins 1 and 2, and on 10% gel for

catalase.

Aerolysin treatment
Cover slips were coated with a solution of Poly-L-Lysine. Prior

to use recombinant protoxin was activated for 20 minutes at 37uC
in 100 ml of PBS with 2 ml of trypsin diluted at 1 mg/ml into HBS

(140 mM NaCl, 2.7 mM KCl, 20 mM Hepes pH 7.4). Freshly

harvested parasites were washed with PBS and attached to

coverslips coated with Poly-L-Lysine (incubation at 37uC for 10

minutes). The medium was then removed, and parasites were

treated with aerolysin at 60 ng/ml for 3 hours at 37uC and then

IFA was performed as described.

Polymerization assays
Actin was purified from rabbit muscle acetone powder and

isolated in monomeric form by gel filtration on Superdex-200 in G

buffer. Spontaneous assembly of actin was monitored using the

enhancement of the fluorescence of 5% pyrenyl-labeled actin in a

Safas Xenius spectrofluorimeter. Conditions were: 2.5 mM actin,

5 mM tris-Cl- pH 7.8, 0.2 mM ATP, 1 mM DTT, 0.1 mM

CaCl2, 0.25 mM EGTA, 1 mM MgCl2, 0.1 M KCl. Seeded actin

assembly assays were performed similarly using spectrin-actin

seeds and 2.5 mM G-actin [48]. Dilution-induced depolymeriza-

tion assays were performed by diluting 40-fold a solution of

2.5 mM F-actin (50% pyrenyl-labeled) in polymerization buffer

containing the desired concentrations of formins. The initial rate

of fluorescence decrease was measured [23].

Plaque assay
Fresh monolayers of HHF on circular coverslips were infected

with parasites in the presence or absence of 1 mg/ml ATc and

1 mM Shld-1 for 6 days. Fixation, staining and visualization were

performed as previously described [13].

Intracellular growth assay
Parasites were pretreated for 96 hours with or without ATc or

63 hours with or without 1 mM Shld-1, collected promptly after

egress and inoculated onto new HHF monolayers. 24 hours later,

the culture was fixed with PFA and stained with anti-TgGAP45.

The number of parasites per vacuole was counted for more than

100 vacuoles under each condition.

Invasion assay
Freshly released parasites were inoculated onto new confluent

HHF monolayer and allowed to invade for 1 hour before the cells

were fixed. IFA was performed as previously described [13].

Comparison of T. gondii dominant negative mutant strains for

invasion efficiency was done in the presence of the RH-2YFP

strain as an internal standard as previously described [49].

Parasites were grown for 63 hours 61 mM Shld-1.

Egress assay
After 33 hours of intracellular growth, most vacuoles contain

16–32 parasites. Media was changed and incubated for 8 minutes

at 37uC with DMEM containing 0.06% of DMSO or 3 mM of the

Ca2+ ionophore A23187 (from Streptomyces chartreusensis, Calbio-

chem 100105) as previously described [13].

Gliding motility assay
Freshly released tachyzoites were collected by centrifugation,

resuspended in 100 ml and deposited onto Poly-L-Lysine coated

coverslips (1 mg/ml, 2 hrs at RT) in a wet environment for 15

minutes at 37uC previously. Parasites were fixed with PAF/GA

and IFA using the anti-SAG1 antibody was performed to visualize

the trails.

Video microscopy of gliding motility
Freshly released parasites were resuspended in Ringer medium,

and allowed to glide on glass-bottom dishes (MatTek Corp,

Ashland, MA) precoated with poly-L-lysine (1 mg/ml). Video

microscopy was conducted using a spinning disk confocal

microscope (Ultraview) equipped with Andor Revolution under

bright field illumination and in a temperature-controlled stage to

maintain 37uC. Images were collected in real time under low-light

illumination using an intensified Andor DU-897 E camera with a

606objective (Nikon Plan Apo NA 1.4 Oil). Videos were recorded

at 1.47 frames per second in a total time of 1 minute 8 seconds

with a resolution of 0.26 mm/pixel. The video signal was processed

using ImageJ program.

Accession numbers
Toxoplasma gondii Formin 1, TgFRM1 (ACY06261); Toxoplasma

gondii Formin 2, TgFRM2 (ACY06262).

Supporting Information

Supporting Information S1 Tables S1 and S2; Figures S1 to

S7.

Found at: doi:10.1371/journal.ppat.1001132.s001 (8.93 MB PDF)

Video S1 Live circular gliding video at 5X speed of DD-F2-R/A

parasites none treated with Shld-1.

Found at: doi:10.1371/journal.ppat.1001132.s002 (1.19 MB

AVI)

Video S2 Live abortive circular gliding video at 5X speed of

DD-F1-IR/AA parasites treated with Shld-1.

Found at: doi:10.1371/journal.ppat.1001132.s003 (0.89 MB

AVI)

Video S3 Live abortive circular gliding video at 5X speed of

DD-F2-R/A parasites treated with Shld-1.

Found at: doi:10.1371/journal.ppat.1001132.s004 (0.82 MB

AVI)

Video S4 Live helical gliding video at 5X speed of DD-F1-IR/

AA parasites none treated with Shld-1.

Found at: doi:10.1371/journal.ppat.1001132.s005 (1.51 MB

AVI)

Video S5 Live abortive helical gliding video at 5X speed of DD-

F1-IR/AA parasites treated with Shld-1.

Found at: doi:10.1371/journal.ppat.1001132.s006 (1.28 MB

AVI)
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