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Abstract

Vaccinia virus (VACV) is being developed as a recombinant viral vaccine vector for several key pathogens. Dendritic cells
(DCs) are specialised antigen presenting cells that are crucial for the initiation of primary immune responses; however, the
mechanisms of uptake of VACV by these cells are unclear. Therefore we examined the binding and entry of both the
intracellular mature virus (MV) and extracellular enveloped virus (EV) forms of VACV into vesicular compartments of
monocyte-derived DCs. Using a panel of inhibitors, flow cytometry and confocal microscopy we have shown that neither
MV nor EV binds to the highly expressed C-type lectin receptors on DCs that are responsible for capturing many other
viruses. We also found that both forms of VACV enter DCs via a clathrin-, caveolin-, flotillin- and dynamin-independent
pathway that is dependent on actin, intracellular calcium and host-cell cholesterol. Both MV and EV entry were inhibited by
the macropinocytosis inhibitors rottlerin and dimethyl amiloride and depended on phosphotidylinositol-3-kinase (PI(3)K),
and both colocalised with dextran but not transferrin. VACV was not delivered to the classical endolysosomal pathway,
failing to colocalise with EEA1 or Lamp2. Finally, expression of early viral genes was not affected by bafilomycin A, indicating
that the virus does not depend on low pH to deliver cores to the cytoplasm. From these collective results we conclude that
VACV enters DCs via macropinocytosis. However, MV was consistently less sensitive to inhibition and is likely to utilise at
least one other entry pathway. Definition and future manipulation of these pathways may assist in enhancing the activity of
recombinant vaccinia vectors through effects on antigen presentation.
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Introduction

Vaccinia virus (VACV) is best known for its role as a vaccine in

the global eradication of smallpox. Research on VACV has been

pursued with renewed fervour in recent years in light of its

potential use as an effective vaccine vector for viral and parasitic

infections as well as cancer. Exploiting certain aspects of the

biology of the immune system may be the key to improving the

efficacy of such modern vaccines.

Dendritic cells (DCs) are key players in the initiation of adaptive

immune responses and as such are attractive targets for

vaccination [1,2]. They are specialised at antigen uptake and

highly express C-type lectin receptors (CLRs), a family of Ca2+-

dependent carbohydrate recognition receptors that bind to an

array of microbial pathogens [3]. DCs use CLRs as a trapping

mechanism for pathogens before internalisation or transfer of the

pathogen to its specific receptor. DCs also employ a range of

mechanisms for antigen uptake including receptor-mediated

endocytosis and phagocytosis, as well as non-receptor-mediated

processes such as macropinocytosis [4,5]. Further information

about the mechanisms of DC binding and uptake of VACV could

be employed to better target VACV-vectored vaccines to DCs,

either directly or via uptake of bystander infected cells and also

influence recombinant antigen processing to enhance immune

responses.

VACV is a large, enveloped DNA poxvirus that exists in

multiple infectious forms [6,7]. The majority of progeny virions

are mature viruses (MV) which are released from the cell upon

lysis. A small proportion of MVs become further enveloped and

are exocytosed from the cell as extracellular virus (EV). The EV

envelope contains unique viral proteins not found in the MV

envelope [8]. As a result, MV and EV have been shown to have

different binding characteristics and infection efficiencies [9].

Despite being studied for several decades, entry receptors for

VACV have yet to be conclusively identified. MV binds to

glycosaminoglycans [10–12] and also to the extracellular matrix

protein laminin [13], however these interactions are not required

for infection [13–16]. Furthermore, there is evidence that the
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receptor for VACV may differ between cell types such as primary

haematolymphoid cells and epithelial cell lines [9,17].

VACV enters cells via several different mechanisms in a cell-

type specific manner [18]. Both forms of the virus can enter cell

lines via fusion with the plasma membrane [14,16], mediated by a

multi-protein fusion complex on the virus [19,20]. A low pH

dependent endosomal route of entry and macropinocytosis have

also been described for MV entry in cell lines [21–23]. An

endocytic route of entry for EV has been suggested [24,25] but not

yet confirmed. Furthermore, in DCs, the visualisation of MV in

intracellular vesicles by electron microscopy has suggested an

endocytic mode of uptake [26] although the nature of these

vesicles and the actual mode of uptake have not been described.

Few previous studies investigating VACV entry have examined

EV as it represents only a small percentage of progeny virions and

the outer membrane is very fragile [24] making purification and

concentration of this form of the virus difficult. Here we have

characterised the entry pathway for both MV and EV in human

monocyte-derived dendritic cells (MDDCs) as a model for skin

DCs. Using a systematic combination of pharmacological

inhibitors and confocal microscopy we have shown that both

forms of the virus are taken up via a clathrin-, caveolin-, flotillin-

and dynamin-independent endocytic pathway, and the virus does

not enter the endolysosomal pathway or rely on low pH to enter

the cytoplasm. For EV, this uptake mechanism is predominantly

macropinocytosis. MV is also macropinocytosed although to a

lesser extent and it is likely that this form of VACV utilises multiple

redundant entry mechanisms. In addition we have shown that

VACV does not bind to CLRs expressed on DCs.

Results

Preparation of MV and EV stocks
To individually study the entry properties of MV and EV we

first produced a concentrated, purified stock of GFP-labelled MV

via ultracentrifugation on an Optiprep gradient. The purity of the

stock was confirmed by immunofluorescence and electron

microscopy, and SDS-PAGE followed by general protein staining

and western blotting for the D8 and GFP proteins (Fig. S1).

Although the fragility of the outer EV envelope makes purification

of this virus difficult we were able to use gentle centrifugal filtration

to produce a concentrated stock of GFP-labelled EV in which

contaminating MV or damaged EV particles were subsequently

neutralised with an MV-neutralising antibody (Fig. S2). The

presence of intact EV in these preparations was confirmed by

plaque assay in the presence of the neutralising antibody and also

by immunofluorescence microscopy where intact EV was

identified by direct detection with an EV-specific antibody or

GFP-fluorescence as well as exclusion of MV-specific antibody

staining (Fig. S3). On average, the percentage of intact EV was

46.0615.9% with an intact EV titre of 2.36107 pfu/mL (n = 7).

We used fresh EV preparations for each experiment and as the EV

titre was calculated retrospectively, this resulted in a range of

MOIs being used for EV experiments with multiple DC donors.

VACV entry in MDDCs is dependent on factors consistent
with an endocytic uptake mechanism

When we studied the kinetics of VACV entry in MDDCs we

made a number of observations. Firstly, we observed virus capping

at one end of the cells, a hallmark of endocytosis, for both MV

(70% of 327 cells) and EV (67% of 90 cells) within 30 min of

binding, consistent with a previous report [26]. We also observed

that almost all MV bound to cells at 4uC could be stripped by

trypsin, whereas 30 min after entry at 37uC, around half of the

bound virions became resistant to trypsin. Moreover, virus cores

could first be detected in the cytoplasm only after 60 min by

probing with an anti-GFP antibody. This was in marked contrast

to BS-C-1 cells where cores were readily detectable at 30 min

(Fig. 1A). We interpret these results to suggest VACV does not fuse

with the plasma membrane but is removed from the surface of the

cell within 30 min and takes up to 60 min to fuse out of an

intracellular compartment. VACV infection is abortive in DCs,

limited to the expression of early viral proteins which takes place in

the cytoplasm [26] but the delayed appearance of virus cores in

DCs compared to BS-C-1 cells was mirrored in the kinetics of

expression of two immediate early viral genes. E3L (a dsRNA-

binding protein/PKR inhibitor) and B2R (unknown protein)

transcripts were abundant within 15 min of virus entry, peaking at

2 h in BS-C-1 cells but were not clearly detectable in DCs until 45-

60 min with a delayed peak at 3 h (Fig. 1B, C). Furthermore, the

magnitude of early viral gene expression from MV and EV was

equal in BS-C-1 cells but in DCs, gene expression from EV was

suppressed compared to MV, suggesting differences in the entry

pathways or the mechanics of virus core release between the cell

types and possibly even between MV and EV in DCs.

Active uptake of antigen by DCs is an energy-intensive process

requiring rearrangement of the plasma membrane and cytoskel-

eton and ligation of cellular receptors which often triggers a

signalling cascade that coordinates internalisation of the antigen by

endocytosis and subsequent events. Conversely, fusion of a viral

envelope with the plasma membrane does not usually require

cellular ATP and may or may not induce signalling. To distinguish

between these pathways of entry in DCs, we examined the

requirement for ATP for VACV entry using antimycin A (AntiA),

an inhibitor of the mitochondrial electron transport chain that has

been shown to inhibit energy-dependent processes [27]. MDDCs

were pre-treated with AntiA in glucose-free medium, prior to

spinoculation with GFP-labelled MV or EV at 4uC. Bound virus

was then allowed to enter the cells in the presence of inhibitor for

30 min at 37uC and any remaining surface-bound virus was

stripped by trypsinisation. We chose a 30 min time point to

specifically assess the drug’s effect on the initial step of virus entry

Author Summary

Vaccinia virus (VACV) is a relative of the smallpox virus and
was used for many decades as a successful vaccine that
contributed to the eradication of smallpox. Today, through
genetic recombination technology, VACV shows potential
as a modern vaccine for many unconquered diseases
including HIV and cancer. Dendritic cells (DCs) are a
specialised subset of immune cells that initiate adaptive
immune responses and exploiting the interaction between
VACV and DCs, which has not been well studied, may be a
key to improving the efficacy of these vaccines. In this
study we investigated the mechanisms by which VACV
binds to and enters DCs. Here, we examined both the
abundant mature virus form of VACV as well as the less
common, poorly studied extracellular form. We found that
VACV does not bind to the common pathogen-uptake C-
type lectin receptors expressed on DCs and that the virus
enters DCs via macropinocytosis—a fluid-phase uptake
process. Furthermore, the virus is not delivered to the
conventional endolysosomal antigen processing pathway
in these cells. Our study provides new insights into VACV
biology and into possible mechanisms of action of VACV
as a recombinant viral vaccine vector which may assist in
their rational design in the future.

Vaccinia Enters DCs by Macropinocytosis
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Figure 1. The release of VACV cores and initiation of viral gene expression is delayed in DCs compared to BS-C-1 cells. (A) MDDCs or
BS-C-1 cells were spinoculated with MV-GFP (MOI 10) at 4uC then incubated at 37uC for 0, 30 or 60 min to allow virus entry. Cells were washed, fixed
in 4% PFA and permeabilised with 0.1% Triton X-100 for 10 min at room temperature. MV was detected by confocal microscopy by GFP fluorescence
(green) and virus cores were detected using an anti-GFP Ab and GAR-633 (red). Scale bars represent 10 mm. (B) MDDCs or (C) BS-C-1 cells were
spinoculated with MV-GFP (MOI 3) or EV-GFP (MOI 1) at 4uC, washed and then incubated at 37uC for up to 4 h to allow virus entry. At various time
points, cells were lysed and the expression of immediate early viral transcripts for two genes, E3L and B2R, was analysed by qPCR. Viral gene
expression was normalised to GAPDH.
doi:10.1371/journal.ppat.1000866.g001
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into vesicles. Virus entry was measured by detection of GFP by

flow cytometry. Concentrations up to 20 mM AntiA depleted

cellular ATP in a dose-dependent fashion by up to 95% (data not

shown). Both MV and EV entry was significantly reduced in

AntiA-treated cells compared to untreated cells, up to 77.268.7%

(mean 6 SEM, n = 3, p = 0.029) for MV and 74.6610.4% (n = 3,

p = 0.029) for EV (Fig. 2A–C), although the remaining ,25%

remained refractory to increasing concentrations of AntiA. Thus,

VACV depends on cellular energy for entry in MDDCs.

Next, as ligation of cellular receptors often triggers a Ca2+-

mediated signalling cascade that coordinates internalisation of the

antigen and subsequent events, we examined VACV entry into

MDDCs in the presence of EGTA/AM, a membrane permeable

intracellular Ca2+ chelator. Both MV and EV entry was

dependent on Ca2+ (Fig. 2D). MV entry was significantly inhibited

by 63.464.7% (n = 4, p = 0.003) in the presence of 250 mM

EGTA/AM whereas EV entry was almost completely abrogated

(99.160.7%, n = 3, p,0.001). Interestingly, low concentrations of

EGTA/AM (2.5-25 mM) consistently enhanced both MV and EV

entry by 10– 0%. Treatment of the cells with non-membrane

permeable EGTA had no inhibitory effect on VACV entry (data

not shown) indicating that it was intracellular Ca2+ stores that were

important for virus entry.

Many viruses rely on dynamic changes to the actin cytoskeleton

to aid their entry, either to effect endocytosis [28] or transport

membrane-bound virus to areas of high endocytic activity [29].

The drugs cytochalasin D (CytD) and latrunculin A (LatA) disrupt

actin polymerisation and inhibit these processes [30]. Both MV

and EV entry into MDDCs was significantly inhibited, in a dose-

dependent manner, by more than 88.4% in treated cells compared

to untreated cells at the highest concentrations of both CytD and

LatA (n = 3, p,0.001 for all; Fig. 2E). These data indicate that

there is a requirement for actin cytoskeleton rearrangements in

VACV entry into MDDCs.

Altogether, the delayed appearance of virus cores, a reliance on

cellular ATP, intracellular Ca2+ and actin strongly suggests that

VACV is taken up actively, via an endocytic or macropinocytic

mechanism in MDDCs.

VACV does not utilise C-type lectin receptors (CLRs) for
binding to MDDCs

DCs express an array of CLRs that mediate rapid endocytosis of

a variety of glycosylated antigens and pathogens in a Ca2+-

dependent manner [3]. Mannose receptor (MR) and DC-SIGN

are two CLRs that are highly expressed on MDDCs. After having

established that VACV is likely taken up via some form of

endocytosis in MDDCs, we investigated whether these CLRs were

involved in this process. MDDCs were treated with a variety of

CLR inhibitors–mannan (a pan-CLR inhibitor), a neutralising

anti-DC-SIGN mAb, D-mannose (a specific inhibitor for MR) and

EGTA (a Ca2+ chelator), prior to MV or EV binding at 4uC. Virus

binding was measured by flow cytometry of GFP fluorescence

(Fig. 3A) or qPCR detection of the virally encoded GFP gene

(Fig. 3B), or qualitatively by confocal microscopy (Fig. 3C).

Binding of either MV or EV was not significantly reduced by any

of the CLR inhibitors nor was there any evidence of a dose-

Figure 2. VACV entry in MDDCs is dependent on cellular
factors consistent with an endocytic uptake mechanism. The
effect of depletion of ATP (A–C) or intracellular calcium (D) and
sequestration of actin (E) on the entry of MV (white bars) and EV
(shaded bars) was assayed by FACS. MDDCs were pre-treated with
inhibitors antimycin A (AntiA), EGTA/AM, cytochalasin D (CytD) and
latrunculin A (Lat A) at the concentrations indicated for 60 min at 37uC
prior to spinoculation with MV-GFP (MOI 20) or EV-GFP (MOI 0.5–5) at
4uC. Cells were shifted to 37uC for 30 min to allow virus entry then
washed and the remaining surface-bound virus stripped by trypsinisa-
tion. The percentage of GFP-positive cells was analysed by flow

cytometry and representative data is shown for AntiA in (A) dot plot
and (B) histogram form with uninfected (shaded), untreated, infected
control (black line) and 20 mM AntiA treatment (red line) overlaid. The
EV MOI in this experiment was 1.2. (C–E) Data from three independent
experiments was normalised as a percentage of the untreated control.
* p,0.05. ** p,0.01. *** p,0.001.
doi:10.1371/journal.ppat.1000866.g002
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Figure 3. VACV does not bind to C-type lectin receptors (CLRs) expressed on MDDCs. MDDCs were pre-treated with the CLR inhibitors
mannan, a neutralising anti-DC-SIGN mAb (AZN-D1), D-mannose (D-man) and EGTA or media alone at 4uC for 30 min then spinoculated at 4uC with
MV-GFP (MOI 50) or EV-GFP (MOI 5–10). Cells were then washed and fixed in 4% PFA for flow cytometry or lysed for qPCR. (A) The percentage of GFP-
positive cells was analysed by flow cytometry and normalised as a percentage of the untreated control. (B) Virally-encoded GFP DNA copy numbers
were quantitated by qPCR and normalised to GAPDH and expressed as a percentage of the untreated control. (C) Confocal microscopy images of MV
or EV bound to MDDCs at 4uC in the absence or presence of mannan. (D) As a positive control, pre-treated MDDCs were incubated with biotinylated
HIV-1 gp120 at 4uC which was detected with streptavidin-PE and measured by flow cytometry (white bars). Alternatively, cells were infected with HIV-
1 (MOI 10) in the presence of inhibitors for 72 h then integrated viral transcripts were measured by qPCR (shaded bars). (E, F) Colocalisation of MV or
EV on the surface of MDDCs with DC-SIGN and MR was assessed by confocal microscopy. DC-SIGN and MR mAbs were detected with GAM-546.
Images are maximum projections of z-series and the scale bars represent 5 mm. Inserts are enlargements of the boxed areas in the main images.
doi:10.1371/journal.ppat.1000866.g003
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response to mannan. In contrast, the inhibitors were effective at

blocking HIV-1 gp120 binding to MDDCs as well as HIV-1

infection of MDDCs (Fig. 3D), as previously reported [31].

Furthermore, VACV bound to the surface of MDDCs did not

colocalise with DC-SIGN or MR (Fig. 3E, F). There was also no

appreciable difference in the number of particles bound to DC-

SIGN- and MR-bright cells compared to dim cells. Thus we

conclude that mannose-binding CLRs are not involved in the

binding and entry of VACV to MDDCs.

VACV enters MDDCs via a clathrin- and caveolin-
independent mechanism

Next we investigated whether clathrin-mediated or caveolin-

mediated endocytosis are involved in VACV uptake in DCs.

VACV has dimensions of 250–350 nm, which possibly precludes it

from clathrin- or caveolin-mediated endocytosis as these pathways

are normally reserved for particles with a diameter of 100 nm or

less. However, these size restrictions may not be absolute

particularly in DCs that are specialised at antigen uptake.

The large GTPase dynamin II is required for pinching off

endocytic vesicles from the plasma membrane during clathrin-

mediated and caveolin-mediated endocytosis [32,33]. We used

two dynamin inhibitors–Bis-T-23 and Dynasore (Dyngo7a) that

act via different mechanisms to study the requirement for dynamin

in VACV entry. Dynasore is a dynamin GTPase inhibitor while

Bis-T-23 acts on the assembly domain of dynamin. Each of these

drugs inhibited uptake of transferrin, which is taken up by

clathrin-mediated endocytosis via the transferrin receptor (Fig. 4A),

but did not inhibit MV uptake (Fig. 4B). EV uptake was slightly

but not significantly inhibited in the presence of Bis-T-23

(14.367.7%, n = 3, p = 0.075) and no inhibitory effect was seen

with Dynasore (Fig. 4B). Furthermore, when VACV was bound to

MDDCs at 4uC then allowed to enter in the presence of

fluorescently conjugated transferrin, no colocalisation occurred

between the two antigens over a course of 30 min at 37uC
(Fig. 4C). Thus, VACV entry in DCs is dynamin-independent.

We also found that while caveolin-1 (Cav-1) expression was

detectable in MDDCs at the RNA level, only very low amounts of

Cav-1 protein were detected by western blot which were

undetectable by flow cytometry or confocal microscopy (data not

shown). Therefore since VACV entry does not require dynamin,

does not colocalise with transferrin and Cav-1 expression is almost

undetectable in MDDCs, we conclude that VACV entry in DCs is

not via clathrin- or caveolin-mediated endocytosis.

VACV entry in MDDCs is cholesterol-dependent
An alternative endocytic pathway is the clathrin-independent

carrier (CLIC) pathway which is clathrin-, caveolin- and dynamin-

independent but requires cholesterol in the plasma membrane

[4,5]. Macropinocytosis also occurs in cholesterol-rich domains in

the cell membrane [34]. We used two agents to disrupt lipid rafts

to determine their involvement in VACV entry in MDDCs.

Methyl-b-cyclodextrin (mbCD) disrupts lipid rafts by extracting

cholesterol from lipid membranes and filipin III (Fil) is a sterol-

binding agent that sequesters cholesterol within the membrane.

We observed notable reductions in MV entry of up to 19.162.2%

(n = 3) in the presence of Fil and up to 28.3614.6% (n = 3) in the

presence of mbCD, however these reductions were not statistically

significant (p = 0.183 and 0.305 respectively. Fig. 5A). Conversely,

EV entry was significantly reduced in the presence of each drug in

a dose-dependent manner by 61.964.3% (n = 4, p,0.001) and

63.4611.6% (n = 4, p = 0.009) compared to untreated cells

(Fig. 5A). The previously reported finding that MV penetration

of BSC40 cells can be reduced by more than 90% using 10 mM

mbCD [35] could not be repeated in MDDCs since concentra-

tions greater than 2.5 mM were found to be toxic to these cells

(data not shown).

The concentrations of mbCD used here reduced the content of

cellular cholesterol by up to 30% compared to the untreated

control, as measured by an Amplex Red assay (data not shown),

however the cholesterol content could not be further reduced due

to the toxicity of higher drug concentrations. While MV was

clearly less sensitive to cholesterol-depletion than EV, we wanted

Figure 4. VACV entry in MDDCs does not require dynamin. (A)
MDDCs were pretreated with dynamin II inhibitors Bis-T-23 (100 mM)
and Dynasore (Dyngo7a; 200 mM) or media alone at 37uC for 30 min
then incubated with 5 mg/mL transferrin-Alexafluor 647 (Tf-647) for
10 min at 37uC. Cells were washed, and then any remaining surface-
bound transferrin was stripped by a low pH wash (pH 2.8). Uptake of
transferrin was measured by flow cytometry and the mean fluorescence
intensity (MFI) was expressed as a percentage of the untreated control
MFI. (B) Alternatively, MDDCs were pre-treated with the dynamin II
inhibitors then infected with MV-GFP or EV-GFP and analysed, as in Fig.
2. (C) MDDCs were spinoculated with MV-GFP or EV-GFP at 4uC then
incubated in pre-warmed media with 200 mg/mL Tf-647 at 37uC for 1-
45 min. Cells were then washed and trypsinised to remove residual
surface bound virus and fixed in 4% PFA for confocal microscopy.
Representative maximum projections of z-series taken at 15 min are
shown. Scale bars represent 5 mm.
doi:10.1371/journal.ppat.1000866.g004
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to confirm our hypothesis that MV entry might be increasingly

inhibited if the MDDCs could tolerate more marked cholesterol

depletion. To further elucidate the requirement for cholesterol in

MV entry in MDDCs we firstly pre-treated the cells with mbCD,

and found MV binding at 4uC was moderately inhibited by

17.9611.1% (n = 5, Fig. 5B). Secondly, mbCD was added to cells

either 60 min prior to, at the time of, or up to 60 min after the

initiation of virus entry at 37uC. Once MV entry was initiated, the

degree to which the addition of mbCD could inhibit entry was

diminished until finally at 60 min post-entry, mbCD no longer

had any effect on virus uptake (Fig. 5C). The partial recovery of

MV entry that occurred between treatment at 260 min and

0 min may be indicative of redistribution of the remaining

cholesterol in the plasma membrane that was sufficient for MV

entry. Thirdly, in the presence of mbCD, we were able to rescue

and indeed enhance the entry of MV in MDDCs with the addition

of soluble cholesterol (Fig. 5D). Together these results show that

cholesterol indeed contributes to MV entry in DCs.

VACV entry is independent of flotillin-1 (Flot-1)
The CLIC pathway is the major pathway for the uptake of

cholera toxin B and GPI-linked proteins and is marked by high

concentrations of Flot-1 in the plasma membrane and the

membranes of endocytic intermediates [4,36]. We found that

MDDCs express Flot-1 at the RNA and protein level (Fig. S4).

However, when VACV was bound to MDDCs at 4uC then

allowed to enter over a course of 60 min, neither MV nor EV

colocalised with Flot-1 at the time of virus binding or during entry

(Fig. S4). Thus the entry of VACV does not appear to be

associated with Flot-1.

VACV entry is independent of Fc and complement
receptors

DCs employ phagocytosis for the ingestion of large (.500 nm)

particulate antigens via Fcc and complement receptors. We used

aggregated IgG and a neutralising CD18 mAb respectively to

block each of these receptors and found no reduction in the

binding or entry of MV or EV in MDDCs (data not shown).

However, phagocytosis via other receptors, such as scavenger

receptors, cannot be ruled out at this stage.

VACV can enter MDDCs via macropinocytosis
Macropinocytosis is a non-receptor mediated pathway char-

acterised by the extension of filopodia that fold back onto the cell

membrane to form large, irregular macropinosomes. It is a

constitutive process in DCs enabling them to sample and

concentrate large quantities of soluble antigen and contributes to

efficient MHC class I and class II presentation to T cells [37,38].

Macropinocytosis also provides a means of entry into host cells for

several pathogens including bacteria [39,40] and viruses [41–44].

As mentioned previously, the MV form of VACV enters HeLa

cells via macropinocytosis [23,45]. Macropinocytosis is dependent

Figure 5. VACV entry in MDDCs is dependent on cholesterol. (A) Cells were treated with cholesterol inhibitors methyl-b-cyclodextrin (mbCD)
or filipin III (Fil) for 60 min at 37uC then infected and analysed as in Fig. 2. (B) Alternatively, virus binding at 4uC was analysed immediately after
spinoculation of mbCD-treated cells with MV-GFP or (C) mbCD was added at the times indicated from 60 min prior to, up to 60 min post MV binding
and entry. (D) Following treatment with mbCD for 60 min, cells were washed and incubated for a further 60 min at 37uC in the absence or presence
of 0.1 mM soluble cholesterol to replenish cellular cholesterol, followed by MV binding and entry as in (A). ** p,0.01. *** p,0.001.
doi:10.1371/journal.ppat.1000866.g005
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on ATP, actin and an increase in intracellular Ca2+ for membrane

ruffling and the formation of filopodia and depends on cholesterol

but not dynamin [34,46,47].

To test whether macropinocytosis is also involved in VACV

entry in DCs we used three commonly used inhibitors of

macropinocytosis – rottlerin, 5-(N-ethyl-N-isopropyl) amiloride

(EIPA) and dimethyl amiloride (DMA). Amilorides inhibit the

Na+/H+ ion exchange pump in the plasma membrane affecting

the intracellular pH, resulting in the cessation of macropinocytosis,

however the mechanism of rottlerin inhibition is unknown [48].

EV entry was significantly reduced by 56.366.9% (n = 3,

p = 0.023) with rottlerin, 65.868.6% (n = 3, p = 0.019) with

DMA and 74.363.9% (n = 3, p = 0.038) with EIPA. In contrast,

MV entry was modestly reduced in the presence of rottlerin

(17.467.8%, n = 3, p = 0.06) and DMA (33.9614.9%, n = 3,

p = 0.020) but remained unaffected by EIPA compared to

untreated cells (Fig. 6A). We tested the specificity of the three

drugs for macropinocytosis in MDDCs by assessing their ability to

inhibit uptake of the classical fluid-phase marker Lucifer Yellow,

without affecting transferrin uptake which is via receptor-mediated

endocytosis (Fig. S5). Both rottlerin and DMA effectively inhibited

Lucifer Yellow uptake, however DMA equally inhibited transfer-

rin uptake. In contrast, rottlerin had only a minimal effect on

transferrin uptake, consistent with previous reports [48]. EIPA was

actually more effective at inhibiting transferrin than Lucifer

Yellow uptake. Therefore in MDDCs, rottlerin can be considered

a specific macropinocytosis inhibitor, whereas the other two drugs

are less specific. Since others have reported that EIPA blocks

uptake of MV in HeLa cells [23] we determined whether the effect

of this drug was cell type-dependent. Despite having no effect on

MV uptake in MDDCs, EIPA did indeed block uptake of MV and

EV in HeLa cells (Fig. S5), consistent with the previous report,

demonstrating that the effects of EIPA are cell type-dependent.

We wanted to further investigate whether the small reduction in

MV entry as a result of rottlerin treatment was similar to that

observed with the cholesterol inhibition studies where MV entry

was less sensitive to perturbation than EV and the MDDCs were

able to partially recover from the effects of the drug treatment

sufficiently for MV entry to occur. To address this, we used a drug

treatment time course, adding rottlerin either 30 min before, at

the time of, or up to 60 min after initiating virus entry at 37uC. EV

entry was clearly blocked with rottlerin treatment prior to virus

entry and the effect diminished as rottlerin was added at later

times after virus entry had begun to take place (Fig. 6B). Although

the effect on MV was less significant, the trend was the same as for

EV which suggests that a proportion of MV is entering via

macropinocytosis. Additionally, we assessed whether using a

higher MOI with MV was masking the effect that was visible

with EV with these and several other of the entry inhibitors we

have employed but when we repeated the experiments using a

high MOI (10) versus a low MOI (1) for MV the results were

identical (data not shown).

Macropinocytosis in various cell types is dependent on several

kinases, including phosphotidylinositol-3-kinase (PI(3)K) and

protein kinase C (PKC) which are involved in the signalling

pathways that promote membrane ruffling and macropinosome

formation, although it has been shown that PKC is not critical for

macropinocytosis in DCs [48]. We found that both MV and EV

entry in MDDCs was significantly reduced in the presence of

wortmannin, a PI(3)K inhibitor, but not in the presence of

GF109203X, a small molecule inhibitor of PKC (Fig. 6C). MV

entry was decreased by up to 72.569.3% (n = 3, p = 0.003) and

EV by 80.368.8% (n = 3, p,0.001) by wortmannin, implicating

the involvement of PI(3)K in VACV entry in MDDCs.

Finally, we examined VACV uptake in the presence of another

fluid-phase marker, high molecular weight dextran, by confocal

microscopy. We observed that both MV and EV considerably

colocalised with dextran-Texas Red (Fig. 6D). After 15 min this

was 29.3610.8% and 29.769.5% for MV and EV respectively,

increasing to 42.563.0% and 35.163.3% respectively after

30 min. Having established that VACV entry in MDDCs is

dependent on ATP, actin, intracellular Ca2+ and cholesterol but

not dynamin (all features of macropinocytosis), the pattern of

inhibition of VACV entry by rottlerin and DMA and reliance on

PI(3)K together with its colocalisation with dextran strongly

suggest that VACV enters DCs by macropinocytosis. For EV this

is the major route of entry however, it appears that this is a sub-

dominant pathway for MV and it is likely that this form of the

virus utilises multiple, redundant entry mechanisms.

VACV does not traffic through the endolysosomal route
or rely on low pH to enter the cytoplasm

Finally, we investigated the fate of VACV upon entry into DCs.

Little is known about the trafficking of macropinosomes, however,

their destination seems to depend on the nature of the cargo [49].

We looked for colocalisation of the virus with the early and late

endosomal markers, EEA1 and CD63 and the lysosomal marker,

Lamp2. Neither MV nor EV colocalised significantly with EEA1

over the course of 60 min of virus entry (Fig. 7A). Furthermore,

neither form of VACV colocalised with CD63 (data not shown) or

Lamp2 (Fig. 7B). We also assessed the effect of bafilomycin A

which prevents the acidification of intracellular compartments, on

viral gene transcription and found it to be unaltered for two genes

for both MV and EV (Fig. 7C and data not shown). This was

consistent with the fact that we did not see any degradation or

quenching of the viral GFP signal by flow cytometry over time, in

the presence or absence of bafilomycin A, that would be induced if

the virus accessed an acidic compartment. Finally, to confirm that

the macropinocytic pathway we had been inhibiting in our flow

cytometry assay does in fact lead to bona-fide infection of the DCs,

we measured viral gene expression in the presence of represen-

tative inhibitors. LatA, mbCD, EGTA/AM, rottlerin and

wortmannin all blocked immediate early gene transcription for

both MV and EV (Fig. 8). Thus VACV is taken up by

macropinocytosis into a compartment that is distinct from the

endolysosomal pathway in DCs and does not depend on low pH to

release virus cores into the cytoplasm where viral gene

transcription takes place.

Discussion

Elucidating the mode of uptake of VACV by DCs is necessary

in order to fully understand the biology of the virus and also

vaccine systems that involve VACV vectors. VACV infection of

DCs induces apoptosis, but this is somewhat delayed, not

occurring until 48 h after infection with WR strain. Infection in

DCs is abortive and limited to the production of early proteins but

direct presentation of viral antigens by infected DCs can be

detected in the lymph nodes between 6–24 h hours following

infection [50,51]. It is highly likely that epidermal and perhaps

dermal DCs are infected in vivo, in addition to keratinocytes, and

contribute to direct priming of CD8+ CTLs. Expression of early

viral genes may also trigger cytoplasmic pattern-recognition

receptors in DCs and influence subsequent antigen presentation

to bystanders. Furthermore, in the case of virus entry that does not

result in ‘‘productive’’ infection (in the sense of viral gene

transcription), the compartment the virus enters in DCs will also

determine whether MHC class II loading and presentation occurs.
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Thus the route of VACV entry into these cells is of critical

importance to understanding the immunobiology of VACV.

With respect to future VACV-based vaccines, MV is the likely

important form of the virus. However, a replication-competent

vaccine would lead to the production of EV in target cells at the

site of vaccination and as these particles are thought to be

responsible for long-range spread of the virus within the body and

are more resistant to antibody neutralisation, DC capture and

Figure 6. VACV is taken up by macropinocytosis in MDDCs. The effect of (A) macropinocytosis inhibitors rottlerin, DMA and EIPA or (C) kinase
inhibitors wortmannin (wort) or GF109203X on the entry of MV-GFP and EV-GFP was assayed by FACS. MDDCs were pretreated with inhibitors at the
concentrations indicated for 30 min at 37uC then infected and assayed as in Fig. 2. * p,0.05, ** p,0.01, *** p,0.001. (B) The kinetics of rottlerin
inhibition were investigated. Cells were treated with 10 mM rottlerin at the times indicated relative to infection with MV-GFP or EV-GFP, then assayed
as in Fig. 2. (D) MV and EV colocalise with dextran during uptake by MDDCs. Cells were spinoculated with MV-GFP or EV-GFP at 4uC then incubated in
pre-warmed media with 0.5 mg/mL dextran-Texas Red at 37uC for up to 30 min. Cells were then washed and trypsinised to remove residual surface
bound virus and fixed in 4% PFA for confocal microscopy. Representative maximum projections of z-series taken at 15 min are shown. Scale bars
represent 5 mm. Inserts are enlargements of the boxed areas in the main images.
doi:10.1371/journal.ppat.1000866.g006
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presentation of this form of VACV to T cells may play an

important role in containing and limiting the infection. Thus both

virus forms need to be studied.

The present study builds on the previous report of Drillien et al

[26], who observed MV inside vesicles in MDDCs, to further

define the entry pathway of VACV in these specialised antigen

presenting cells. We have shown that VACV is taken up by

MDDCs via an endocytic pathway that is independent of clathrin,

caveolin, dynamin and flotillin but is dependent on ATP, actin,

intracellular calcium, host cell membrane cholesterol and PI(3)K.

Figure 7. VACV does not colocalise with endolysosomal markers and is not dependent on low pH to enter the cytoplasm. MDDCs
were spinoculated with MV-GFP (MOI 10) or EV-GFP (MOI 2–5) at 4uC. After washing to remove any unbound virions, cells were incubated at 37uC to
allow virus entry for 0-120 min. Cells were then fixed and permeabilised with methanol:acetone (1:1 v/v) for 2 min at -20uC and stained for (A) early
endosomes using EEA1 mAb or (B) lysosomes with Lamp2 mAb, and GAM-546. Maximum projections of z-series for EEA1 at 30 min and Lamp2 at
60 min are shown and are representative of three different donors. Scale bars represent 5 mm. (C) MDDCs were spinoculated MV-GFP (MOI 3) or EV-
GFP (MOI 1), washed and incubated at 37uC in the presence or absence of 250 nM bafilomycin A (BafA) for up to 3 h. At various time points, cells
were lysed and the expression of the immediate early viral gene E3L was analysed by qPCR. Viral gene expression was normalised to GAPDH.
doi:10.1371/journal.ppat.1000866.g007
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The pathway is not mediated by CLRs and does not deliver

VACV to early endosomes or lysosomes or progress to an acidic

pH. For EV, this pathway is predominantly macropinocytosis.

However, MV was consistently more resistant to entry inhibitors

and whilst macropinocytosis contributed to a proportion of MV

entry, this form of VACV likely uses multiple entry pathways in

MDDCs including other clathrin- and caveolin-independent

endocytic pathways. Our knowledge of the intricacy of endocytic

pathways utilised by mammalian cells is rapidly expanding. Along

with the well-defined clathrin- and caveolin-dependent pathways

characterised by their requirement for dynamin, additional

dynamin-independent pathways, separated by their dependence

on various small GTPases (Rac1, Cdc42, ARF6) are beginning to

be defined [4,5]. Macropinocytosis and the CLIC pathway fall

into the latter category. Phagocytosis is generally discriminated

from other forms of endocytosis by the size of the particle being

ingested and by morphological features–the extension of pseudo-

pods around the particle rather than the invagination of the cell

membrane, and the close-fitting nature of the phagosome due to

multiple receptor-particle interactions. With dimensions of 250–

350 nm, VACV falls between the generally accepted upper size

limit of endocytosis (100 nm) and just below the lower size limit of

phagocytosis (500 nm). Macropinosomes however can range in

size from a few hundred nanometers up to several micrometers in

diameter [38].

In addition to the size restrictions on clathrin- and caveolin-

mediated endocytosis, our data has ruled out these modes of

uptake for VACV entry in MDDCs. The cholesterol inhibitor Fil,

which does not affect clathrin-mediated endocytosis [52], did have

an effect on the entry of both MV and EV and we found

expression of caveolin-1 to be undetectable at the protein level in

MDDCs, consistent with previous observations [53]. Finally, both

clathrin- and caveolin-mediated endocytosis require dynamin for

the scission of endosomes from the plasma membrane whereas our

results indicate that dynamin is not required for VACV entry in

MDDCs. Dynamin is also required for phagocytosis although its

role is in the release of secretory vesicles that supply new

membranes to the growing pseudopods. In macropinocytosis, the

closure and scission of macropinosomes is thought to be carried

out by CtBP-1/BARS and regulated by Pak1 activity [42]. There

are conflicting reports about the dependence of VACV on

dynamin during fluid-phase uptake in HeLa cells. One study

found that MV entry was sensitive to Dynasore, DynII siRNA and

the dominant negative DynI K44A mutant (but not the dominant

negative DynII K44A mutant), concluding that dynamin was

essential for VACV entry [45], whereas others found similarly that

the DynII mutant had no effect on MV entry in the same cell type,

but nor did similar concentrations of Dynasore and thus concluded

that MV entry was independent of dynamin [23]. In MDDCs, we

found the use of small molecule dynamin inhibitors to be more

effective than transfection with siRNA or dominant negative

mutants and our results with Dynasore and Bis-T-23 were

consistent with the latter report, indicating a dynamin-indepen-

dent uptake mechanism.

Several lines of evidence point towards a macropinocytic uptake

mechanism for VACV in DCs. The dependence on ATP, actin,

membrane cholesterol and PI(3)K as well as independence from

dynamin are all consistent with this pathway. Furthermore,

macropinocytosis has been shown to depend on a slow rise in

the intracellular Ca2+ concentration in MDDCs [46] so the acute

sensitivity of both MV and EV to treatment with the intracellular

Ca2+ chelator, EGTA/AM, but not non-membrane permeable

EGTA, is also consistent with this pathway.

We and others [48] have shown that rottlerin is a more specific

inhibitor of macropinocytosis in MDDCs than either DMA or

EIPA. Rottlerin was originally described as a specific inhibitor of

the delta subunit of protein kinase C however it has since been

shown to affect multiple kinases via a complex, indirect

mechanism and is likely not to be a specific kinase inhibitor at

all [54,55]. Currently its molecular target is unknown although it

does affect dynamic actin reorganisation, preventing the spreading

of DCs [48]. As mentioned above, macropinocytosis depends on a

slow rise in the intracellular Ca2+ concentration [46] and

interestingly, rottlerin is known to be a potent activator of the

large conductance voltage, Ca2+-activated K+ (BK) ion channel.

This channel belongs to the same family as the voltage-gated K+

(Kv) channel which is responsible for regulating the influx of Ca2+

into DCs in response to maturation stimuli [56]. By activating the

BK channel, rottlerin stimulates a massive outflow of current in

heart and nervous tissue [57]. It is tempting to speculate that if

rottlerin acts on the S4 domain that is common to both BK and

Kv channels it could potentially prevent the influx of Ca2+ that is

required for macropinocytosis to proceed, accounting for its

inhibitory effect on VACV entry. Finally, both MV and EV

Figure 8. Blocking components of the macropinocytosis pathway blocks viral gene transcription. MDDCs were pre-treated with the LatA
(10 mM), mbCD (2.5 mM), EGTA/AM (250 mM), rottlerin (10 mM) and wortmannin (200 nM) for 30 min prior to spinoculation with (A) MV-GFP (MOI 3)
or (B) EV-GFP (MOI 1) at 4uC. Cells were washed and incubated at 37uC to allow virus entry for 2 h then lysed for analysis of immediate early viral
transcripts E3L (shaded bars) and B2R (white bars) by qPCR. The expression of viral transcripts was normalised to expression of GAPDH and is
expressed as a percentage of the untreated control from two independent donors with standard error bars.
doi:10.1371/journal.ppat.1000866.g008
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colocalised with dextran in macropinosomes. Even though the

majority of dextran is taken up via mannose receptor-mediated

endocytosis, approximately 25% is macropinocytosed and cannot

be blocked by mannan [38,48]. Since mannan has no effect on the

entry of MV or EV, colocalisation between the virus and dextran

is likely to occur in macropinosomes.

The trafficking of macropinosomes is currently poorly under-

stood although the destination for macropinocytosed cargo seems to

depend on the nature of the cargo itself. While macropinosomes

have been shown to deliver ovalbumin to distinct compartments

that acquire the lysosomal protein Lamp1 and MHC class II [38],

others have shown that macropinocytosed beads and dextran enter

a compartment that acquires the early endosomal antigen EEA1 but

they do not go on to acquire Lamp1 or MHC class II [46]. The

subsequent trafficking of viruses known to enter cells via macro-

pinocytosis has not been examined. We found that VACV does not

enter the classical endolysosomal pathway in DCs, as evidenced by

its lack of colocalisation with early and late endosomal and

lysosomal markers. DCs maintain a neutral or only mildly acidic

pH in early phagosomes and macropinosomes [58,59] enabling the

storage of antigen taken up in the periphery while the DC migrates

to the lymph node. Consistent with this entry pathway are our data

that suggest VACV does not access an acidic compartment or rely

on low pH to enter the cytoplasm in DCs. Furthermore, the marked

difference in the kinetics of entry of both VACV forms, particularly

EV, between DCs and BS-C-1 cells may relate to the capacity of

DCs to retain antigen during migration.

Finally, although VACV has been shown to bind to cell-surface

glycosaminoglycans, this interaction has proven to be cell-type

dependent and previous work suggests that the VACV receptor(s)

expressed on primary haematolymphoid cells may differ from

epithelial cell lines since immune sera containing antibodies which

blocked VACV binding to monocytes and activated T cells did not

block binding to cell lines [17]. Furthermore, the receptor for

VACV on T cells can be removed by trypsin [17], as we saw with

MDDCs, whereas trypsinisation of cell lines does not reduce

VACV binding or infection [9]. A growing number of viruses have

been shown to utilise CLRs expressed on DCs (some of which are

sensitive to trypsin, such as DC-SIGN [31]) for entry, including

HIV-1 [60], adenovirus serotype 5 [61], measles virus [62],

hepatitis C virus [63], cytomegalovirus [64] and others. Most of

the CLRs expressed on DCs contain cytoplasmic internalisation

motifs [65] serving to enhance internalisation, degradation and

subsequent presentation of antigen to T cells. Our finding that

VACV, most notably EV with multiple glycosylated proteins in its

envelope [8], does not bind to CLRs distinguishes it from these

other viruses and extends its capacity for immune evasion.

In conclusion, both MV and EV forms of VACV utilise

macropinocytosis for entry into MDDCs. Whilst this is the

predominant entry mechanism for EV, MV was less sensitive to

perturbations in cellular cholesterol levels and shut down of

macropinocytosis, which suggests that it may utilise more than one

dynamin-independent endocytic pathway. Our study is the first

demonstration that EV can enter cells via a mechanism other than

fusion with the plasma membrane. These results lay the

foundation for further investigations in animal models to

determine the significance of DC macropinocytosis of both MV

and EV in vaccinia pathogenesis and use of vaccinia recombinants

as vaccine candidates, for example, by examining the in vivo effects

of amiloride or wortmannin-induced inhibition of macropinocy-

tosis in mice on antigen presentation by various myeloid DC

subsets [66]. Further elucidation of the fate of VACV inside DCs

will contribute not only to our understanding of the biology of

VACV interactions with the immune system but also the efficacy

of vaccines employing VACV vectors and should assist their

rational design.

Materials and Methods

Antibodies
The following were kind donations: MV-neutralising murine

monoclonal antibody (mAb) 7D11, directed against the MV

protein L1R from B. Moss (NIH, Bethesda, MD; with permission

from A. Schmaljohn, USAMRIID, Frederick, MD; [67]). Murine

mAb AB1.1, directed against the MV protein D8 from G. L.

Smith (Imperial College, London, UK) and rat mAb 19C2,

directed against the EV protein B5 from J. Krijnse-Locker (EMBL,

Heidelberg, Germany [68]). Anti-GFP rabbit polyclonal Ab was

from Molecular Probes (Eugene, OR), DC-SIGN mAb (AZN-D1)

was from Beckman-Coulter (Fullerton, CA), flotillin-1 (Flot-1)

rabbit polyclonal Ab was from Abcam (Cambridge, UK) and Flot-

1 (clone 18), mannose receptor (MR; 19.2), caveolin-1 (Cav-1;

2234), EEA1 (clone 14) and Lamp2 (H4B4) mAbs, goat anti-

mouse IgG (GAM)-PE and streptavidin-PE were purchased from

BD Pharmingen (Franklin Lakes, NJ). Goat anti-rabbit Ig (GAR)-

FITC was from Sigma-Aldrich (St. Louis, MO). GAM-546, GAR-

546 and donkey anti-rat IgG (DAR)-594 were purchased from

Molecular Probes. GAM-IRdye-680 was from LI-COR Biosci-

ences (Lincoln, NB).

Preparation of MDDCs
Monocyte-derived DCs (MDDCs) were generated by culturing

human CD14+ cells, positively selected from PBMCs using

magnetic microbeads (Miltenyi Biotec, Gladbach, Germany), in

RPMI/10% FCS (RF10) with 7.5 ng/mL IL-4 and GM-CSF

(ProSpec, Rehovot, Israel) for 6 days [69].

Preparation of VACV stocks
A WR strain VACV with EGFP tagged to a core protein, vA5L-

GFP-N (kindly donated by G. L. Smith, Imperial College, London

[70]) was used for both MV and EV preparations. MV stocks were

grown in RK13 cells for 48 h as previously described [71] and

purified on a discontinuous 16–32% Optiprep (Axis-Shield, Oslo,

Norway) gradient in a SW28 rotor (Beckman Coulter) at 28

000 rpm for 1 h at 4uC. Purified MV banded at the 28–32%

interface which was harvested and pelleted on a 50% Optiprep

cushion in a SW41 Ti rotor (Beckman Coulter) at 14 000 rpm for

45 min. The purity of the virus stock was confirmed by

immunofluorescence and electron microscopy and SDS-PAGE

followed by a general protein stain and western blotting for D8 and

GFP proteins (Fig. S1). MV was always sonicated for 45s at 130W to

disrupt any aggregates prior to infecting cells. Fresh EV stocks were

grown for each experiment in BHK-21 cells as described previously

[14]. Supernatants were harvested after 24 h, clarified by low speed

centrifugation at 1200 rpm for 10 min to remove cellular debris and

concentrated by 3 rounds of centrifugation through 100 kDa

Amicon Ultra-15 filters (Millipore, Billerica, MA) at 2000 rpm for

20 min at 4uC. Any contaminating MV and damaged EV were

neutralised with the 7D11 mAb at 1:400 for 1 h at 37uC. Viruses

were titered by plaque assay on BS-C-1 cells. The percentage of

intact EV was calculated as the ratio of the viral titres in the

presence:absence of 7D11 mAb (Fig. S2) and the presence of intact

EV was confirmed by immunofluorescence microscopy as previ-

ously described (Fig. S3; [72]).

Virus entry assay
MDDCs were spinoculated with vA5L-GFP MV (MOI 20) or

EV (MOI 0.5–5), unless otherwise stated, at 650 g for 1 h at 4uC.
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As passive binding of VACV to MDDCs at 4uC is minimal, we

used spinoculation to enhance both MV and EV binding and

enable the study of entry events. Spinoculation was not found to be

detrimental to cell viability, consistent with previous reports [14].

Following spinoculation, cells were retained on ice or resuspended

in warm RF10 and incubated at 37uC for the indicated time to

allow bound virus to enter the cells. Residual surface-bound virus

was removed by treatment with 0.5% trypsin for 10 min at 37uC
and cells were washed once in RF10 then twice more in ice cold

PBS.

Entry inhibition studies
Inhibitors were purchased from Sigma-Aldrich (St. Louis, MO)

unless otherwise specified. Ethyleneglycol-bis(b-aminoethyl)-

N,N,N9,N9-tetraacetoxymethyl ester (EGTA/AM) was from

Calbiochem (San Diego, CA). Bis-T-23 and Dyngo7a (Dynasore)

were developed in-house [73]. MDDCs were pre-treated in serum-

free media in the absence or presence of inhibitor for the times and

concentrations indicated. Cells were then subjected to the virus

entry assay, with spinoculation and virus entry occurring in the

presence of the inhibitor, and fixed in 4% paraformaldehyde

(PFA). The percentage of GFP-positive cells was analysed by flow

cytometry and expressed as a percentage of the no drug control

(designated as 100% entry). For depletion of ATP, MDDCs were

washed and resuspended in glucose-free RPMI (Invitrogen) with

the addition of either 10 mM D-glucose (no drug control) or

10 mM D-deoxyglucose (Sigma-Aldrich) and 10 mM sodium

azide to prevent glycolysis. Depletion of .90% of ATP was

confirmed using an ATP Determination Kit (Molecular Probes)

according to the manufacturer’s instructions. Depletion of cellular

cholesterol was confirmed using an Amplex Red assay kit

(Molecular Probes) according to the manufacturer’s instructions.

For inhibition of transferrin or Lucifer Yellow uptake, MDDCs

pre-treated with dynamin or macropinocytosis inhibitors as

described above were then incubated with warm media containing

5 mg/mL Alexafluor-647-labelled transferrin (Tf-647; Molecular

Probes, Eugene, OR) or 200 mg/mL Lucifer Yellow (Sigma-

Aldrich) respectively for 15 min at 37uC. Cells were placed on ice

to halt endocytosis and washed three times with ice-cold PBS.

Surface-bound transferrin was removed by an ice-cold acid wash

(0.2 M CH3COOH, 0.5 M NaCl, pH 2.8) for 15 min. MDDCs

were then fixed in 4% PFA and analysed by flow cytometry. The

mean fluorescence intensity (MFI) of the sample minus the

background MFI (unpulsed cells) was expressed as a percentage of

the no drug control MFI.

Inhibition of CLR binding
For inhibition of CLR-mediated virus binding cells were

incubated in ice-cold binding buffer (RPMI 1640, 10 mM

HEPES, 1% BSA; pH 7.4) with mannan, EGTA, D-mannose or

neutralising anti-DC-SIGN mAb at the concentrations indicated

for 40 min at 4uC. Except EGTA treated samples, cells were

washed in ice-cold binding buffer to remove excess inhibitor.

EGTA-treated samples were not washed in order to maintain

calcium-depleted conditions. Cells were then spinoculated with

vA5L-GFP MV (MOI 50) or EV (MOI 5–10) at 4uC, washed

three times in ice-cold PBS and fixed with 4% PFA for analysis by

flow cytometry. Alternatively, cells were resuspended in DNA lysis

buffer for qPCR. Biotinylated [31], monomeric HIV-1 gp120

(SLCA-1 primary R5 strain [74]; kindly provided by Dr. J. Arthos,

National Institutes of Health, Bethesda, MD) was used at 10 mg/

mL in the same binding assay and detected with streptavidin-PE

(0.5 mg/mL). For inhibition of HIV-1 infection, cells treated with

inhibitors as above were infected with HIV-1 (BaL strain) at MOI

10 for 3 h at 37uC then washed and cultured for 72 h followed by

qPCR analysis.

RNA extraction and cDNA conversion
Cells were lysed and RNA extracted using a RNeasy Plus Mini

Kit (Qiagen, Valencia, CA) according to the manufacturer’s

instructions. RNA was reverse transcribed into cDNA using a

High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA).

qPCR
Copies of the VACV DNA genome or viral transcripts were

detected by primers to the virally encoded GFP (fwd: 59-

GACGTAAACGGCCACAAGTT-39; rev: 59-GAACTTCAG

GGTCAGCTTGC-39) or immediate early genes E3L (ORF

number VACV059 in Western Reserve strain; fwd:59-

TATCCGCCTCCGTTGTCATA-39; rev:59-CGAAGGAGCTA

CTGCTGCAC-39) and B2R (ORF number VACV184 in

Western Reserve strain; fwd:59-TGGAGCACTGCTGCC-

TATGT-39; rev:59-CTCGTACCCGATTCCGCTTA-39) (www.

poxvirus.org) using Platinum SYBR Green qPCR SuperMix-

UDG (Invitrogen) in a Corbett Research Rotor-Gene (Corbett

Life Sciences, Sydney, Australia) with the following cycling

conditions: 50uC for 2 min, 95uC for 10 min, 40 cycles of 95uC
for 15 sec and 60uC for 1 min and normalised to GAPDH as

previously described [75]. HIV-1 DNA copies were quantified by

detecting HIV-1 LTR-gag DNA using primers and a molecular

beacon [76] and normalised to albumin copy number as

previously described [75]. Cav-1 primers: Fwd: 59-ACAGCC-

CAGGGAAACCTC-39. Rev: 59-GATGGGAACGGTGTAGA-

GATG-39.

Expression of Cav-1 and Flot-1 by western blot and flow
cytometry

Cells were lysed at 106106/mL (10 mM HEPES, 150 mM

NaCl, 1% Triton X-100, 10 mM CaCl2 and 100 mg/L protease

inhibitor cocktail (Sigma-Aldrich)) at 4uC for 1 h. The soluble

fraction was analysed for Flot-1 and insoluble fraction for Cav-1.

Lysates were separated by SDS-PAGE (12% gel) and transferred

to nitrocellulose membranes (Amersham Pharmacia Biotech,

Arlington Heights, IL). Membranes were blocked overnight with

Odyssey blocking buffer (LI-COR) and probed with Flot-1 mAb

(1:500) or Cav-1 mAb (1:5000) and GAM-IRdye-680. Membranes

were imaged using the Odyssey Infra-red Imaging System (LI-

COR). NIH/3T3 cells were used as a positive control. For flow

cytometric analysis, MDDCs or NIH/3T3 cells were permeabi-

lised and stained with Flot-1 pAb (5 mg/mL) followed by GAR-

FITC (10 mg/mL) or Cav-1 mAb (5 mg/mL) followed by GAM-

PE (10 mg/mL). The percentage of antigen-positive cells was

analysed by flow cytometry.

Confocal microscopy
(i) Colocalisation of VACV with cellular markers or

endocytic tracers. Cells were spinoculated with vA5L-GFP

MV or EV at 4uC, washed to remove unbound virus then fixed as

described in each case to analyse binding or incubated in pre-

warmed RF10 at 37uC to allow bound virus to enter cells. Cells

were pre-incubated with 10 mg/mL MR mAb or neutralising DC-

SIGN mAb prior to spinoculation or stained with EEA1 (5 mg/

mL) or Lamp2 (5 mg/mL) mAbs after fixation. These markers

were detected with GAM-546 (5 mg/mL). For EV-infected

samples, the EEA1 and Lamp2 mAbs were directly conjugated

to Alexafluor-555 using Zenon labelling technology (Molecular
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Probes) according to the manufacturer’s instructions, prior to

staining in order to avoid cross-reactivity of the secondary Ab with

the murine mAb used to neutralise damaged MV in the

preparation of EV stocks. Alternatively, Tf-647 (200 mg/mL) or

dextran-Texas Red (0.5 mg/mL, Molecular Probes) was added to

the medium during virus entry for the time specified. The cells

were washed and trypsinised to remove residual surface-bound

virus then washed twice more in ice-cold PBS before fixing and

analysis by confocal microscopy. The extent of GFP-positive pixels

that colocalised with tracer-positive pixels was quantified using

Mander’s co-efficient in the JACoP plug-in in Image J [77] after

first masking out cells that did not take up both virus and tracer.

(ii) Analysis of Cav-1 and Flot-1 expression. MDDCs or

NIH/3T3 cells were fixed with 2% PFA and permeabilised with

0.1% Triton X-100. Cells were then stained with Cav-1 mAb

(5 mg/mL) followed by GAM-546 (5 mg/mL) or Flot-1 pAb

(2.5 mg/mL) followed by GAR-546 (10 mg/mL).

Coverslips were mounted with ProLong Gold anti-fade reagent

(Molecular Probes) and cell images were acquired using an upright

Leica DMRE fluorescence microscope, Leica SP2 confocal system

and software v2.5 (Leica Microsystems, Heidelberg GmbH,

Mannheim, Germany).

Statistical analyses
Data are presented as means 6 SEM and n represents the

number of experiments in independent donors. The statistical

software packages SPSS for Windows, Version 14, and S-PLUS

Version 6.2 were used to analyse the data for the VACV entry

inhibition studies. Linear mixed effects models were used to

quantify the dose response of the log transformed outcome to

different drugs. Two-tailed tests with a significance level of 5%

were used throughout.

Supporting Information

Figure S1 Characterisation of purified MV stocks. (A–C) MV

stocks were initially characterised using a virus with a GFP-

labelled EV envelope (vB5R-GFP, kindly donated by B. Moss,

NIH). (A) The viral titre of each band in an Optiprep gradient

from three separate preparations of vB5R-GFP MV is shown, as

determined by plaque assay. The highest titre of virus was

consistently recovered from the 28–32% interface (‘‘32%’’). (B)

FACS analysis of MDDCs spinoculated with virus from each band

at 4uC. Virtually no GFP fluorescence was detected in cells

infected with virus from the ‘‘32%’’ band indicating an absence of

EV particles. (C) Immunofluorescence microscopy of virions from

different bands from a preparation of vB5R-GFP bound to

fibronectin-coated coverslips and stained with mAb AB1.1 (against

MV membrane protein D8) and GAM-546. MV particles are

shown in red, intact EV particles in green, and damaged EV

particles in yellow (dual stained). Arrows indicate dual-stained,

damaged EV in the 20% band. Arrow-heads indicate rare, green,

intact EV in the 28% band. The 32% band was composed almost

exclusively of red MV particles. (D) General protein stain. Purified

vA5L-GFP MV (core-labelled virus) was solubilised in SDS-

loading buffer and subjected to SDS-PAGE and Coomassie Blue

staining. Molecular weight markers are indicated at the left. (E)

vA5L-GFP MV run on SDS-PAGE as in (D) was transferred to a

nitrocellulose membrane for western blotting with antibodies to

the D8 (mAb AB1.1) and GFP (mAb 8362-1; Clontech) proteins.

The 67 kDa band is consistent with the A5L-EGFP fusion protein.

(F) Electron micrograph of purified MV on the surface of a DC.

Found at: doi:10.1371/journal.ppat.1000866.s001 (0.16 MB TIF)

Figure S2 Production and concentration of EV stocks. (A) Wild-

type WR VACV and vA5L-GFP VACV were used to infect BS-C-

1 or BHK-21 cells in a comet assay. The infected cells were

overlaid with liquid medium and after 48–72 h were stained with

crystal violet. vA5L-GFP produces very little EV in BS-C-1 cells

compared to wild type VACV as indicated by the absence of

comets, but produces EV in comparable amounts to wild type

virus in BHK-21 cells, indicated by the presence of comets. (B)

Electron micrograph of a triple-membraned intracellular EV

inside an infected BHK-21 cell and (C) a double membraned EV

released from an infected BHK-21 cell confirming the production

of such virions in this cell type. (D) Supernatants from BHK-21

cells infected for 24 h were either left unconcentrated, concen-

trated by centrifugation in Amicon filters at 650 g for a total of 1 h

or concentrated by ultracentrifugation at 19 000 g for 1 h. The

resulting preparations were titred by plaque assay, with and

without the addition of mAb 7D11 to neutralise MV and damaged

EV. The percentage of intact EV virions was calculated as the

ratio of these two titres. The data presented are the means of 7

unconcentrated, 7 Amicon and 3 ultracentrifuged preparations

with standard error bars. (E) 1:4000 and 1:400 dilutions of mAb

7D11 were tested on increasing concentrations of MV to

determine whether they would be capable of neutralising an EV

preparation that was entirely composed of damaged EV or MV.

The percentage reduction in plaques in shown. 1:400 dilutions of

7D11 were used in all subsequent assays.

Found at: doi:10.1371/journal.ppat.1000866.s002 (0.20 MB TIF)

Figure S3 Confirmation of the presence of intact EV in EV

stocks. Virions from concentrated EV stocks of core-labelled

vA5L-GFP VACV (green) were bound to fibronectin-covered

coverslips and stained with (A) an EV-specific mAb 19C2 and

donkey anti-rat-546 secondary Ab (red). EV particles were double

labelled (yellow). Arrows indicate green MV particles. (B-D)

Alternatively virions (green) were stained with an MV-specific

mAb, AB1.1 and GAM-546 (red). (B) As a negative control, an

isotype control Ab was used instead of AB1.1. (C) As a positive

control, virions were permeabilised with methanol:acetone (1:1 v/

v) at 220uC for 2 min, prior to staining with AB1.1. (D) In the test

sample, intact EV excluded AB1.1 staining and appear green.

Arrowheads indicate double-labelled (yellow) contaminating MV

or damaged EV.

Found at: doi:10.1371/journal.ppat.1000866.s003 (0.08 MB TIF)

Figure S4 VACV does not colocalise with Flot-1. Expression of

Flot-1 in MDDCs was assayed at the protein level by (A) western

blot resolving as a 48 kDa band with SDS-PAGE, (B) intracellular

flow cytometry and (C) confocal microscopy. Monoclonal Flot-1

Ab was detected with GAM-IRdye-680 for western blot,

polyclonal Flot-1 Ab was detected by GAR-FITC for flow

cytometry and GAR-546 for confocal microscopy. NIH/3T3 cells

were used as a positive control. (D) MDDCs were spinoculated

with MV-GFP (MOI 10) or EV-GFP (MOI 2–5) at 4uC and the

virus subsequently allowed to enter at 37uC for up to 60 min. In

this case, residual surface-bound virus was not removed by

trypsinisation. Cells were fixed with 2% PFA and permeabilised

with 0.1% Triton X-100 then stained as for (C). Representative

maximum projections of z-series taken at 15 min are shown. Scale

bars represent 5 mm. Inserts are enlargements of the boxed areas

in the main images.

Found at: doi:10.1371/journal.ppat.1000866.s004 (0.25 MB TIF)

Figure S5 The specificity of macropinocytosis inhibitors differs

between cell types. (A) Rottlerin is the most specific macro-

pinocytosis inhibitor in MDDCs based on its preferential

inhibition of Lucifer Yellow uptake over transferrin-647 uptake.
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Cells were pretreated with rottlerin (10 mM), DMA (200 mM) or

EIPA (100 mM) then incubated with Lucifer Yellow (200 mg/mL)

or Tf-647 (5 mg/mL) for 15 min at 37uC. Uptake was measured

by FACS and expressed as a percentage of the untreated control.

(B) The effect of macropinocytosis inhibitor EIPA on the entry of

MV-GFP (white bars) and EV-GFP (shaded bars) into HeLa cells

was assayed by FACS, for comparison with MDDCs. HeLa cells

were pretreated with EIPA at the concentrations indicated for

30 min at 37uC prior to spinoculation with MV (MOI 20) or EV

(MOI 0.5-5) at 4uC and subsequent virus entry assays. Data are

the means of three individual experiments with standard error

bars.

Found at: doi:10.1371/journal.ppat.1000866.s005 (0.03 MB TIF)
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