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Abstract

Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long
periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and
transmit disease to naı̈ve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that
the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity
Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic
systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and
such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of
cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of
SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of
the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In
addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent
manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T
lymphocytes compared to mice infected with DsseI S. typhimurium. Taken together, our results demonstrate that SseI
inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria.
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Introduction

Salmonella enterica is a pathogenic bacterial species that is an

important cause of disease in humans ranging from gastroenteritis

to systemic infections. Host-adapted Salmonella serovars dissemi-

nate from the gastrointestinal tract and colonize systemic sites. For

example, Salmonella enteric serovar Typhi (S. typhi) causes human

typhoid fever, whereas Salmonella enteric serovar Typhimurium (S.

typhimurium) has a broad host range, causing disease in a variety of

animals. Strains of S. typhimurium cause a typhoid-like disease in

mice and usually cause a self-limiting gastroenteritis in healthy

human adults. However, S. typhimurium can cause systemic

infections in humans [1–5]. Indeed, recent cases of invasive and

recurrent infections in Malawi [3], Mozambique [4], Malaysia [1],

and Taiwan [5], were caused by nontyphoidal salmonellae (NTS),

which were largely comprised of multidrug-resistant S. typhimurium

strains [2,3].

Salmonella, a facultative intracellular pathogen, enters the host

through the gastrointestinal tract where they preferentially enter

microfold (M) cells, which are specialized epithelial cells that sample

intestinal antigens and transport them to lymphoid cells in the

underlying Peyer’s Patches (PP), specialized lymphoid tissue in the

small intestine [6,7]. S. typhimurium can also translocate through the

intestinal epithelia after uptake by CD-18-expressing immune cells

[8]. In order for the infection to extend beyond the intestinal

mucosa, Salmonella must survive and replicate within macrophages, a

privileged niche that allows Salmonella to elude the adaptive immune

response [9–11]. The ability of Salmonella bacteria to survive inside

of host cells is dependent on the SPI2-encoded T3SS that injects

virulence/effector proteins into host cells. Some of the SPI2 T3SS-

translocated effector proteins have evolved to allow intracellular

bacteria to subvert the bacteriocidal properties of macrophages and

to create a specialized Salmonella-containing vacuole in which it can

replicate [12]. In addition, certain SPI2 secreted effectors can

specifically interfere with DC-mediated antigen presentation to

CD4+ T cells [13–15], which are required to control bacterial

replication within the host during a long-term systemic Salmonella

infection [16]. Recently, SPI2 also was implicated in early culling of

activated CD4+ T cells [17], further illustrating the complex

relationship between Salmonella and T lymphocytes.

Another important aspect of Salmonella pathogenesis is the

establishment of an asymptomatic carrier stage that serves as a
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reservoir of infection as the bacteria are periodically shed and

transmitted to new hosts [18–20]. Indeed, asymptomatic carriers of

S. typhi shed the bacilli and are a significant reservoir for this deadly

pathogen. To study the basic aspects of host-pathogen interactions

during the carrier state, we have characterized a natural model of

long-term chronic Salmonella infection in mice [21]. This model

utilizes a mouse strain that does not typically succumb to infection.

S. typhimurium can be recovered from systemic sites up to one year

after infection and typically these bacteria are sequestered within

macrophages in systemic tissues [21,22].

We previously performed a microarray-based screen to identify

S. typhimurium factors required for long-term systemic infection in

mice [23]. While most SPI2 genes were required for initial

colonization of the spleen, the SPI2 effector SseI did not emerge

from the screen until 2 weeks post-infection, indicating that SseI

plays a role in long-term infection [23]. SseI is a secreted effector

that is expressed by intracellular Salmonella and translocated across

the vacuolar membrane into the host cell cytosol via the SPI2-

encoded TTSS [24]. SseI has been shown to bind the actin-

crosslinking protein filamin and to co-localize with polymerizing

actin in the cytoskeleton and with TRIP6 [25,26]. The sseI gene

encodes a 322 amino acid polypeptide whose N-terminal domain

is highly similar to several other SPI2 effectors, including SspH2,

and this domain is important for translocation and subcellular

localization in the host [25]. However, no sequence similarities to

the SseI C-terminus have been reported.

In this work, we have demonstrated that SseI is required for

maintaining a long-term systemic infection and have defined a

mechanism for this function. Specifically, we showed that SseI

blocks migration of macrophages and DC in vitro, by a

mechanism that involves the interaction of SseI with the host

factor IQGAP1, an important regulator of the cytoskeleton and

cell migration. Salmonella also reduced DC migration in vivo in an

SseI-dependent manner, which correlated with a reduction in the

number of DC and CD4+ T cells in WT Salmonella-infected

spleens. This data provides evidence for a novel mechanism by

which an intracellular pathogen manipulates host cell migration to

dampen the ability of the host to clear systemic bacteria.

Results

SseI is required for systemic S. typhimurium infection in
mice

To measure the contribution of SseI to virulence, mice were

infected by the intraperitoneal (IP) route with either WT S.

typhimurium or the DsseI deletion mutant. The numbers of WT and

DsseI bacteria in the PP, spleen, and liver were measured at 3, 15,

30 and 45d post-infection (Fig. 1A–1C). Although both strains

colonized the PP equally well at all time points, the level of WT

bacteria was significantly higher than the DsseI mutant at 30d post-

infection in the spleen (5.9-fold more WT than DsseI) and liver

(3.7-fold) (Fig. 1A–1C). In addition, the difference between the

WT and DsseI mutant strains increased between 30d and 45d in

the spleen (14.2-fold) and liver (30.6-fold), further demonstrating

the importance of SseI to maintaining a long-term infection in

these tissues (Fig. 1B and 1C). In contrast, an S. typhimurium strain

which is deficient for a SPI2 effector that is required for

intracellular survival, sseJ, (Fig. S1A, S1B and [27]) was attenuated

to the same degree at 3d (CIspleen = 0.2460.07) and 30d

(CIspleen = 0.3060.09) post-infection. To address the possibility

that the insertion of a kanamycin resistance gene (kanR) into the

genome contributed to the attenuation of the DsseI mutant at 45d,

we infected mice with another mutant, DcsgDEFG, that contains a

kanR insertion [23]. The levels of DcsgDEFG mutant bacteria

recovered from systemic tissues were not significantly different

from the levels of WT bacteria (Fig. 1D). Thus, the attenuation of

the DsseI mutant in systemic tissues cannot be attributed to minor

effects on the growth rate of the bacteria due to the presence of an

antibiotic resistance gene over the course of a long-term systemic

infection. In addition, a DsseI strain expressing WT sseI in trans

(DsseI(psseI)) was significantly less attenuated at 45d in both the

liver (Fig. 1E) and the spleen (Fig. 1D). We also measured the

levels of bacteria in PP, cecum, spleen and liver of orally infected

mice 34d post-infection. The spleen and liver of WT-infected mice

contained significantly higher levels of bacteria compared to DsseI

mutant-infected mice (Fig. 1F), confirming that this SPI2 effector is

required to colonize systemic tissues, independent of the route of

infection.

SseI binds directly to the cell migration regulator IQGAP1
Previous studies have shown that SPI2 and some of the secreted

effector proteins are required for intracellular survival and host cell

death [9,28–30]. However, we have shown that SseI is not

required for bacterial survival in bone marrow-derived macro-

phages (BMDM) from 129x1/sv J mice or in RAW264.7

macrophage-like cells (Fig. S1A and S1B). SseI also does not

regulate host cell death in BMDM (data not shown) or in bone

marrow-derived dendritic cells (BMDC) (Fig. S1C and S1D). To

determine the molecular targets of SseI, a GST-SseI fusion protein

was incubated with primary macrophage lysates, the cell-type in

which Salmonella is commonly found at systemic sites during long-

term infection [20–22]. Bound proteins were co-precipitated with

GSH-resin, eluted and subjected to SDS-PAGE (Fig. 2A). A band

(shown as a doublet in Fig. 2A) migrating at approximately

200 kD was identified by mass spectrometry to be IQGAP1 (21 of

21 tryptic fragments were IQGAP1-specific; no other band was

associated with a significant specific protein identity). Immuno-

blotting analysis showed that GST-SseI specifically co-precipitated

IQGAP1 from whole cell extracts made from either BMDM (naı̈ve

or activated by pretreatment with 50 ng/ml lipopolysaccharide

and 100 U/ml interferon-c) or BMDC (Fig. 2B).

To determine if SseI can directly bind IQGAP1, co-precipita-

tion studies were conducted with purified proteins (Fig. 2C and

Author Summary

Bacteria belonging to the genus Salmonella are capable of
causing long-term chronic systemic infections, and bacte-
ria primarily reside within macrophages in lymphoid
tissues and sporadically are shed in the feces. These
persistently infected individuals serve as a significant
reservoir for disease transmission. Despite the importance
of Salmonella as a human pathogen, relatively little is
known about the host immune response or virulence
mechanisms of long-term systemic infections. Host-adapt-
ed Salmonella strains invade and manipulate host cells by
releasing specialized bacterial effector proteins into the
host cell. We show that one of these bacterial effector
proteins, SseI (SrfH), is required for Salmonella to maintain
a long-term chronic systemic infection in mice. SseI is able
to block the migration of host immune cells and
consequentially attenuate the host’s ability to clear
systemic bacteria. SseI accomplishes this inhibitory activity
in part by associating with the host protein IQGAP1, an
important regulator of cell migration. The amino acid
sequence of SseI is similar to several other protein
sequences of known bacterial pathogens, including PMT/
ToxA, a toxin, indicating that these factors may function
similarly to one another and may comprise a new family of
bacterial effector proteins.

SseI-Regulated Cell Migration
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2D). His-tagged SseI (WT) was incubated with GST-IQGAP1

(Fig. 2C) or free IQGAP1 (Fig. 2D), and in both cases SseI and

IQGAP1 specifically co-precipitated with one another, indicating

that SseI can directly bind IQGAP1 in vitro. IQGAP1 did not co-

precipitate with another His-tagged SPI2 secreted effector, PipB

[31], indicating that IQGAP1 co-precipitation was specific to SseI

(Fig. 2D). To confirm that SseI interacts with IQGAP1 during

infection, BMDM were infected with WT bacteria expressing cya-

tagged SseI, and whole cell extracts derived from these infected

cells were subjected to co-immunoprecipitation using an anti-

CyaA antibody (Fig. 2E). IQGAP1 was specifically co-immuno-

precipitated with SseI-cya, confirming that these factors interact

Figure 1. SseI is required to establish a long-term systemic S. typhimurium infection in mice. A–C) Mice were infected by IP with WT
(circles) or DsseI (triangles) strains (6.86103 cfu or 6.66103 cfu for WT or DsseI, respectively), and the cfu from the Peyer’s Patches (A), spleen (B), and
liver (C) are reported. Only positive error bars are shown for Peyer’s patches due to their magnitude. Groups of 5 to 8 mice were analyzed/time point,
which were 3, 15, 30 and 45d post-infection (p.i.). The experiment was repeated twice. D–E) Mice were infected by IP with WT(pACYC184) (7.36103

cfu), DsseI(pACYC184) (6.06103 cfu), DsseI(psseI) (5.46103 cfu, filled triangles), DcsgDEFG(pACYC184) (5.46103 cfu, squares) bacterial strains. The cfu
from the spleen and liver were determined at 45d p.i. (3–5 mice were analyzed per group). Plasmid retention by 45d p.i. was 29.367.0% in the spleen
(D) and 22.067.0% in the liver (E). F) Mice were orally infected with WT (1.56108 cfu) or DsseI (2.066108 cfu) bacterial strains, and the cfu recovered
from Peyer’s patches (PP), spleen (Sp), liver, (L), and cecum (C) was measured 34d p.i. (cfu per total PPs shown). The experiment was repeated 3 times;
data from a representative experiment is shown. Groups of 5 to 6 mice were analyzed per bacterial strain. *, p,0.05; **, p,0.01, Mann-Whitney U test.
doi:10.1371/journal.ppat.1000671.g001
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during Salmonella infection. We did not detect an interaction

between SseI and TRIP6 in BMDM, in contrast to a previous

report using RAW264.7 cells. This may reflect differences in

TRIP6 protein levels between these two studies [26].

To characterize the nature of co-localization between SseI and

IQGAP1 in primary macrophages, BMDM were transiently

transfected with an SseI-GFP fusion construct (Fig. 3A) or GFP

alone (Fig. 3B). While expression of GFP alone resulted in green

fluorescence that was mostly localized to the nucleus with diffuse

fluorescence in the cytosol (Fig. 3B), expression of SseI-GFP resulted

in an increased concentration of green fluorescence at the cell

periphery (Fig. 3A). When these cells were stained for endogenous

IQGAP1 (red), significant co-localization between SseI and

IQGAP1 was also detectable at the cell periphery, including the

lamella (Fig. 3A, Fig. S2A and S2C). BMDM were also stained with

phalloidin (blue) to visualize actin within the cytoskeleton [25], and

SseI was confirmed to co-localize with polymerized actin (Fig. 3A).

Infection with S. typhimurium causes an irregular pattern
of movement in BMDM that is dependent on SseI

IQGAP1 is a 190 kD scaffolding protein that binds actin and

regulates the cytoskeleton and cell migration machinery [32].

Since SseI binds to IQGAP1, we tested the hypothesis that SseI

interferes with cell motility. BMDM were seeded onto two-

chamber slides, and each chamber was infected with either WT or

DsseI strains of S. typhimurium expressing GFP. Individual infected

cells (as well as their uninfected neighbors) were monitored by

Figure 2. SseI binds directly to the cell migration regulator IQGAP1. A) Purified GST-SseI (or GSH-resin alone) was used to co-precipitate SseI
binding proteins from whole cell extracts of BMDM. Bound proteins were eluted and subjected to SDS-PAGE (4–20% gradient gel) and stained with
Coomassie blue. Arrows denote bands that were excised and analyzed by mass spectrometry (top doublet is IQGAP1). Long arrow: non-SseI-specific
binding; arrowheads: GST-SseI breakdown fragments. B) GST-SseI (or GST alone) pre-bound to GSH-resin was added to whole cell extracts of BMDM
(Mac), activated BMDM or BMDC (DC), and bound proteins were immunoblotted for IQGAP1 (+ = HeLa cell extract). C) Purified His-SseI (WT) or His-
SseIC178A (CA) proteins were co-precipitated with IQGAP1-GST or GST alone using GSH-resin and bound SseI was detected by immunoblot using
anti-His tag antibody. D) In addition, free IQGAP1 was co-precipitated with His-SseI, His-PipB, or resin prepared from E. coli BL21 extract alone, and
IQGAP1 was detected by immunoblot using anti-IQGAP1 antibody. E) BMDM were infected with S. typhimurium-expressing SseI-cya (or SseI alone),
and 6h later proteins were immunoprecipitated with anti-CyaA antibody. Bound proteins were immunoblotted for IQGAP1 or TRIP6 (+control = whole
cell extract of NIH3T3 cells).
doi:10.1371/journal.ppat.1000671.g002
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time-lapse microscopy at 24 h p.i.. The cells were tracked and

analyzed for the number of times each cell reversed its direction of

movement (.90u turn between 3 consecutive frames was scored as

a reversal) and for their net displacement. Surprisingly, cells

infected with WT bacteria made significantly more turns that were

.90u compared to cells infected with DsseI mutant bacteria

(Fig. 4A; p,0.001). In addition, WT-infected cells made

significantly more turns compared to their uninfected neighbors

(Fig. 4A; p,0.01), indicating that the intracellular bacteria

modulated the cells’ normal patterns of movement. These results

also demonstrate that the intracellular bacteria exert their

influence specifically on the infected cell and that the modulation

of cell movement is not due to bystander effects. The cell tracks of

two representative movies of WT- (Fig. 4B, Video S1) and DsseI-

(Fig. 4C, Video S2) infected BMDM are shown. The median net

displacement did not change significantly with infection (data not

shown). Taken together, our data demonstrate that S. typhimurium

alters the movement of infected phagocytic cells in a cell

autonomous fashion by an SseI-dependent mechanism.

SseI inhibits the directed migration of BMDM and BMDC
Since our results demonstrated that SseI interferes with normal

cell movement (Fig. 4) and that SseI binds IQGAP1 (Fig. 2), a host

protein that promotes cell migration, we next tested whether SseI

influenced the directed migration of primary BMDM and BMDC.

These primary cells were seeded onto transwells and infected with

WT or mutant bacterial strains at an MOI of 10:1, conditions that

resulted in 2262% of the cells infected. The percentage of host

cells that migrated specifically toward an attractant was quantified

by confocal microscopy. BMDM infected with WT bacteria did

not migrate toward the attractant (Fig. 5A). As Videos S1 and S2

show, BMDM are highly motile cells, and for all samples, there

was a low basal level of migration to the bottom of the filter in the

absence of attractant. In the case of SseI-expressing bacteria, this

basal level of migration was slightly higher than when the

attractant was added, resulting in the negative values (Fig. 5A).

However, these negative values were not significantly different

from zero when tested in one-sample Student’s t test. In contrast to

WT Salmonella, BMDM infected with DsseI mutant bacteria readily

migrated toward the attractant (Fig. 5A). Furthermore, the ability

of the DsseI mutant strain to inhibit host cell migration was fully

restored by adding back a WT copy of the sseI gene, confirming a

specific role for SseI in the inhibition of directed migration (Fig. 5A

and 5B). In tissue, mature DC migrate towards the CCR7 ligand,

CCL19, in order to present antigen to T cells in secondary

lymphoid tissue [33]. Similar to our results with BMDM, BMDC

infected with WT bacteria did not migrate toward CCL19,

whereas BMDC infected with the DsseI strain did (Fig. 5B).

Inhibition of BMDC migration was not due to any alteration in

CCR7 surface levels, as WT- and DsseI-infected BMDC expressed

the same levels of CCR7 (Fig. S5G). Thus, S. typhimurium interferes

with the directed migration of host phagocytic cells via a novel

mechanism that depends on the secreted bacterial effector SseI.

SseI-mediated inhibition of migration is dependent on
IQGAP1

While IQGAP1 promotes cell migration [34], it is not absolutely

required (Fig. S3). Therefore, we examined the role of IQGAP1 in

SseI-dependent inhibition of directed migration. To test whether

IQGAP1 is required for this SseI-dependent activity, the ability of

SseI to regulate host cell migration was compared in BMDM

derived from WT and IQGAP12/2 mice. As expected, WT

BMDM infected with the complemented sseI mutant bacterial

strain (DsseI(psseI)) did not migrate toward heat-killed Salmonella

(Fig. 5C). In contrast, IQGAP12/2 BMDM infected with the

complemented sseI mutant bacterial strain migrated toward the

attractant, and the levels of migration were similar to BMDM

infected with the DsseI mutant (Fig. 5C), indicating that IQGAP1 is

necessary for SseI-dependent regulation of cell migration. Another

possible explanation is that there was decreased bacterial uptake

by the IQGAP12/2 BMDM [35,36]; however, the intracellular

bacterial loads in IQGAP12/2 BMDM were not less than those in

WT BMDM (Fig. 5D). These data confirm that the loss of the

ability of S. typhimurium to inhibit migration of IQGAP12/2 BMDM

was not due to decreased intracellular bacterial numbers (Fig. 5D).

Furthermore, we demonstrated that S. typhimurium infection

induced IQGAP1-independent pathways of cell migration, which

was dependent on infection with intact bacteria (as infection with

heat-killed bacteria did not induce migration, Fig. 5C). Thus,

infection with intact bacteria induced migration that was

independent of IQGAP1 and SseI. However, the concomitant

presence of both the bacterial effector, SseI, and the host factor,

IQGAP1, resulted in a dominant interference with host cell

migration.

Figure 3. SseI co-localizes with IQGAP1 and actin at the cell
periphery. BMDM were transiently transfected with psseI-EGFP (A) or
pEGFP (B) and then fixed and stained for IQGAP1 (red) and actin
(phalloidin, blue). Transfected cells were imaged by confocal micros-
copy (6006), and the white bars represent 17 microns. Arrows indicate
regions of co-localization.
doi:10.1371/journal.ppat.1000671.g003
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SseI plays a distinct role in cell adhesion when expressed
in RAW264.7 cells

A previous report published by Worley et al. [26] demonstrated

that RAW264.7 cells (a transformed monocytic-like cell line)

expressing SseI moved through and detached from transwells at an

increased rate, and that this activity was dependent on the host

factor TRIP6 [26]. However, in our experiments we were unable

to detect an interaction between TRIP6 and SseI in primary

macrophages (Fig. 2E). Furthermore, GST-SseI-co-precipitation

of IQGAP1 in RAW264.7 cells is dramatically reduced even

though IQGAP1 is present (Fig. 6A), perhaps indicating that the

binding site is blocked. Thus, the fact that SseI interacted with

different host factors in RAW264.7 cells as compared to primary

BMDM and BMDC suggested that SseI may function differently

in the RAW264.7 cell line.

In the migration assay of Worley et al. [26], detection of

migration relied on cells migrating through and detaching from

the transwell (measuring both migration and loss of adherence

simultaneously), whereas in our study migration was scored by

counting cells that traversed the transwell without detaching

(specifically measuring directed migration). To measure the effect

of SseI on cell adherence, we compared the levels of BMDM and

RAW264.7 cells that had detached from tissue culture plates when

infected with either the complemented sseI mutant bacterial strain

(DsseI(psseI)) or the sseI mutant bacterial strain containing the

empty vector (DsseI(pACYC184)). Since the levels of host cell

detachment were very low, we counted the number of bacteria

that were released into the supernatant as described by Worley et

al. [26]. Infection of RAW264.7 cells with the complemented sseI

mutant bacterial strain (Fig. 6B) or WT strain (data not shown)

resulted in significantly higher numbers of bacteria released into

the supernatant compared to background levels. Thus, we

observed an SseI-dependent detachment in RAW264.7 cells, but

not in BMDM, suggesting that SseI regulates cell adherence in

Figure 4. SseI causes S. typhimurium-infected BMDM to reverse their direction of travel more frequently. A) BMDM were seeded onto
two-chamber glass slides and infected with GFP-expressing strains of WT (WT(pFPV25.1)) or DsseI (DsseI(pFPV25.1)) S. typhimurium for 24h. Four
locations from each chamber were imaged by time-lapse microscopy (DIC and fluorescence; images were taken every 3min; 45 images were taken in
all per movie). The number of times a cell changed its direction of movement more than 90u (per video) are reported for infected cells and their
uninfected neighbors (bars represent the median, the data are compiled from 28 total movies (14 movies per bacterial strain) performed in 4
independent experiments, n = 66 for uninfected cells (circles) and n = 82 for infected cells for WT S. typhimurium-infected BMDM (filled circles), n = 75
for uninfected cells (triangles) and n = 96 for infected cells for DsseI S. typhimurium-infected BMDM (filled triangles)). **, p-value,0.01 and ***, p-
value,0.001; Mann-Whitney U test. B–C) The frames and cell-tracks of two representative movies are shown (B, WT; C, DsseI, tracks of uninfected cells
are shown in blue and those of infected cells are orange), and the full videos are available online (Videos S1 and S2).
doi:10.1371/journal.ppat.1000671.g004
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RAW264.7 cells but not in primary macrophages. As expected,

the percentages of RAW264.7 cells infected with either the WT or

sseI mutant bacterial strain were not significantly different at 3h or

24h p.i. (Fig. 6C), demonstrating that SseI-dependent detachment

of infected RAW264.7 cells at 24h could not be due to an SseI-

dependent difference in the percentage of infected cells. Further-

more, there was not a significant difference in the average number

of WT or sseI mutant bacteria per RAW264.7 cell at 24 h (Fig. 6D),

which is consistent with our results when comparing intracellular

bacterial replication in a gentamicin protection assay (Fig. S1A

and S1B). Thus, the SseI-dependent detachment of infected

RAW264.7 cells could not be attributed to SseI-dependent

differences in intracellular bacterial growth. While the average

number of bacteria per infected cell was not significantly different

Figure 5. SseI inhibits directed migration of BMDM and BMDC in an IQGAP1-dependent manner. A) BMDM seeded on transwell filters
were infected with the indicated strain of S. typhimurium, and at 24h, heat-killed Salmonella (equivalent of 0 or 12.5 million cfu) was added to the
baso-lateral compartment as an attractant. The percentage of cells migrating through the filter was measured 5h later by confocal microscopy. The %
migration was calculated: (the % migration of BMDM receiving the heat-killed Salmonella) – (% BMDM migration without the attractant) = % directed
BMDM migration. The results are presented as the average of 5 independent experiments; *, p,0.05 and **, p,0.01 when comparing in a two-
sample Student’s t tests. B) BMDC were seeded and infected as in (A), and then 100ng/ml CCL-19 was used as the chemoattractant to measure the %
directed migration (calculated as in (A)). The mean and SEM were calculated from at least 3 replicates. The data are representative of two
independent experiments; *, p,0.05 when comparing the % directed BMDC migration to zero in a one-sample Student’s t test. C) BMDM from age-
matched WT and IQGAP12/2 mice were treated as in (A) and the results are the average of three independent experiments (*, p,0.05 and **, p,0.01
when comparing in a two-sample Student’s t test). D) The amount of WT S. typhimurium protected from gentamicin in WT and IQGAP12/2 BMDM was
measured 2h and 24h after infection and is reported as the average of the total cfu per well; *, p,0.05 when comparing WT to IQGAP12/2 in a two-
sample Student’s t test. There was no significant difference in the amount of bacteria protected from gentimicin in BMDM when comparing WT, DsseI,
and DsseI(psseI) S. typhimurium strains (Fig. S1 and data not shown).
doi:10.1371/journal.ppat.1000671.g005
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between BMDM and RAW264.7 cells, there were more

RAW264.7 cells infected with .10 bacteria at 24h than BMDM

(Fig. 6D). Thus, it is possible that SseI-dependent detachment is

not detectable in BMDM due to the lack of cells with very high

numbers of bacteria and is another possible explanation for any

differences between results obtained with RAW264.7 cells [26]

compared to BMDM.

Cysteine 178 is critical for SseI-dependent inhibition of
migration and for colonization of host systemic tissues

To investigate the molecular mechanism of SseI action, the C-

terminal domain (159–322) of SseI was subjected to a position

iterative (PSI-) BLAST search, which uncovered sequence

similarity to several hypothetical proteins, as well as to the

bacterial toxin PMT/ToxA (Fig. 7A). Three of the aligned

sequences are from known insect and mammalian pathogens (P.

asymbiotica [37], B. dolosa [38], and P. multocida [39]), suggesting that

these genes may comprise a family of bacterial virulence factors.

PMT/ToxA, recently shown to be a deamidase [40], is required

for virulence [39] and has been shown to inhibit DC migration

and impair actin reorganization; all these activities have been

shown to be dependent on a critical cysteine residue at position

1165 [41].

To test whether the corresponding residue in SseI (C178) was

required for its function, the SseIC178A point mutant protein was

constructed and compared to WT SseI protein. Co-precipitation

studies showed that the SseIC178A mutant protein had similar

binding affinity for IQGAP1 as compared to WT SseI (Fig. 2C

and S4). However, the S. typhimurium strain expressing SseIC178A

(DsseI(psseIC178A) did not inhibit BMDM migration, similar to the

DsseI strain (Fig. 5A). In contrast, mutation of the conserved H and

D residues in SseI (H216A and D231A) did not interfere with SseI-

dependent regulation of migration (Fig. 5A). To test whether C178

is also critical to SseI function in vivo, the virulence of the

DsseI(psseIC178A) mutant strain was compared to WT in mixed

infections where mice were infected with a 1:1 ratio of WT S.

typhimurium and DsseI S. typhimurium strains transformed with psseI,

psseIC178A, or pACYC184 (empty vector) (Fig. 7B). The WT strain

out-competed the DsseI(psseIC178A) strain to the same extent as

the DsseI(pACYC184) strain, demonstrating that C178 is critical for

Figure 6. In RAW264.7 cells, S. typhimurium mediates SseI-dependent detachment, but SseI does not bind IQGAP1. A) As in Figure 2B,
GST or GST-SseI was combined with whole cell extracts of either WT BMDM or RAW264.7 cells and co-precipitated with GSH-resin. Bound proteins, as
well as the indicated amounts of the original whole cell extracts, were subjected to SDS-PAGE and immunoblot detection of IQGAP1. B) WT BMDM
and RAW264.7 cells in 6-well plates (56105 cells/well) were infected with the indicated S. typhimurium strain. After infection, media with or without
heat-killed Salmonella was added to the cells, and 24h later, the cells that had detached were harvested, lysed and plated for cfu. The data are
presented as the difference between the cfu recovered from cells treated with heat-killed Salmonella and that of untreated cells. The data are
representative of 3 independent experiments (each in triplicate); *, p,0.05 in a two-sample Student’s t test when comparing WT-infected cells to that
of DsseI. C–D) BMDM and RAW264.7 cells were seeded onto coverslips and then treated as in part B. The cells were then fixed and stained for S.
typhimurium and actin (phalloidin). The % of cells infected (C, 3h and 24h p.i.) and the number of bacteria per infected cell (D, 24h p.i.) were
quantified by confocal microscopy. Ten fields (averaging 40 cells/field) were counted per sample group; bars represent the geometric means.
***, p,0.001 when comparing in a two-sample Student’s t test.
doi:10.1371/journal.ppat.1000671.g006

SseI-Regulated Cell Migration

PLoS Pathogens | www.plospathogens.org 8 November 2009 | Volume 5 | Issue 11 | e1000671



SseI function in vivo (Fig. 7B). The SseIC178A mutant protein was

expressed and translocated through the SPI2 T3SS at levels

comparable to WT SseI (Fig. 7C), confirming that loss of activity

was due to specific mutation of C178 [42].

SseI-dependent suppression of DC migration in vivo
correlates with lower numbers of DC and CD4+ T cells in
infected spleens

We found that WT S. typhimurium inhibits migration of infected

BMDC in vitro by a mechanism that depends on SseI. Therefore,

we investigated the potential role of SseI in inhibiting migration of

Salmonella-infected DC in vivo (Fig. 8A). BMDC stained with the

vital dye PKH26 were infected with GFP-expressing

WT(pFPV25.1) or DsseI(pFPV25.1) strains of S. typhimurium, and

approximately 56106 labeled BMDC (,50% GFP+) were injected

into 129x1/sv J mice by the IP route. The migration of the

injected BMDC to the spleen was measured at 6h post-injection by

flow cytometry. To control for heterogeneity in the exact numbers

of migrating BMDM between mice, we calculated an in vivo

migration index for each injected animal. We defined the in vivo

migration index as the ratio of infected to uninfected BMDC

(GFP+ PKH26+ cells/GFP2 PKH26+ cells) that had migrated to

the spleen (output) divided by the ratio of the infected to

uninfected BMDC (GFP+ PKH26+ cells/GFP2 PKH26+ cells)

used for injection (input) (details in Materials and Methods). An in

vivo migration index value of less than 1 would indicate that

infection with S. typhimurium attenuates the migration of BMDC to

the spleen. By comparing the migration indices for WT- and DsseI

mutant-infected cells, we could assess the relative contribution of

SseI to the modulation of host cell migration in vivo. Indeed, the

migration index obtained with DsseI-infected BMDC was signif-

icantly higher (25% increase) than the migration index obtained

with WT-infected BMDC (Fig. 8A; p,0.05). This modest 25%

difference between the in vivo migration indices obtained from the

WT and DsseI S. typhimurium strains (just 6h post-injection) also is

consistent with the gradual attenuation of the DsseI mutant in

systemic tissues over a period of 1.5 months.

In addition, the cellular composition of WT(pACYC184)-,

DsseI(pACYC184)-, or DsseI(psseI)-infected spleens were compared

at 12d post-infection when the numbers of WT and mutant strains

of bacteria in the spleens were not significantly different (Fig. 8B).

While the numbers of GR-1+ cells were not significantly different

between the WT and mutant strains (Fig. S5A), the numbers of

DC and CD4+ T cells in the spleens of DsseI(pACYC184)-infected

mice were significantly higher than those of WT(pACYC184)- and

DsseI(psseI)-infected mice (Fig. 8C and 8D), suggesting a more

pronounced T cell response in the DsseI-infected mice. These data

are in accordance with previous results showing that Salmonella

Figure 7. Cysteine 178 is critical for SseI function in vivo. A) Amino acid sequences with similarity to the C-terminal domain of SseI (159–244)
are shown. Conserved residues are highlighted and C178 of SseI is starred. B) Mice were infected (IP) with equal amounts (46103 cfu) of WT and DsseI
transformed with psseI, psseIC178A, or pACYC184 (empty vector), and the competitive index was measured 2 weeks p.i.. Groups of 4 to 5 mice were
analyzed per condition: *, p,0.05 in the Mann-Whitney U test. C) WT and DssaV (SPI2 mutant) strains were transformed with psseI-cya or psseIC178A-
cya and used to infect RAW264.7 macrophages; the resulting adenylate cyclase activity in macrophage cytosolic fractions was measured at 6h p.i. and
is expressed as pmol cAMP/mg protein. *, p,0.05 when comparing WT and DssaV in a two-sample Student’s t test, and the data are presented as the
average of three independent experiments.
doi:10.1371/journal.ppat.1000671.g007
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interferes with T cell proliferation in vivo and inhibits DC-

mediated antigen presentation by a SPI2-dependent mechanism

[13,15]. However, we (Fig. S5B, S5C, S5D) and others [14] have

shown that SseI does not directly interfere with DC-antigen

presentation to T cells in vitro. Furthermore, surface upregulation

of MHC-II and B7.2 in Salmonella-infected DC, which is not

altered in a SPI2-dependent manner [13,15], were the same in

WT and DsseI infections in vivo and in vitro (Fig. S5E, S5F, S5H).

While it is unlikely that SseI directly modulates the CD4+ T cell

response, our data demonstrated that SseI suppressed DC

migration in vivo, which correlated with the ability of Salmonella

to continuously maintain a systemic infection for at least 45d.

Discussion

SseI is continuously required for S. typhimurium to colonize the

spleen and liver and to maintain a long-term systemic infection, as

the attenuation of DsseI mutant strains significantly increased over

the duration of infection (Fig. 1B and 1C). In contrast, SseI does

not contribute to colonization of Peyer’s patches and cecum within

the GI tract (Fig. 1A and 1F). This tissue-specificity may reflect

differences in S. typhimurium localization (i.e. extracellular vs.

intracellular), host cell interactions or host immune clearance

mechanisms. This is a question that we are currently investigating.

SseI specifically binds the cell migration regulator IQGAP1

(Fig. 2 and Fig. 3) and inhibits migration of BMDM and BMDC

toward known attractants (Fig. 5A and 5B). IQGAP1 is a large

scaffolding protein that binds actin and several small G proteins,

including those in the Rho GTPase family, such as Cdc42 and

Rac1, but does not bind RhoA itself [34,43,44]. However, all of

these Rho family GTPases play important roles in cell migration

[45]. IQGAP1 binding inhibits the intrinsic GTPase activity of

Cdc42 and Rac1 and prolongs G protein signaling [44,46].

IQGAP1 also captures microtubules (via CLIP-170 and APC),

thereby regulating the directionality of cell migration [47,48].

Cdc42 and Rac1 are important regulators of IQGAP1 activity,

because overexpression of IQGAP1 mutants that cannot bind

Cdc42 or Rac1 induce the formation of multiple leading edges and

Figure 8. SseI-dependent suppression of DC migration in vivo correlates with lower numbers of DC and CD4+ T cells in the spleen of
mice infected with WT S. typhimurium. A) BMDC stained with the vital dye PKH26 and infected with GFP-expressing strains of WT (WT(pFPV25.1)
or DsseI (DsseI(pFPV25.1)) S. typhimurium (chased with 100mg/ml gentamicin to kill remaining extracellular bacteria) were injected into 129x1/sv J mice
at 5 million cells per mouse. Single cell suspensions were prepared from spleens and analyzed by FACS to detect PKH26 and GFP signals in BMDC that
had migrated to the spleen at 6h post-injection. The PKH26-labeld BMDC that were infected with GFP+ S. typhimurium ex vivo were also analyzed by
FACS to determine input values. The results are expressed as the in vivo migration index = (#PKH26+GFP+ cells/ #PKH26+GFP2 cells)output/
(#PKH26+GFP+ cells/ #PKH26+GFP2 cells)input. *, p,0.05; Mann-Whitney U test. B–D) The bacterial loads (B) and the cellular composition (C–D) of the
spleens of 129x1/sv J mice infected (IP) with WT, DsseI or DsseI(psseI) S. typhimurium strains was analyzed at12d p.i. by plating for cfu (B) or by FACS
(C–D) for the numbers of DC (C) and CD4+ T cells (D) per spleen (Mock = uninfected). *, p,0.05; Mann-Whitney U test. The mean and SEM were
calculated from 3–5 replicates per sample. Data from a representative experiment are shown. The experiment was repeated 3 times with similar
results.
doi:10.1371/journal.ppat.1000671.g008
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inhibit cell migration in a dominant manner [34,47]. We have

shown that Salmonella-infected macrophages exhibit a higher

frequency of reversals in their direction of movement and that

this change in movement behavior is dependent on SseI (Fig. 4A).

SseI directly binds IQGAP1 (Fig. 2C and 2D) in primary

macrophage and DC lysates (Fig. 2B) and during Salmonella-

infection of primary macrophages (Fig. 2E). We have shown that

while infection with live bacteria that are lacking sseI induced

macrophage migration, infection with SseI-expressing bacteria

blocked directed migration in an IQGAP1-dependent manner

(Fig. 5C), demonstrating a functional interaction between SseI and

IQGAP1. Whether SseI interferes with the regulation of IQGAP1

or causes IQGAP1 to adopt an aberrant activity remains to be

determined. Ultimately however, this interaction between SseI and

IQGAP1 leads to the interference in the host cell’s ability to

efficiently migrate toward an attractant. The determination of the

role of IQGAP1 in the ability of S. typhimurium to cause long-term

systemic infection awaits the generation of IQGAP12/2 129x1/sv J

mice.

The C-terminal sequence of SseI is similar to several

hypothetical proteins, two of which are from pathogenic bacteria

species that are able to cause disease in humans [37,38]. Similarity

was also found to PMT/ToxA, a P. multocida toxin that inhibits DC

migration [41], and alignment of all these sequences revealed

several conserved amino acids, including C178 (Fig. 7A). PMT/

ToxA was recently shown to be a deamidase that acts on

heterotrimeric G proteins [40], and its activity as a toxin is

dependent on a catalytic triad formed by the conserved residues,

C1165, H1205, and D1220 (Fig. 7A) [49,50]. We demonstrated

that the substitution of C178 for an A in SseI impairs the ability of

S. typhimurium to colonize host systemic sites and to inhibit directed

host cell migration (Fig. 7B, 5A and 5B). However, these results

also indicate that while IQGAP1 is required for SseI function in

the host, binding of SseI to IQGAP1 is not sufficient because

SseIC178A also binds IQGAP1 (Fig. 2C and S4). Thus, part of

SseI-function also must be attributed to a specific activity that is

dependent on C178. However, due to the fact that the conserved

H216 and D231 were not essential for SseI-function (Fig. 5A), it is

less apparent what this activity might be. Although a structural

role for C178 cannot be ruled out, we have shown that the

SseIC178A mutant protein is efficiently translocated into host cells

and is stable (Fig. 7C and S4). Therefore, we hypothesize that SseI

possesses a distinct biochemical activity that could act on

IQGAP1. An alternative hypothesis is that SseI could be taking

advantage of IQGAP1’s role as a scaffolding protein [51] in order

to be brought into contact with other host cell proteins (e.g.

heterotrimeric G proteins, similar to PMT) that are altered by

SseI, leading to a disruption in normal host cell migration.

Characterization of SseI’s associated biochemical activity is under

active investigation.

A previous report by Worley et al. showed that SseI (SrfH)

stimulated macrophage movement through and detachment from

transwells and caused early escape of S. typhimurium from the GI

tract into the blood stream [26]. This SseI-dependent activity also

was shown to be dependent on the host protein, TRIP6, a factor

required for normal cell adhesion [52]. Our results show that in

RAW264.7 cells, SseI specifically regulates cell adherence (Fig. 6B),

whereas in primary BMDM and BMDC, SseI blocks cell

migration (Fig. 5A–5C). Taken together, these results provide

evidence that SseI plays at least two different roles, one of which is

to regulate cell adherence in order to cause early escape of S.

typhimurium out of the GI tract and into the blood stream as

reported previously [8,26]. This role could explain the slight

attenuation of the DsseI mutant at 3d in the liver, a highly perfused

organ that also filters blood from the GI tract (Fig. 1C). However,

our results clearly demonstrate that SseI also plays an important

inhibitory role in the regulation of host cell migration. This role

becomes critical during later stages of infection and allows S.

typhimurium to maintain a long-term systemic infection of the host,

as demonstrated by the striking increase in attenuation of the DsseI

mutant that occurs between 30d and 45d post-infection in the

spleen and liver (Fig. 1B and 1C).

We have demonstrated an SseI-dependent decrease of DC

migration in vivo (Fig. 8A) which correlates with a decrease in DC

and CD4+ T cell numbers in the spleens of mice infected with WT

S. typhimurium (Fig. 8C and 8D). Previous reports have demon-

strated that infection with virulent Salmonella strains correlated with

reduced T cell activation [13,15,53] and identified SPI2-

dependent suppression of DC-mediated antigen presentation as

an underlying mechanism. However, SseI did not reduce the

capacity of DC to stimulate T cell proliferation in vitro (Fig. S5B,

S5C, S5D). Others have shown that specifically interfering with

DC migration attenuates T cell proliferation in vivo [54]. Thus, a

possible hypothesis is that SseI indirectly controls CD4+ T cell

numbers by suppressing DC migration and limiting their ability to

effectively prime naı̈ve T cells. However, this global effect of sseI

would not entirely account for the competitive advantage of WT

bacteria over the DsseI mutant in mixed infections (Fig. 7B) and

suggests that the SseI-mediated decrease in host cell migration also

may reduce the accessibility of infected cells to local immune cell-

mediated killing mechanisms. Nevertheless, the effects of SseI on

host cell migration, through its interactions with the host molecule

IQGAP1, correlate with a reduced capacity of the host to clear S.

typhimurium from systemic sites of infection.

Materials and Methods

Ethics statement
All animal experiments were performed in accordance to

NIH guidelines, the Animal Welfare Act, and US federal law.

Such experiments were carried out under the supervision of

Stanford University’s Administrative Panel on Laboratory Animal

Care (A-PLAC) which has been accredited by the Association of

Assessment and Accreditation of Laboratory Animal Care

International (AAALAC). All animals were housed in a centralized

and AAALAC-accredited research animal facility that is fully

staffed with trained husbandry, technical, and veterinary

personnel.

Mouse strains and mammalian cell culture
Female 129x1/sv J mice (6–8 weeks old) were obtained from

Jackson Laboratories (Bar Harbor, ME). Bone marrow was

harvested from femurs of IQGAP12/2 mice and WT littermate

controls [55]. Marrow was differentiated into primary macro-

phages (BMDM) or dendritic cells (BMDC) as described previously

[56,57]. RAW264.7 cells were cultured in DMEM with 10% heat-

inactivated FBS. Cell cultures were incubated in a humidified

chamber at 37uC in 5% CO2.

Bacterial strains and plasmid constructs
S. typhimurium SL1344 (2) was used as the parent strain for all

experiments presented here, and the DsseI strain was created by

replacing the sseI coding sequence with that of a kanamycin-

resistance gene [58]. To complement, the sseI gene plus the 476 bp

upstream sequence was cloned into the low copy number plasmid

pACYC184 (psseI), which also contains a chloramphenicol-

resistance marker. The C178A mutation was generated by site-

directed mutagenesis via the QuickChange II mutagenesis kit
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(Stratagene, La Jolla, CA) and cloned into pACYC184

(psseIC178A). All recombinant protein expression constructs were

generated using the Gateway cloning system (Invitrogen, Carls-

bad, CA). sseI and sseIC178A were cloned into either pDEST15 to

generate the N-terminal GST tag (pGST-sseI and pGST-sseIC178A)

or pDEST17 to generate the N-terminal 6xHis tag (pHis-sseI and

pHis-sseIC178A). pHispipB was also derived from pDEST17 and

was a generous gift from Dr. Stephane Meresse (CIML Université

de la Méditerranée, Marseille, France). Recombinant proteins

were purified from Escherichia coli BL21 strain. The sseI gene was

also cloned into pEGFP (modified for use with the Gateway

system) to form psseI-GFP and used for transient transfections in

BMDM.

Mouse infections
For competitive infection assays, 129x1/sv J mice (6–8 weeks

old) were co-infected with equal amounts of the WT and mutant

strains by IP injection (104/strain, ‘‘input’’). Homogenized tissues

were plated on 200mg/ml streptomycin LB plates and on plates

with both streptomycin and either 40mg/ml kanamycin or 8mg/ml

chloramphenicol. The competitive index (CI) was calculated as

(cfu mutantoutput/cfu WToutput)/(cfu mutantinput/cfu WTinput). In

single infections, mice were infected by IP (104 cfu/mouse) or by

oral gavage (108 cfu/mouse).

Flow cytometry
Single cell suspensions of spleens from naı̈ve mice and mice

infected with WT or DsseI mutant strains (IP) were prepared in

RPMI, and the red blood cells were lysed in 175mM ammonium

chloride, 10mM phosphate buffer, pH 7. 26106 cells were stained

per sample. Rat anti-mouse CD16/CD32 (BD Pharmingen, San

Jose, CA) was added to block FcIII/IIR prior to staining with

analytical antibodies. Dead cells were stained a using Live/Dead

Fixable dead cell stain kit (Invitrogen, Carlsbad, CA). The samples

were stained with the analytical antibodies against the following

cell surface markers: B7.2 (CD86), CD3e (2C11), CD4, CD11b

(BD Pharmingen); CD11c, CD19, MHC-II (M5/114.15.2),

TCRb (H57) (eBioscience, San Diego, CA). In in vitro

experiments, BMDC were stained with CD11c, MHC-II, and

CCR7 (eBioscience, San Diego, CA) antibodies. Data were

collected either on a LSR II (BD Biosciences) or on a modified

FACStar (FlasherII, Diva Digital) at the Stanford University

shared FACS facility, and the data were analyzed with FlowJo

software (Treestar, Ashland, OR). DC were defined as MHC-II+

and CD11c+, and CD4+ T cells were defined as CD3+, TCRb+

and CD4+. Absolute numbers of cells were calculated per g of

spleen. Antigen presentation was assayed as described [15].

BMDC were infected with S. typhimurium for 2h and incubated

with 10 mg/ml of pigeon cytochrome C. CFSE-labeled T cells

purified from 5C.C7 transgenic mice (T cell receptor for I-Ek/

moth cytochrome C88–103 [59]) were added to the BMDC in a 1:1

ratio. At 3d, T cell-CFSE labeling was analyzed by flow cytometry.

SseI protein purification and SseI-IQGAP1 in vitro and in
vivo binding

SseI fusion proteins were purified using standard methods

utilizing GSH conjugated- or nickel-charged resin, and purity was

checked by SDS-PAGE and Coomassie stain [60]. Briefly,

overnight cultures of E. coli BL21 transformed with pHis-sseI,

pHis-sseIC178A, pHispipB, pGST-sseI or pGST-sseIC178A were

diluted 506 and grown at 37uC with shaking until reaching an

optical density between 0.7–0.9 at 600 nm. Cultures were heat-

shocked at 42uC for 10 min, cooled to room temperature, and

incubated with 1 mM IPTG for 1d. Cells were lysed by

resuspending in BugBuster lysis buffer (EMD Chemicals, Inc.,

Gibbstown, NJ) with 50 mM AEBSF using a needle and syringe,

and the lysate was cleared by spinning at 20,000g for 15 min at

4uC. The lysate was then combined with either GSH-agarose resin

(incubated overnight at 4uC, for GST-tagged proteins), nickel-

charged resin (incubated for 5 min at room temperature, for His-

tagged proteins), or protein G plus resin (incubated for 3h at 4uC,

EMD Chemicals Inc., Gibbstown, NJ). In the case of protein G

plus resin, the lysate was first pre-incubated with anti-His tag

antibody (R&D Systems, Minneapolis, MN) for 30 min on ice.

The resins were then washed: 5 times in PBS for GSH-agarose

resin, 3 times with 16 binding buffer (20 mM Tris-HCl pH 7.9,

500 mM NaCl, 5 mM imidazole) and 3 times with 16wash buffer

(20 mM Tris-HCl pH 7.9, 500 mM NaCl, 60 mM imidazole) for

nickel-charged resin, or twice with lysis/binding buffer (1% NP-

40, 150 mM NaCl, 50 mM TrisHCl pH 7.2, 2 mM EDTA, Na

Vanadate 400 mM, 50 mM NaF and 1mM AEBSF) for protein G

resin. The resin-bound SseI proteins were then used for in vitro

binding assays, or nickel-charged resin-bound His-SseI proteins

were eluted using 20 mM Tris-HCl pH 7.9, 500 mM NaCl, 1 M

imidazole. Free His-SseI proteins were then dialysed against a

buffer containing 20 mM Tris-HCl pH 7.9, 100 mM NaCl, and

0.3mM DTT before being used for in vitro binding assays as well.

Purified GST-IQGAP1 was prepared as previously described by

Ho et al. [61].

Approximately 56106 BMDM or BMDC were lysed in 800 ml

lysis/binding buffer. Cleared cell lysates were pre-incubated with

GSH-resin for 2h at 4uC before combining with a given GST

fusion protein pre-bound to GSH-resin and incubated overnight at

4uC. The resin was washed, and bound proteins were eluted by

boiling in 16 SDS-sample buffer: 125 mM Tris-HCl pH 6.8,

1.8% SDS, 5% glycerol, 0.1 M dithiothreitol, and 0.002%

bromphenol blue. Free IQGAP1 was generated by cleaving the

GST tag with His-tagged Tobacco Etch Virus (TEV) protease and

combined with resin-bound His-SseI (or His-PipB) in lysis/binding

buffer for overnight incubation at 4uC, or resin-bound GST-

IQGAP1 was incubated with free His-SseI and incubated

overnight at 4uC. The resin was washed 5 times with lysis/

binding buffer and bound proteins were eluted as before. All

eluates were subjected to SDS-PAGE and Coomassie staining or

immunoblotting. The membranes were stained with antibodies

reactive against IQGAP1 (Santa Cruz Biotechnology, Santa Cruz,

Ca), 6X-His tag (R&D Systems, Minneapolis, Mn), rabbit IgG-660

(Molecular Probes, Carlsbad, CA), and mouse IgG-800 (Rockland

Immunochemicals, Gilbertsville, PA) and detected using the

Odyssey system (Li-Cor Biosciences, Lincoln, NE).

To detect SseI-IQGAP1 binding in the context of an infection,

BMDM (caspase-12/2) were infected (MOI of 25) with S.

typhimurium (with or without psseI-cya) grown standing in Luria

Broth to induce SPI1 expression. At 6h, harvested proteins were

subjected to co-immunoprecipitation with anti-CyaA antibody

(Santa Cruz Biotechnology, Santa Cruz, Ca) and immunoblotted

for IQGAP1 or TRIP6 (antibody was a generous gift from Dr. M.

Beckerle, University of Utah).

Transient transfections and fluorescence microscopy
56106 BMDM were combined with 5 mg of psseI-GFP or

pEGFP and electroporated using the Amaxa Nucleofector device

(Lonza, Cologne, Germany). Immediately afterward, BMDM

were seeded onto coverslips and later fixed in 2% para-

formaldehyde phosphate buffer. BMDM were stained with anti-

IQGAP1 antibody (1:50, Santa Cruz, CA) and Alexa fluor 647

phalloidin (1:50, Molecular Probes, Carlsbad, CA), and z-stack
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images were taken by confocal microscopy at 6006 and analyzed

using Volocity software (Improvision Inc., Waltham, MA).

BMDM and BMDC in vitro and in vivo migration and
motility assays

One day prior to infection, BMDM or BMDC were seeded onto

transwell inserts for 24-well plates (5 mm pore size, Corning,

Corning, NY) at 16105 or 2.56105 cells/well, respectively.

Salmonella strains were opsonized in a 1:1 solution of normal mouse

serum and cellular medium solution, and then used to infect

BMDM or BMDC at a multiplicity of infection (MOI) of 10:1.

Extracellular bacteria were killed by adding 100 mg/ml gentamicin

after 30 minutes, and 1.5h later reduced to 10 mg/ml gentamicin.

Each infection was done in duplicate wells. An attractant was added

to the bottom chamber of one well from each infection at 24h. An

equivalent of 12.5 million cfu of heat-killed Salmonella (WT, boiled

10min in PBS) was used as the attractant for BMDM, and 100ng/

ml CCL19 (PeproTech, Rocky Hill, NJ) was used for BMDC. Five

hours later, the cells were fixed to the membrane, stained for nuclei

using DAPI, and the percentage of cells migrating to the bottom side

of the filter was counted by confocal microscopy (at least 300 cells

were counted per sample). The percent directed migration was

reported as the difference: (% migration toward the added

attractant) – (% migration without added attractant). For migration

assays independent of S. typhimurium infection, murine macrophages

(WT and IQGAP12/2) seeded on to transwell filters (8 mm pore

size, coated on the underside with fibronectin) were placed over

chambers, each containing 600 ml medium with macrophage-

colony stimulating factor (100 ng/ml). After 5h of incubation at

37uC, the migrated cells attached to the bottom surface of the

transwell filters were stained with Diff-Quick, and the numbers of

migrated cells per filter were counted in 10 random fields with an

inverted microscope.

In vivo DC migration was measured by staining BMDC with

PKH26, and then infecting these cells with S. typhimurium SL1344

strains (WT or DsseI) transformed with the GFP expression vector

pFPV25.1 [62]. Infections were carried out as above, except with

an MOI of 50:1 such that 4961.6 % of the cells were infected.

Infected cells were incubated in 100mg/ml gentamicin to kill

extracellular bacteria, washed and resuspended in PBS at 25

million cells/ml. 129x1/sv J mice were injected IP with 0.2ml of

this suspension. Six hours later, the mice were sacrificed and single

cell suspensions of the spleens were prepared and immediately

subjected to FACS analysis (BD LSR II) to quantify the number of

PKH26+/GFP2 and PKH26+/GFP+ cells that had successfully

migrated to the spleen (‘‘output’’). Approximately 40% of the total

number of injected PKH26+ BMDC migrated to the spleen by 6h

post-injection, and experiments comparing mock-infected BMDC

and Salmonella-infected BMDC confirmed that Salmonella infection

did not significantly affect the total numbers of PKH26+ (GFP+

and GFP2) cells found in the spleen. At the same time, the original

PKH26-stained infected BMDC (used for mouse injections) were

analyzed by FACS (‘‘input’’). The data were analyzed using

FlowJo, and the results are reported as the in vivo migration

index = [[(#PKH26+GFP+ cells)/(#PKH26+GFP2 cells)]output]/

[[(#PKH26+GFP+ cells)/(#PKH26+GFP2 cells)]input]. This in

vivo migration index allowed us to control for any slight

differences in the amount of BMDC injected between mice.

Time-lapse microscopy was carried out using a Nikon TE2000E

microscopy (inside a controlled chamber held at 37uC and 5% CO2)

and images recorded using a Hamamatsu Electron Multiplier C9100-

12 back-thinned CCD camera and processed using Openlab software

(Improvision, Waltham, MA). Briefly, BMDM were seeded onto 2-

chamber glass slides (100,000 cells/chamber) and cells were infected

with either WT(pFPV25.1) or DsseI(pFPV25.1) S. typhimurium SL1344

expressing GFP (as above, but with MOI of 100:1). After incubating

for 20h, 2 to 4 points in each chamber were chosen for time-lapse

microscopy (points were imaged 45 times with a 3 min lapse between

each imaging). Both DIC and green fluorescence were detected at

4006 magnification, and the corresponding videos were compiled

into Quicktime (Apple, Cupertino, CA) movies. The cells were

tracked by their nuclei using ImageJ (http://rsbweb.nih.gov/ij/

index.html), and the tracks were analyzed using Excel (Microsoft,

Seattle, WA). The results are presented as the number of times a

given cell changes its direction of travel more than 90u per 45 frame

movie, and the angle of direction-change was calculated by taking the

arccosine of the dot product of the vectors formed by a given cell’s

positions in 3 consecutive frames ((x1, y1), (x2, y2), and (x3, y3)) divided

by the product of the magnitude of these vectors. Thus, the angle of

direction-change is equal to the arccosine[[(x22x1)*(x32x2)+(y22y1)

*(y32y2)]/[(((x22x1)2+(y22y1)2)0.5)* (((x32x2)2+(y32y2)2)0.5)]], and the

radians converted into degrees by multiplying by 180/p. The results

from each treatment group were compiled from 14 separate videos

that were done on 4 different days.

Salmonella infection and detachment assays
The efficiency of bacterial uptake and survival inside of BMDM

was determined as previously described by Brodsky et al. (2005).

Briefly, WT and IQGAP12/2 BMDM seeded in 24-well plates

(2.56105 cells/well) were infected with opsonized WT S.

typhimurium (as in the migration assay). The infected BMDM were

lysed 2h and 24h after initiating the infection and plated for cfu.

The number of intracellular bacteria was recorded as a percent of

the input, and each experiment was performed in triplicate.

To measure the loss of cell adherence of infected macrophages,

BMDM and RAW264.7 cells were seeded into 6-well plates

(56105 cells/well) and infected at an MOI of 10:1 as in the cell

migration assay (2 wells/replicate, 3 replicates per sample).

Immediately after changing the cell medium to 10mg/ml

gentimicin, heat-killed Salmonella was added to one half of the

wells, and 24h later detached cells were harvested, lysed gently in

1% triton-X100, and plated for cfu. The cfu recovered from

detached cells was recorded as the number of cfu in detached cells

per well, and the results are reported as the difference: (# cfu in

detached cells treated with heat-killed Salmonella) – (# cfu in

detached cells without heat-killed Salmonella).

Adenylate cyclase assay
The coding sequence of the first 399 residues of CyaA

(adenylate cyclase domain) from B. pertussis was cloned in frame

onto the 39 end of sseI constructs (omitting the sseI stop codon),

creating psseI-cya and psseIC178A-cya. WT and DssaV (SPI2 T3SS

deficient) S. typhimurium strains were transformed with psseI-cya or

psseIC178A-cya and used to infect RAW264.7 cells seeded in 6-well

plates. Infected cells were lysed 6h later by sonication (10 sec at

40%, 6 times, at 4uC) and cleared by centrifugation. After

reserving an aliquot of the lysate for protein determination by

Bradford assay (Bio-Rad, Hercules, CA), the following reaction

buffer was added to the lysates (final concentration: 2mM ATP,

6mM MgCl2, 100mg/mL bovine serum albumin, 0.12 mM CaCl2,

and 0.1 mM calmodulin) and immediately assayed for cAMP

content using the cAMP EIA kit from Cayman Chemical (Ann

Arbor, Mi).

Sequence alignment and statistics
A position iterative (PSI) algorithm of the Blast search engine

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) was used with de-

fault BLOSUM62 parameters and a 0.005 threshold to search the
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non-redundant protein database for homology to SseI (159–322

aa). Hypothetical proteins from B. dolosa and P. asymbiotica were

identified by scanning unfinished microbial genome databases at

NCBI and Sanger Center, respectively. The alignment was

prepared using VectorNTI 9 (Invitrogen, Carlsbad, CA) and

GeneDoc (ref at http://www.nrbsc.org/gfx/genedoc/gdfeedb.

htm). Error bars represent standard errors of the mean, all results

are representative of at least 3 experiments (unless stated

otherwise), and all statistics were calculated using either Microsoft

Excel or Graphpad Prism 4.

Supporting Information

Figure S1 SseI is not required for intracellular bacterial survival

or for S. typhimurium-induced host cell death. A and B) WT BMDM

(A) or RAW264.7 macrophages (B) were infected with WT (black

squares), DsseI (grey triangles), or DsseJ (white upside down

triangles) strains of S. typhimurium, and the amount of intracellular

bacteria was measured by plating for cfu at the indicated times. C

and D) BMDC were infected as in Fig. 4B with the indicated

strains (C) or with these strains grown under SPI1-inducing

conditions (D). Host cell death was measured at 24h (C) or 6h (D)

by measuring the leakage of lactate dehydrogenase (LDH).

Found at: doi:10.1371/journal.ppat.1000671.s001 (0.01 MB PDF)

Figure S2 Analysis of SseI and IQGAP1 co-localization. A and

B) These images were taken directly from Fig. 3A and 3B,

respectively; green staining denotes SseI-GFP (A) or GFP (B) and

red staining denotes endogenous IQGAP1. Lines were drawn

through the lamella and the red and green pixel intensities were

measured along these lines from top to bottom using ImageJ. C

and D) The plot profiles from each image are shown on the right;

green line represents GFP intensities and red line represents

IQGAP1-staining intensities (SseI-GFP, C; GFP, D).

Found at: doi:10.1371/journal.ppat.1000671.s002 (0.57 MB PDF)

Figure S3 IQGAP12/2 BMDM are less motile than WT

BMDM. WT and IQGAP12/2 murine macrophages were

similarly seeded onto transwells and M-CSF (100 ng/ml) was

added to the baso-lateral compartment for 5h. The number of cells

that migrated through the filter was counted (cells/field) and is

presented as the percent of WT. Ten fields were counted per

sample, and the results are presented as the average 6 standard

deviation of two independent experiments.

Found at: doi:10.1371/journal.ppat.1000671.s003 (0.00 MB PDF)

Figure S4 SseI and SseIC178A proteins both can bind IQGAPl.

A) Increasing amounts of E. coli extracts over-expressing His-tagged

SseI proteins (WT and C178A) were incubated with GST or GST-

IQGAP1 and then co-precipitated with GSH-agarose resin. Bound

proteins were immunoblotted using anti-His antibody as in Fig. 2C.

Found at: doi:10.1371/journal.ppat.1000671.s004 (0.02 MB PDF)

Figure S5 SseI-regulation of cellular composition of the spleen

in vivo, DC-mediated T cell proliferation in vitro, and DC surface

marker expression. A) The spleens mice were infected as described

in Fig. 8C and 8D, and the number of GR-1+ cells were

determined. B–D) The effect of BMDC infected with WT (C),

DssaV (D), or DsseI (E) S. typhimurium on T cell proliferation was

measured by co-culturing 5cc7 (moth cytochrome C-reactive) T

cells with the infected BMDC and 10mg/ml cytochrome C. To

detect proliferation, T cells were pre-stained with Carboxyfluor-

escein succinimidyl ester (CFSE), and staining was measured by

FACS. Each peak indicates one round of cell division; represen-

tative histograms are shown, n = 2. E and F) Surface expression of

MHC-II (E) and B7.2 (F) on DC isolated from the spleens of

infected mice was assessed by staining with specific antibodies. G

and H) BMDC were infected with the indicated strains of S.

typhimurium (UVK = ultraviolet radiation-killed S. typhimurium), and

one day later, the cell surface expression of CCR7 (G) and MHC-

II (H) was analyzed by flow cytometry. Representative histograms

are shown.

Found at: doi:10.1371/journal.ppat.1000671.s005 (0.56 MB PDF)

Video S1 Time-lapse video microscopy, WT S. typhimurium-

infected BMDM.

Found at: doi:10.1371/journal.ppat.1000671.s006 (2.28 MB

MOV)

Video S2 Time-lapse video microscopy, DsseI S. typhimurium-

infected BMDM.

Found at: doi:10.1371/journal.ppat.1000671.s007 (1.73 MB

MOV)
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