
The Quorum Sensing Volatile Molecule 2-Amino
Acetophenon Modulates Host Immune Responses in a
Manner that Promotes Life with Unwanted Guests
Arunava Bandyopadhaya1,2,3., Meenu Kesarwani1,2,3.¤, Yok-Ai Que1,2,3, Jianxin He1,2,3, Katie Padfield1,3,

Ronald Tompkins1,3, Laurence G. Rahme1,2,3*

1 Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America, 2 Department of Microbiology

and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Shriners Hospitals for Children Boston, Boston, Massachusetts, United

States of America

Abstract

Increasing evidence indicates that bacterial quorum sensing (QS) signals are important mediators of immunomodulation.
However, whether microbes utilize these immunomodulatory signals to maintain infection remain unclear. Here, we show
that the Pseudomonas aeruginosa QS-regulated molecule 2-amino acetophenone (2-AA) modulates host immune responses
in a manner that increases host ability to cope with this pathogen. Mice treated with 2-AA prior to infection had a 90%
survival compared to 10% survival rate observed in the non-pretreated infected mice. Whilst 2-AA stimulation activates key
innate immune response pathways involving mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-kB, and pro-
inflammatory cytokines, it attenuates immune response activation upon pretreatment, most likely by upregulating anti-
inflammatory cytokines. 2-AA host pretreatment is characterized by a transcriptionally regulated block of c-JUN N-terminal
kinase (JNK) and NF-kB activation, with relatively preserved activation of extracellular regulated kinase (ERK) 1/2. These
kinase changes lead to CCAAT/enhancer-binding protein-b (c/EBPb) activation and formation of the c/EBPb-p65 complex
that prevents NF-kB activation. 2-AA’s aptitude for dampening the inflammatory processes while increasing host survival
and pathogen persistence concurs with its ability to signal bacteria to switch to a chronic infection mode. Our results reveal
a QS immunomodulatory signal that promotes original aspects of interkingdom communication. We propose that this
communication facilitates pathogen persistence, while enabling host tolerance to infection.
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Introduction

Host-pathogen interactions are characterized by an antagonistic

interplay between bacterial and host factors. The overall success of

a pathogen depends on the efficacy of its virulence factors, anti-

immune weapons, and the immune status of the host. Secreted

microbial products, which include many virulence factors, play a

critical role in the outcome of this antagonistic interaction.

Bacterial quorum sensing (QS) regulates many of these products

[1], [2]. QS is a communication system widely utilized by bacteria

to perceive and promote collective behaviors that depend on

population density signaling. This cell density-dependent commu-

nication system is achieved through the production and regulation

of low-molecular-weight, excreted signal molecules [1], [3] as a

means for pathogens to activate virulence factors [4] critical for

infecting mammals [4–6]. Several such signal molecules are

becoming more appreciated recently as important anti-immune

weapons and mediators of inter-kingdom antagonistic relations

[7].

One of the best characterized QS systems is that of the

recalcitrant Gram-negative bacterium Pseudomonas aeruginosa [8],

[9]. This opportunistic pathogen defies eradication by antibiotics

and is an exemplar of bacteria that produce clinically problematic

acute and chronic infections. It causes particularly difficult to treat

infections in people with cystic fibrosis (CF), burn wounds, trauma,

and compromised immune systems [10], [11]. P. aeruginosa controls

the gene expression of many virulence factors through three QS

systems: LasR, RhlR, and MvfR (PqsR) [9]. LasR and RhlR are

activated by the N-acyl-homoserine lactone (AHL) signaling

molecules N-3-oxododecanoyl homoserine lactone (3-oxo-C12-

HSL) and N-3-butanoyl-DL-homoserine lactone (C4-HSL) [9].

Meanwhile, MvfR (PqsR) is activated by the 4-hydroxy-2-

alkylquinolines (HAQs) signaling molecules PQS (2-heptyl-3,4-

dihydroxyquinoline (Pseudomonas Quinolone Signal) and HHQ

(4-hydroxy-2-heptylquinoline) [5], [6], [8], [12]. In addition to

their role as QS signal molecules, AHLs and HAQs also modulate

inflammation and immune responses in mammals [7], [13]. The

3-oxo-C12-HSL signal molecule inhibits dendritic cell and T-cell
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activation [14], promotes apoptosis [15–17] and inhibits the ability

of macrophages and monocytes to respond to a range of Toll-like

receptor (TLR) agonists through disruption of nuclear factor (NF)-

kB signaling [13]. 3-oxo-C12-HSL is a strong inducer of pro-

inflammatory cytokines such as interleukin (IL)-6 and IL-8 in

airway epithelial cells, lung fibroblasts, and macrophages, and is

an enhancer of neutrophil chemotaxis [18]. Although it is known

to upregulate inflammatory mediators through NF-kB [19] and

extracellular regulated kinase (ERK)1/2 pathways [20], 3-oxo-

C12-HSL does not activate the p38 mitogen-activated protein

kinase (MAPK) pathway in lung epithelial cells [19]. Vikström et al.

provided evidence that 3-oxo-C12-HSL specifically activates the

p38 MAPK pathway in human macrophages, without activating

the ERK1/2 signaling cascade [21]. Taken together, these data

suggest that 3-oxo-C12-HSL suppresses key immune networks

responsible for bacterial clearance, while simultaneously enhanc-

ing inflammatory pathways that promote P. aeruginosa pathogen-

esis. Relative to AHLs, HAQs have been investigated much less

extensively. It has been reported that the HAQs signals PQS and

HHQ do not affect apoptosis, but rather down-regulate host

innate immune responses through the NF-kB pathway [22], [23].

Collectively, P. aeruginosa QS secreted small molecules serve

multiple purposes in their effort to enhance bacterial pathogenesis

and secure infection.

Immune response activation is a critical step in host resistance to

infection and pathogen elimination. Perhaps the best studied

defense signaling pathways are those that involve TLRs, which

bind to microbial products, leading to the activation of innate

immune responses critical for subsequent adaptive immune

responses [24], [25]. Through a series of intracellular signaling

molecules, microbial associated molecules activate NF-kB [26]

and MAPKs, including ERK1/2, p38 kinase, and c-JUN N-

terminal kinase (JNK) [27]. As regulators of several transcription

factors, including NF-kB [28], [29], activator protein-1 (AP-1),

and CCAAT/enhancer-binding protein (c/EBP), these kinases

play an important role in initiating the expression of genes

involved in immune responses [30], [31]. The rapid activation of

diverse signaling pathways induces immune cells to express

downstream genes encoding pro-inflammatory cytokines [32],

which then alert the innate immune system. Such immune

activation is required for pathogen elimination [33–36] However,

microbial pathogens can actively inhibit activation of innate

immune responses [37–39] thus favoring the establishment of a

persistent lifestyle that may lead to chronic infection. Chronic

infections are generally established following an acute infection

period involving activation of both the innate and acquired

immune systems [40]. During host tolerance—defined as coping

with a pathogenic encounter without a consequent reduction in

fitness [41–46] —the host’s strategy is to avoid a harmful excessive

inflammatory response [47], [48]. However, unfortunately for the

host, this strategy may enable pathogen persistence.

Although recognition of the exploitation of host signaling

pathways by QS regulated excreted molecules is increasing, it

remains unclear whether pathogens employ QS to cause chronic

infection and whether the host fights infection through the

detection of these molecules. We showed recently that, through

the control of the QS-regulated small volatile aromatic molecule 2-

amino-acetophenon (2-AA) [49], the QS transcription factor

MvfR promotes the emergence of P. aeruginosa phenotypes, thereby

favoring pathogen adaptation and a chronic presence of P.

aeruginosa [49]. 2-AA, which is responsible for P. aeuriginosa’s sweet

‘‘grape-like’’ odor in culture and human infections [50], is one of

the most abundant MvfR-controlled low molecular weight QS

molecules produced and excreted by pathogen. This molecule has

been proposed as a biomarker for P. aeruginosa colonization in burn

wounds [50] and chronically infected CF lung tissues [51].

The presence of 2-AA in infected human tissues together with

its ability to signal bacterial changes that favor chronic infection

[49] raise the question of whether this molecule modulates host

immune responses, and whether such modulation may favor the

long-term presence of the pathogen. Thus, in the present study, we

investigated 2-AA’s possible immunomodulatory role. Animal and

ex vivo studies were conducted to explore the impact of 2-AA on

inflammatory processes as well as to assess 2-AA’s effects on the

activation of immune effectors and on the ability of the mice to

tolerate the long-term presence of P. aeruginosa.

Results

2-AA pretreatment leads to increased survival of mice
and bacterial persistence in infected tissues

To determine if 2-AA modulates host immune responses, we

assessed the susceptibility of 2-AA pretreated mice to P. aeruginosa

infection (strain PA14) using a burn and infection (BI) model [52].

We observed a time-interval dependent protective effect of host

pre-exposure to 2-AA. Mice pretreated with 2-AA 6 h or 1 d pre-

BI showed no protection; the animals died at the same rate as

untreated BI controls (Fig. 1A). However, mice injected 4 d pre-BI

had a survival rate of 90%, which was remarkably better than the

10% rate observed in untreated BI controls (Fig. 1A). Pretreatment

with 2-AA 2 d, 8 d, or 30 d before BI had more modest benefits;

these mice showed survival rates of 50%.

Animals pretreated with the 2-AA metabolite 3OH-2-AA [53]

4 d prior to BI (Fig. 1B) showed a lesser degree of protection (60%

survival at 72 h) relative to animals pretreated with 2-AA,

indicating that the robust effect observed with 2-AA could not

be attributed to the 3OH-2-AA metabolite. Pretreatment with the

2-AA structural analogs 4-amino acetophenone (4-AA), 2-nitro-

acetophenone (2-NA), or methyl anthranilate (MA) (Fig. S2)

Author Summary

Pseudomonas aeruginosa, a recalcitrant Gram-negative
opportunistic pathogen, defies eradication by antibiotics
and exemplifies current highly problematic pathogens that
often cause untreatable acute or chronic infections. There
is increasing evidence that small molecules excreted by
bacterial pathogens may impact human health by affect-
ing functions including immunity. Although such small
molecules in favor of acute infections have been reported,
small molecules that may impact immune responses in
pathogens’ favor of maintaining a chronic infection have
not. We recently published work showing that the P.
aeruginosa small molecule 2-amino acetophenone (2-AA)
promotes bacterial phenotypic and genetic changes
associated with chronic infection. Here, we provide
evidence that this diagnostically important small volatile
molecule dampens the host inflammatory process trig-
gered by infection, thus favoring chronic infection. 2-AA
limits the inflammatory response by balancing the
secretion of pro- and anti-inflammatory mediators in vivo,
as well as in vitro, while improving survival against P.
aeruginosa infection. The ability of 2-AA to dampen
inflammatory processes, while increasing host survival
and pathogen persistence, suggests that this molecule
promotes host tolerance to infection. Our findings provide
novel insights into pathogen weapons and mechanisms
used to enable long-term bacterial presence in infected
tissues.
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provided a moderate level of protection (20–50% survival when

delivered 4 d before BI) relative to that observed with 2-AA (90%)

(Fig. 1B). These findings show that 2-AA provides markedly

stronger protection than structurally similar molecules, indicating

that the 2-AA effect is relatively specific.

The survival benefit yielded by 2-AA pretreatment cannot be

attributed to the reduced bacterial proliferation since 2-AA

pretreatment significantly increased PA14 loads at the wound site

7 d after BI compared to untreated controls (Fig. 1C). Moreover

using a chronic wound infection model [54], we showed that

animals co-inoculated with 2-AA and bacteria maintained high

PA14 loads (mean of ,16104 colony forming units [CFU]/g of

tissue) in infected tissues 11 d post-infection, whereas the untreated

animals almost completely cleared the bacteria (Fig. 1D). These

results suggest that 2-AA supports the long term presence of

bacteria.

2-AA modulates the inflammatory response in vivo
We proceeded to examine the mechanism by which 2-AA can

reduce mortality against P. aeruginosa without eliminating bacterial

load in mice. We found that 2-AA treatment 4 d pre-BI reduced

serum levels of the pro-inflammatory cytokines IL-1a, IL-1b, IL-4,

interferon (IFN)c, and tumor necrosis factor (TNF)-a, compared to

untreated BI mice, while augmenting secretion of the anti-

Figure 1. 2-AA enhances survival following BI. (A) Mice were injected with 2-AA (6.75 mg/kg mice) or PBS 6 h (n = 20), 2 d (n = 20), 4 d (n = 20),
8 d (n = 20), or 30 d (n = 20) prior to BI with PA14. The data shown are averages of two independent experiments. Significance of survival rate
differences was determined using the Kaplan-Meier method, with a hazard ratio of 1.8932 (95% CI, 1.0664–6.0718). Infection (2) drastically reduced
survival relative to (2-AA W/O BI) controls (p = 0.03). Delivery of 2-AA 4 d before BI (red) had a particularly powerful influence on survival versus mice
not pretreated with 2-AA (p = 0.03). A less remarkable, but still significant, survival benefit was also observed in BI mice pre-exposed to 2-AA 6 h, 2 d,
8 d, or 30 d before BI (all p = 0.03 vs. non-infected 2-AA exposed controls). (B) Relative to the effects observed with 2-AA (n = 20), 4 d pretreatment
with the 2-AA analogs 4-AA (n = 8; p = 0.03), 2-NA (n = 8; p = 0.03), or MA (n = 8; p = 0.03), or the 2-AA metabolite 3OH-2-AA (n = 8; p = 0.03) prior to
PA14 infection had weak, though still statistically significant, positive effects on survival after infection. Significance of survival rate differences was
calculated as in A. (C) Bacterial loads in the local muscle 7 d post-BI were significantly higher in mice pretreated with 2-AA 4 d before BI (n = 7) than in
control mice subjected to BI without 2-AA pretreatment (n = 7; p,0.05, Kruskal-Wallis test). CFU data are presented on a log10 scale. (D) CFU counts at
the site of infection in mice 11 d postinfection. The 2-AA treated mice showed proliferation and higher counts than mice that were not treated with
2-AA. (n = 6; p,0.001, Kruskal-Wallis test). CFU data are presented on a log10 scale.
doi:10.1371/journal.ppat.1003024.g001
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inflammatory cytokine IL-10 (Fig. 2). No effects of the pretreat-

ment on IL-6, IL-2, and IL-12 were observed (data not shown).

These results suggest that 2-AA pretreatment may reduce

inflammation by maintaining a balance between pro- and anti-

inflammatory processes.

Additionally, we found that pretreating mice with 2-AA 4 d

prior to infection provided protection against severe inflammation

in an acute lung infection model [55]. Lung histopathology was

compared with untreated control mice (Fig. 3A). Untreated mice

infected with PA14 rapidly developed extensive inflammation

within the lungs, as evidenced by a red hepatization of the lung

tissues 24 h after infection. After 48 h, there was extensive

progression of the pneumonia with the formation of bacteria-

filled necrotic foci throughout the lung parenchyma (Fig. 3B). In

sharp contrast, lung inflammation was markedly attenuated in

mice given 2-AA 4 d prior to being infected (Fig. 3C).

2-AA pretreatment represses 2AA-induced NF-kB
activation pathway in mouse macrophages

We examined how 2-AA affects the innate immune system ex

vivo in a mouse macrophage cell line stably expressing a NF-kB-

luciferase transcriptional fusion gene. 2-AA stimulation produced

a dose-dependent, transient NF-kB activation that peaked at about

4 h (Figs. 4A–B, S1A). Interestingly, this NF-kB activation effect of

2-AA stimulation was dampened in macrophages pretreated with

2-AA for 48 h (Fig. 4B). This dampening effect was not due to 2-

AA cytotoxicity (see data in Fig. S3). Furthermore, the effect was

found to be related to 2-AA since pretreatment of macrophages

with the 2-AA analogs 3-amino acetophenone (3-AA) (data not

shown) and 4-AA (Fig. 4C) did not modify 2-AA induced NF-kB

activation.

Stimulation of macrophages with 2-AA caused a rapid

degradation of the NF-kB inhibitor I-kBa within 15 min, and

cleavage of the NF-kB inhibitor I-kBb by 60–120 min. In

contrast, 2-AA-pretreated macrophages maintained high levels of

I-kBa and I-kBb upon stimulation (Fig. 4D). Western blot analysis

further showed that, in 2-AA pretreated cells, phosphorylation of

the p65 subunit of NF-kB, which enables I-kBa release and

proteolysis [56], was reduced relative to that in non-pretreated

cells (Fig. 4E & S5A) Additionally, a concentration-dependent

increase in DNA binding of activated NF-kB p65 was observed in

non-pretreated macrophages upon 2-AA stimulation, whereas this

DNA binding was reduced in 2-AA pretreated cells (Fig. 4F). In

Figure 2. 2-AA pretreatment modulates the pro-inflammatory response in vivo. Multiplex ELISA showed that BI induced surges in serum
levels of IL-1a, IL-1b, IL-4, IL-10, IFN-c, and TNF-a 24 h post-BI, and that 2-AA pretreatment delivered 4 d before BI attenuated the surges in IL-1a, IL-
1b, IL-4, IFN-c, and TNF-a, while augmenting the surge in IL-10 (n = 4 per group). Mean values calculated from 2–4 replicate experiments are depicted
with SD error bars. *p,0.05 vs. naı̈ve; **p,0.05 vs. BI (Student’s t test).
doi:10.1371/journal.ppat.1003024.g002
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contrast, p50 binding was increased in 2-AA pretreated cells

(Fig. 4G). Taken together, these findings demonstrate that 2-AA

pretreatment represses NF-kB activity. As shown in Figure S4,

NF-kB activity was also dampened in 2-AA pretreated macro-

phages stimulated with other pathogen-associated molecules, such

as LPS and peptidoglycan (PGN), providing additional support for

the validity of our observations with 2-AA.

2-AA pretreatment down-regulates pro-inflammatory
cytokines while upregulating anti-inflammatory cytokine
production in mouse macrophages

Since NF-kB regulates the production of pro-inflammatory

mediators [57], we hypothesized that 2-AA pretreatment would

reduce the production of pro-inflammatory cytokines, as seen in

the in vivo experiments presented above (Fig. 2). Compared to 2-

AA non-pretreated macrophages, 2-AA pretreated cells showed a

decreased production of the pro-inflammatory cytokines TNF-a
and IFN-c (Fig. 5A and 5B), and an increased release of the anti-

inflammatory cytokine TGF-b following stimulation with 0.2 or

0.4 mM 2-AA (Fig. 5C).

2-AA pretreatment modulates MAPK signaling
components of innate immunity

We explored the effects of 2-AA stimulation and pretreatment

on activation of ERK1/2, JNK, p38 MAPK, c-Jun, and c-Fos,

which are essential components of innate immune signaling

pathways in macrophages [58], [59]. A transient increase in

phosphorylated p38 and JNK1/2 MAPKs was observed 5–15 min

after 2-AA stimulation (Fig. 6A & B, S5B & C). This increase was

blocked in 2-AA pretreated macrophages (Fig. 6A & B, S5B & C).

2-AA stimulation did not activate ERK1/2 in 2-AA naı̈ve cells,

but did induce ERK1/2 phospholyration in 2-AA pretreated cells

(Fig. 6C & S5D).

TransAM assays demonstrated that 2-AA stimulation of 2-AA

naı̈ve cells resulted in phosphorylation, and therefore activation, of

the AP-1 family transcription factors c-Fos and c-Jun, enabling

them to bind to the AP-1 promoter element. This 2-AA

stimulation-induced binding of c-Fos and c-Jun was dampened

in pretreated cells (Fig. 6D & E). These data fit with the

aforementioned down-regulation of JNK and p38 phosphorylation

observed in 2-AA pretreated macrophages. Pretreatment with the

2-AA analog 4-AA did not alter c-Fos and c-Jun binding to the

AP-1 element (Fig. S6).

c/EBPb over-expression and formation of the c/EBPb-p65
complex supports the inhibition of p65 phosphorylation
in 2-AA pre-treated cells

To investigate the possible role of ERK1/2 in dampening of

inflammation after 2-AA pretreatment, we examined c/EBPb and

NF-kB activation [60]. We found that expression of the c/EBPb,

which functions downstream of the MEK-ERK1/2 pathway [60],

was markedly increased in 2-AA pretreated macrophages follow-

ing 2-AA stimulation relative to the expression observed in non-

pretreated, stimulated macrophages (Fig. 7A). Moreover, in the

presence of a MEK inhibitor, c/EBPb expression was blocked and

2-AA pretreated cells showed the expected down-regulation of

ERK1/2 and c/EBPb (Fig. 7B).

We proceeded to examine whether increased c/EBPb expres-

sion contributes to the prevention of NF-kB activation in 2-AA

pretreated cells. As shown in Figure 7C, 2-AA stimulation resulted

in phosphorylation of the NF-kB p65 subunit at ser 536 in the

trans-activating domain (TAD)-1 in non-pretreated cells, but this

phosphorylation was abolished in 2-AA pretreated cells. More-

over, co-immunoprecipitation (IP) studies supported the notion

that c/EBPb/p65 complex formation occurs in 2-AA pretreated

cells only (Fig. 7C). Formation of the c/EBPb-p65 complex

prevents subsequent p65 activation.

2-AA-mediated silencing is controlled, at least in part, at
the transcriptional level

Because 2-AA stimulation alone caused activation of NF-kB and

transcriptional targets of NF-kB can inhibit JNK activation [59],

we used NF-kB signaling inhibitors, at the time of 2-AA

pretreatment, to examine the possibility that activation of NF-kB

may account for 2-AA mediated silencing. We found that JNK

phosphorylation was sustained after stimulation with 2-AA in the

presence of NF-kB inhibitors (Fig. 8A & B). Further exposure of

macrophages to the transcription inhibitor actinomycin D at the

time of 2-AA pretreatment also partially restored phosphorylation

of JNK in response to subsequent 2-AA stimulation (Fig. 8C),

Figure 3. Histopathology of lung tissues after 2-AA treatment. (A) Control healthy (non-infected) lung tissue 4 d after 2-AA treatment. (B)
Inflammatory cell infiltration with large areas of consolidation in lung parenchyma 48 h after infection with PA14 (Black arrows indicate the infiltration
and necrotic foci). (C) Lack of infiltration 48 h after PA14 infection in the lungs of mice pretreated with 2-AA 4 d prior to BI.
doi:10.1371/journal.ppat.1003024.g003
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Figure 4. 2-AA pretreatment modulates activation of the NF-kB pathway in mouse macrophages. (A) Schematic of 2-AA treatment.
Macrophages were left untreated (No Pre) or pretreated with 0.8-mM 2-AA or 4-AA for 48 h (2-AA/4-AA Pre). The untreated and 2-AA pretreated cells
were then stimulated with 0.2 mM, 0.4 mM, or 2.0 mM 2-AA (for experiment in B) or 4-AA (for experiment in C). (B) Pretreatment with 2-AA blocked

Bacterial QS Mediated Immunomodulation
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suggesting that the pretreatment-induced molecular silencing

effect observed is controlled, at least in part, at the transcriptional

level.

Discussion

This study demonstrates the contribution of the low-molecular-

weight QS molecule 2-AA in the modulation of mammalian

innate-immune signaling pathways. This is the first study to show

that this long-known [61], but scarcely studied, P. aeruginosa

molecule modulates host responses. Unlike other immune-

suppressing QS molecules, which promote activation of virulence

functions leading to acute infection [8], [62], herein we showed

that 2-AA minimizes activation of immune effectors and increases

survival of infected animals, while permitting a long-term presence

of the pathogen in vivo. Our cytokine profiling results suggest that

2-AA pretreatment limits inflammation by dampening pro-

inflammatory cytokine activation. These data support the notion

that 2-AA pretreatment protects host animals by balancing pro-

and anti-inflammatory cytokine levels. 2-AA’s ability to dampen

host inflammation may be critical for both host survival and long-

term survival of 2-AA secreting bacteria in host tissues.

Chronic infection is normally established after an acute

infection period involving activation of both the innate and

acquired immune systems. The ability of a host to tolerate a

bacterial presence without negatively affecting the pathogen’s

fitness is particularly important since 2-AA eventually decreases

the expression of many acute P. aeruginosa virulence related genes

[49], making the pathogen vulnerable to clearance. Importantly,

2-AA not only silences the MvfR virulence regulon [49], but also

promotes bacterial changes that favor long-term survival in a

dynamic host environment. Thus, considered together with our

prior published findings, the present results strongly suggest that 2-

AA may serve a dual purpose: (1) to promote bacterial changes

that favor chronic adaptability of the pathogen and (2) to suppress

innate immune responses, allowing successful bacterial mainte-

nance in host tissues.

The 2-AA mediated concomitant regulation of pro-inflamma-

tory and anti-inflammatory cytokines resembles the endotoxin

tolerance promoted by lipolysaccharide (LPS) [63], [64]. The

decreased mortality observed in LPS-pretreated animals, howev-

er, is accompanied by a more efficient bacterial clearance [65],

[66], rather than a long-lasting bacterial presence as occurred in

our 2-AA-pretreated animals. Recently, Khajanchi et al. showed

that animals pretreated with the QS molecule 3-oxo-C12-HSL

had reduced levels of pro-inflammatory cytokines and cleared

Aermonas hydrophila bacteria without tissue damage [67]. Con-

versely, we found that 2-AA pretreatment not only did not clear

P. aeruginosa bacteria or affect its growth, but rather resulted in a

higher bacterial load relative to that in non-pretreated mice.

These findings strongly suggest that 2-AA’s effect on host

responses may enable the long-term presence of P. aeruginosa. A

similar phenomenon was observed in plant infections involving

the virulence factor XopD, which promotes Xanthomonas campestris

pathovar vesicatoria growth in planta, while reducing host defense

responses and delaying the development of disease symptoms

[68].

Several recent studies have shown down-regulation of NF-kB,

ERK1/2, JNK, and p38 MAPK activation in endotoxin-tolerant

mouse macrophages [63], [69]. Although clarifying the exact

molecular mechanism mediating the 2-AA pretreatment response

will require further investigation, our findings show that 2-AA

negatively impacts activation of NF-kB, JNK, and p38 MAPK,

but increases ERK activation in pretreated cells. Based on the

presented findings, we propose the model depicted in Figure 9.

Briefly, 2-AA pretreatment may trigger a tolerance phenomenon

to subsequent 2-AA challenges, leading to a dramatically increased

survival rate of P. aeruginosa infected mice. Our findings further

suggest that these effects are achieved by a block in MAPK and

NF-kB activation, and activation of ERK1/2, leading to c/EBPb
activation and formation of the c/EBPb-p65 complex that

NF-kB activation relative to cells not pretreated with 2-AA (0.8 mM). (C) NF-kB was activated by 2-AA analog 4-AA in 4-AA pretreated and not
pretreated cells. Mean values calculated from 2–4 replicate experiments are depicted with SD error bars. (D and E) Following stimulation with 2-AA
(0.4 mM), cellular extracts prepared from not pretreated and 2-AA pretreated macrophages. Western blots of I-kBa and I-kBb degradation (D) and
phosphorylation of NF-kB subunit p65 (E). Loading was normalized relative to mouse b-actin. (F and G) A TransAM NF-kB assay showed binding of
NF-kB p65 and p50 with the NF-kB promoter in not pretreated and 2-AA pretreated cells following stimulation with 2-AA. Mean values calculated
from three replicate experiments are depicted with SD error bars. (p,0.05, Student’s t test).
doi:10.1371/journal.ppat.1003024.g004

Figure 5. 2-AA pretreatment alters the expression of pro- and
anti-inflammatory cytokines upon 2-AA stimulation in macro-
phages. Levels of TNF-a (A), IFN-c (B), and TGF-b (C), following 6 h
stimulation of 2-AA as measured by ELISA. The experiments were
performed in triplicate and the results are expressed as means 6 SD.
(p,0.05, one-way ANOVA).
doi:10.1371/journal.ppat.1003024.g005

Bacterial QS Mediated Immunomodulation
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Figure 6. 2-AA pretreatment alters activation of the MAPKs and AP-1 in macrophages upon 2-AA stimulation. Western blotting of
cellular extracts with phospho-specific antibodies after 48 h pretreatment with 2-AA (0.8 mM) followed by stimulation with 0.4 mM 2-AA (A) p38
MAPK, (B) JNK1/2 and (C) ERK1/2. One representative experiment (out of three) is shown. Loading was normalized relative to mouse b-actin. A
TransAM AP-1 transcription factor assay after 48-h pretreatment with 2-AA (0.8 mM) followed by stimulation with 2-AA, showing the binding of c-Fos
(D) and c-Jun (E) to AP-1 promoter. Mean values calculated from three replicate experiments are depicted with SD error bars. (p,0.05, Student’s t
test).
doi:10.1371/journal.ppat.1003024.g006
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prevents NF-kB activation. In support of this model, we found that

2-AA strongly increased p65 phosphorylation in non-pretreated

macrophages, but not in 2-AA pre-treated cells. It is well known

that pro-inflammatory stimuli induce phosphorylation of NF-kB

subunit p65, which is thought to increase the transactivation

potential of p65 [70–72] and that suppression of p65 phosphor-

ylation coincides with inhibition of I-kBa degradation [56].

Moreover, we showed that pretreatment with 2-AA induces the

expression of ERK1/2 and in turn c/EBPb, which binds directly

to p65, resulting in c/EBPb-p65 complex formation. ERK1/2

induction down-regulates NF-kB mediated transcription [29] and

initiates post-transcriptional modification of c/EBPb. This mod-

ification leads to a conformational change in c/EBPb that

unmasks its bZIP heterodimerzation domain [30], thereby

enabling formation of the c/EBPb-p65 complex [73], [74].

Formation of the c/EBPb-p65 complex may mechanically alter

interactions between NF-kB p65 and its inhibitors by blocking

specific phosphorylation sites [75], [76], thereby enabling c/EBPb
to form an inhibitory box [77] in 2-AA pretreated cells. Since c/

EBPb is involved in immune modulation [31], c/EBPb-p65

Figure 7. Inhibition of p65 phosphorylation in 2-AA pretreated cells is accompanied by de novo formation of c/EBPb-p65
complexes. (A) Western blots of cellular extracts incubated with c/EBPb from macrophages that had been incubated for 48 h with 0.8 mM 2-AA (2-
AA Pre) or plain medium (No Pre) and subsequently stimulated with 0.4 mM 2-AA for the indicated time periods. (B) Western blot showing inhibition
of ERK1/2 and c/EBPb in 2-AA pretreated cells in the presence of MEK1 inhibitor PD98059 (1 mM, 5 mM, or 10 mM). Loading was normalized relative to
mouse b-actin. (C) In cells treated as above, c/EBPb-p65 complex formation monitored by IP followed by immunoblotting with anti-c/EBPb or anti-
p65 antibodies.
doi:10.1371/journal.ppat.1003024.g007
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Figure 8. Transcription and NF-kB inhibitors can block the effects of 2-AA pretreatment. Western blots showing phosphorylation of JNK1/
2 in 2-AA pretreated or untreated cells along with CAPE (1.5 mM) (A), MG-132 (1 mM) (B), and actinomycin D (1 mM) (C) following 0.2 mM or 0.4 mM 2-
AA stimulation. Loading was normalized relative to mouse b-actin. One representative experiment (of three) is shown for JNK1/2.
doi:10.1371/journal.ppat.1003024.g008

Figure 9. Proposed model for 2-AA immunomodulatory mechanisms. In naı̈ve cells (left), stimulation with 2-AA induces activation of NF-kB,
which leads to the phosphorylation and degradation of I-kBa, releasing the NF-kB dimers p65 and p50. 2-AA also induces the p38 MAPK and JNK
pathways to stimulate c-Jun and c-Fos. Activation of MAPK and NF-kB pathway upregulates pro-inflammatory genes. In contrast, in 2-AA pretreated
cells (right) over-expression of ERK1/2 activates C/EBPb, which binds directly to p65, resulting in c/EBPb-p65 complex formation, and preventing 2-AA
induced phosphorylation of p65 upon 2-AA stimulation. This interaction inhibits NF-kB mediated transactivation. The activation of JNK and p38 MAPK
are repressed in 2-AA pretreated cells. All together, repression of the p38 MAPK, JNK, and NF-kB pathways abrogates the activation of pro-
inflammatory mediators.
doi:10.1371/journal.ppat.1003024.g009
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association in 2-AA pretreated cells could result in reduced

expression of pro-inflammatory cytokines.

Interestingly, LPS pretreated cells also exhibit reduced NF-kB

activation and binding activity, accompanied by decreased

degradation of IkBa and IkBb [63]. Thus, as shown in Figure 9,

a 2-AA induced tolerance in murine macrophages ex vivo may be

achieved by inhibiting activation of both NF-kB and AP-1 factors

(i.e. c-Jun and c-Fos). Additionally, our observations that

actinomycin D and NF-kB inhibitors can block 2-AA pretreatment

effects on JNK activation are consistent with the idea that 2-AA

works at the transcriptional level and requires de novo protein

synthesis. We also showed that 2-AA pretreated macrophages were

not fully responsive to other pathogen-associated molecules, such

as LPS and peptidoglycan (PGN) (Fig. S4). Therefore dampening

of immune signaling pathways by other pathogen associated

molecules [78], [79] or endogenous danger signals—such as pro-

inflammatory cytokines [80], heat shock proteins [81], [82], and

hayluran [83]—might also play a role in infection-induced

immunosuppression and the establishment of chronic/persistent

bacterial infections. It remains to be determined whether these

other agents also improve host survival in vivo and modulate

defense mechanisms in the context of an active infection.

Several mechanisms may collectively contribute to 2-AA

mediated tolerance in vivo and ex vivo. Firstly, genes encoding

pro-inflammatory cytokines are inactivated to limit tissue damage.

Meanwhile, anti-inflammatory mediators that do not disrupt host

tissue physiology provide protection from inflammation and

pathogen-induced damage. Our data indicate that selective and

transient inactivation of immune mediators at the intracellular

signaling level may play an important role in 2-AA induced host

tolerance.

In conclusion, our results strongly support the notion that 2-AA

produces immunomodulatory effects that enhance the host’s

ability to tolerate a pathogen presence. Meanwhile, 2-AA silences

bacterial acute virulence functions [49] and dramatically increases

survival rates among infected mice (Fig. 1A). From an evolutionary

perspective, it is intriguing that P. aeruginosa would produce a QS

molecule that decreases its own virulence. However, this seemingly

counter-intuitive effect can ultimately be adaptive if it enables the

pathogen to secure long-term survival within its host. This

hypothesis is supported by data showing that 2-AA pretreatment

ameliorated the inflammatory response upon subsequent infection,

allowing infected mice to survive, and thus increasing the

pathogen’s fitness. 2-AA’s ability to render immune cells tolerant,

as observed in the present study, may mirror the mechanism by

which this pathogen avoids elimination and persists in chronic

infections. Elucidation of the molecular mechanisms involved in

enabling host organisms to tolerate persistent/chronic infections

may open new avenues for the development of diagnostics and

therapeutic strategies to treat chronic, persistent, and relapsing

infections.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations of the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments at Massachusetts General Hospital (Permit Number:

2006N000093/2, for burn wound infection and 2005N000111, for

open wound infection). All procedures were performed under

ketamine/xylazine anesthesia, and every effort was made to

minimize suffering.

Bacterial strains and growth conditions
A P. aeruginosa strain known as RifR human clinical isolate

UCBPP-PA14 (commonly referred to as PA14) was used in the

present experiments [84], [85]. The bacteria were grown at 37uC
in Luria-Bertani (LB) broth under shaking and aeration or on

plates of LB agar containing appropriate antibiotics, unless

otherwise indicated. Overnight PA14 cultures were grown in

LB+rifampicin (50 mg/L) and diluted the following day in fresh

LB media.

Mouse mortality and CFU assays
A thermal injury mouse model [52] was used as described

previously [85] to assess bacterial pathogenicity in 6-wk-old CD1

mice (Charles River; Boston, MA). Following administration of

anesthesia, a full-thickness thermal burn injury involving 5–8% of

the total body surface area [52] was produced on the dermis of the

shaved mouse abdomen, and an inoculum of 5.06105 PA14 cells

in 100 ml of saline was injected intradermally into the burn eschar.

Mouse survival was subsequently assessed over the course of 10 d.

2-AA treated mice received a single intravenous (IV) injection of

2-AA (6.75 mg/kg mice) 6 h, 2 d, 4 d, 8 d, and 30 d prior to BI.

Mice treated with 4-AA (6.75 mg/kg mice), 2-NA (8.25 mg/kg

mice), MA (7.55 mg/kg mice), 3OH-2-AA (7.6 mg/kg mice),

and/or phosphate buffered saline (PBS; vehicle control) also

received a single IV injection, but 4 d prior to BI. All injected

compounds were purchased from Sigma-Aldrich (Saint Luis, MO).

To allow examination of bacterial persistence in the BI model,

we inoculated mice with 26103 PA14 cells to avoid mortality of

the control set. Animals were injected with 2-AA (6.75 mg/kg

mice) 4 d prior to BI. After 4 d, 26103 PA14 cells, in 100 ml of

saline, were injected as and described above. Seven days post-BI,

CFU counts were assessed in 5–6 mice per group from muscle

samples obtained from underneath the burn. Samples were

homogenized in 1 ml of 16 PBS. The samples were diluted and

plated on LB-agar plates containing rifampicin (50 mg/L).

Open wound model and CFU assays
The open wound mouse model was used as described in detail

elsewhere [54] to examine the long-term bacterial presence at the

chronic wound site. Briefly, 6-wk-old CD1 male mice (Charles

River; Boston, MA) were anesthetized by intraperitoneal injection

and their backs were shaved. Under aseptic conditions, a patch of

1.561.5 cm skin was surgically removed from the shaved back of

each mouse, exposing an area of collagen connective tissue above

the panniculus carnosus muscle. On the top of the surgical wound,

76103 bacterial cells were inoculated with 10 ml of 2-AA

(0.22 mg/kg mice) or an equal volume of vehicle. The surface of

the wound was dressed with a transparent and semipermeable

Tegaderm film to provide protection from non-experimental

bacterial contamination and to allow for daily inspection of the

wound. The mice were monitored for 11 d postinfection and CFU

counts were performed in 6 mice per group. Tissue samples from

the infected area of each mouse were homogenized in 1 ml of

PBS, diluted, and plated on LB-agar plates containing rifampicin

(50 mg/L).

Lung infection model and lung biopsy
We assessed the effects of 2-AA in a neonatal mouse lung

infection model [55] relevant to CF. A minimum inoculum of

1.56105 PA14 cells/animal is 100% lethal in this model. Mice

were pretreated with 2-AA 4 d before being infected and then

sacrificed 24 h, 48 h, or 72 h postinfection. The specimens were

fixed in 10% buffered formalin overnight and then, following a
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dehydration sequence, embedded in paraffin blocks and sectioned

into 6-mm-thick sections. The sections were stained with hema-

toxylin & eosin (H-E) and evaluated by light microscopy. Lung

histopathology was assessed and the cytoarchitecture of the

infected animals was compared to that of controls.

In vivo cytokine analysis
Blood was collected 24 h post-BI from 4 mice in each group by

cardiac heart puncture. Serum was isolated and assayed by

multiplex sandwich enzyme-linked immunosorbent assay (ELISA)

(Quansys Biosciences, UT) containing nine antibodies (against IL-

1a, IL-1b, IL-2, IL-4, IL-6, IL-10, IL-12p70, TNF-a, and IFN-c).

The plate was imaged by cooled CCD camera and integrated

density values of the standard spots were used to generate standard

curves for the assayed proteins, and density values of the unknown

samples were calculated. This service was provided by Quansys

Biosciences, USA.

Cell culture
A Raw 264.7 murine macrophage cell line (American type

culture collection, Bethesda, MD) was maintained in Iscove’s

modified Dulbecco’s medium (IMDM, Gibco) supplemented with

10% fetal bovine serum (Gibco) containing penicillin/streptomy-

cin and gentamycin (Gibco) in the presence of 5% CO2 at 37uC.

The cells were seeded in T-75 tissue culture flasks (Falcon, USA)

and used between passages 2 and 3.

Preparation of stably transfected cells with luciferase
reporter plasmid

RAW 264.7 cells (56105 cells) were seeded in 60-mm dishes;

24 h later, a mixture of Lipofectamine LTX and Plus reagent

(Invitrogen, Grand Island, NY) and 2.5 mg of pGL4.-NF-kB

luciferase plasmid (a gift from Dr. Xavier’s Lab, MGH, Boston)

were added and then incubated for 6 h in serum-free medium.

The cells were then cultured in medium supplemented with serum

for an additional 72 h prior to being subjected to further analysis.

Medium containing 250 mg/ml hygromycin B (Roche Applied

Science, Basel, Switzerland) was used to select stable transfectants.

2-AA cell treatment
Stable RAW 264.7 cells carrying the NF-kB luciferase plasmid

were plated at a density of 105/ml in 24-well plates and grown

overnight at 37uC in 5% CO2. Cells in the treatment groups were

pretreated with 0.8 mM 2-AA for 48 h, and then 2-AA treated or

non-treated cells were washed with PBS and kept in fresh medium.

At various times, as indicated, the cells were stimulated with

0.2 mM, 0.4 mM, or 2 mM 2-AA. Similarly, cells were pretreated

with 4-AA (0.8 mM), LPS (100 ng/ml, Sigma-Aldrich), or PGN

(100 ng/ml, Sigma-Aldrich) for 48 h. After 48 h, the non-treated

or 4-AA/LPS/PGN pretreated cells were stimulated with 4-AA

(0.2 mM, 0.4 mM, or 2 mM), LPS (1 ng/ml), or PGN (10 ng/ml),

respectively.

Luciferase assay
After treatment, the stable Raw 264.7 cells were washed with

PBS. The cells were then lysed in the luciferase cell culture lysis

buffer provided with the Luciferase Assay Kit (Promega, Madison,

WI). After a brief vortexing, whole cell lysates were centrifuged at

4uC for 2 min at 12,000 rpm. Supernatant was collected and 20–

30 ml of the collected supernatant was added to 60–80 ml of

luciferase substrate. Luminescence was measured in a Tecan F200

automated plate reader (Infinite F200, Tecan Group Ltd,

Männedorf, Switzerland) and expressed in relative light units

(RLU); each luciferase assay substrate reading was taken alone and

then with lysate. The value obtained for the luciferase assay

substrate without lysate was subtracted from the respective RLU

value for each lysate with luciferase assay reagent. The total

protein concentration in each lysate was determined with a

Bradford assay kit (Thermo Scientific, USA) and subsequently

used to normalize the luciferase activity data. Each assay was done

in triplicate within each trial and each trial was repeated three

times.

Western blot analysis
Cellular extracts were prepared in RIPA buffer (Cell Signaling

Technology, Boston, MA). Twenty micrograms of total protein

were added to Lamemli buffer, boiled for 5 min, resolved by SDS-

12% polyacrylamide gel electrophoresis (PAGE) in Tris/glycine/

SDS buffer (25 mM Tris, 250 mM glycine, 0.1% SDS), and

blotted onto PVDF membranes (Bio-Rad, Hercules, CA). The

membranes were blocked for 2 h in TBS-T (20 mM Tris-HCL,

150 mM NaCl, 0.1% Tween20) containing 5% non-fat milk. The

membranes were then washed three times in TBS-T and probed

overnight with rabbit antibodies specific for phospho-NF-kB p65,

phospho-extracellular regulated kinase (ERK)1/2, phospho-p38,

phospho-c-JUN N-terminal kinase (JNK)1/2 (Cell Signaling

Technology), NF-kB p65, Ik-Ba, IkB-b, or phospho-c-EBPb
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA) at a dilution of

1:1,000, and mouse anti-b-actin (Santa Cruz Biotechnology, Inc)

at a dilution of 1:2,000. Following three washes in TBS-T, the

membranes were incubated with secondary horse-radish peroxi-

dase (HRP)-conjugated goat anti-rabbit IgG (Santa Cruz Biotech-

nology, Inc) or goat anti-mouse IgG secondary antibodies

(Promega, Madison, WI), respectively, and then washed five times

in TBS-T. The bands were detected using SuperSignal West Pico

Chemiluminescent Substrate (Thermo Scientific, Rockford, IL),

according to the manufacturer’s instructions.

IP
For protein association assays, 100-mg aliquots of cytosolic

extracts were subjected to IP in TNT buffer [20 mM Tris-HCl,

pH 7.5, 200 mM NaCl, Triton 6100, 0.1 M phosphatase

inhibitor cocktails 1 and 2 (ingredients from Sigma-Aldrich)]. IP

was conducted at 4uC for 3 h with 2 mg of anti-c/EBPb or 2 mg of

p65 (Santa Cruz Biotechnology) and 50 ml of Pierce protein A/G

agarose beads (Thermo Scientific). After washing three times with

PBS, the precipitated proteins were analyzed by PAGE and

western blotting.

Measurement of TNF-a, IFN-c, and TGF-b by ELISA
TNF-a, IFN-c, and TGF-b protein levels in culture superna-

tants were measured by ELISA using the Quantikine mouse TNF-

a and TGF-b kits (R & D Systems, Minneapolis, MN) and an

OptEIA mouse IFN-c kit (BD Biosciences Pharmingen, San

Diego, CA) according to the manufacturers’ instructions. Briefly,

the culture supernatants were added to anti-human TNF-a
monoclonal antibody-coated ELISA plates and incubated for 2 h

at room temperature. Following four washes, the detector

molecules (HRP-conjugated streptavidin and biotinylated anti-

human TNF-a) were added to plates and incubated for 2 h at

room temperature. The assay was developed with tetramethyl

benzidine (TMB) substrate reagent. Following a 20-min incuba-

tion at room temperature, the absorbance at 450 nm was

determined using a Sunrise plate reader (Tecan Group Ltd,

Männedorf, Switzerland). For the TGF-b and IFN-c assays, we

followed the same procedure as described above.

Bacterial QS Mediated Immunomodulation

PLOS Pathogens | www.plospathogens.org 12 November 2012 | Volume 8 | Issue 11 | e1003024



NF-kB p65/p50 binding assay
Nuclear extracts were obtained from cells at various time points

using a Nuclear Extract kit (Active Motif, Carlsbad, CA). Briefly,

the cells were scraped in the presence of phosphatase inhibitors

into a hypotonic buffer and allowed to swell on ice, before being

treated with the non-ionic detergent nonidet-P40 and centrifuga-

tion (4uC, 12000 rpm, 15 min). The pellet was resuspended in

nuclear lysis buffer, gently rocked for 30 min at 4uC, and

centrifuged same as above. The Bradford protein assay was

performed on the resultant supernatants (nuclear extracts).

p65 and p50 nuclear binding assays were performed using a

NF-kB p65/p50 TransAM transcription factor assay kit (Active

Motif, Carlsbad, CA) according to the manufacturer’s protocol.

Briefly, the wells of a 96-well plate were pretreated with the NF-kB

consensus sequence oligonucleotides, and 40 ml of binding buffer

was added to the wells; 2-mg nuclear extract aliquots were brought

to a mass of 10 mg with lysis buffer and then added to the wells. A

1-mg aliquot of the provided Jurkat nuclear extract was used as a

positive control. Following 1 h of incubation, the wells were

washed three times with TBS-Tween. Primary antibody was

diluted 1:1500, added to the wells, and incubated for 1 h.

Following three washes, secondary HRP-conjugated anti-rabbit

antibody was diluted 1:1000 and added to the wells, incubated for

1 h. After four washes, the developing solution provided in the kit

was added. The development was allowed to proceed for 5 min

before the reaction was stopped with addition of the kit’s stop

solution. The absorbance was read on a spectrophotometer at

450 nm with a reference wavelength of 655 nm in a Sunrise plate

reader (Tecan Group Ltd, Männedorf, Switzerland)

MTT assay for cell cytotoxicity
The cytotoxicity of cells treated with 2-AA, 3-AA or 4-AA was

measured by MTT assay. MTT (3-[4, 5-dimethyl-2-thiazolyl]-2,

5-diphenyl-2H-tetrazolium bromide; Sigma-Aldrich) stock solution

(5 mg/ml PBS) was further diluted 1:5 in PBS. Two hundred

microliters of this working solution was added to the cells in a 96-

well culture plate for 2 h at 37uC under 5% CO2. The dissolved

MTT was allowed to convert to insoluble purple formazan via

mitochondrial activity in the cells during the 2-h incubation. The

supernatant was then removed and the cells were lysed for 10 min

with 95% isopropanol-5% formic acid. Absorbance of converted

dye was measured at 555 nm, with 690 nm as the reference

wavelength using a Sunrise plate reader (Tecan Group Ltd,

Männedorf, Switzerland).

Pharmacological inhibitors for signaling inhibition assay
To investigate the dependence of c/EBPb activation on ERK1/

2, 2-AA pretreated cells were incubated PD98059 (Sigma-Aldrich)

for 60 min and stimulated with 2-AA for different time periods.

For the cell signaling inhibition assay, cells were treated with NF-

kB inhibitors caffeic acid phenethyl ester (CAPE) (1.5 mM, Sigma-

Aldrich) or MG-132 (1 mM, Sigma-Aldrich) along with 2-AA.

Cells were treated actinomycin D (1 mM, Sigma-Aldrich) during

the 2-AA pre-treatment period.

Statistics
Wherever applicable, at least three independent experiments

were performed, and the data were analyzed using the Student’s t

test or a one-way analysis of variance (ANOVA). The animal data

were analyzed using the Kaplan-Meier survivability test. Bacterial

CFU counts were analyzed using the Kruskal-Wallis non-

parametric test. P values#0.05 were considered statistically

significant.

Supporting Information

Figure S1 2-AA activates NF-kB pathways and pro-
inflammatory cytokines in mouse macrophages. (A)

Mouse macrophages were incubated with 0.2 mM, 0.4 mM, or

2 mM 2-AA for the indicated time periods, and NF-kB activation

was monitored by luciferase assays. The results are expressed as

fold change compared to control cells. Mean values calculated

from three replicate experiments are depicted with SD error bars.

Macrophages were stimulated with 0.2-mM or 0.4-mM 2-AA at

the indicated time points. (B) IFN-c and (C) TNF-a secretion was

measured in cell supernatants by ELISA. Mean values calculated

from three replicate experiments are depicted with SD error bars.

*p,0.05 vs. naı̈ve (Student’s t test).

(TIF)

Figure S2 Structures of 2-AA, the 2-AA metabolite 3OH-
2-AA, and the 2-AA analogs 4-AA, 2NA, and MA.
(TIF)

Figure S3 Effects of 2-AA on viability of mouse macro-
phages. MTT assay measuring cell viability in mouse macro-

phage cells after treatment with 0.2 mM, 0.4 mM or 0.8 mM 2-

AA for different time points, as indicated in the figure. SDs

(vertical bars) were calculated from three replicate experiments.

(TIF)

Figure S4 2-AA pretreated macrophages are broadly
hyporesponsive to pathogen associated molecules. Mac-

rophages were pretreated with 2-AA (0.8 mM), LPS (100 ng/ml),

or PGN (100 ng/ml) for 48 h and then stimulated with LPS

(1 ng/ml) or PGN (10 ng/ml) for 2 h. Activation of NF-kB

(expressed as fold change over background) upon stimulation with

LPS or PGN is shown. Mean values calculated from three

replicate experiments are depicted with SD error bars.

(TIF)

Figure S5 2-AA modulates NF-kBp65, p38, JNK, and
ERK phosphorylation in 2-AA pretreated mouse macro-
phages. Cells were pretreated with 2-AA (2-AA Pre) or medium

only (No Pre) for 48 h and subsequently stimulated with 2 mM 2-

AA for the indicated time periods. Western blotting of cellular

extracts with phospho-specific antibodies was used to reveal the

effects of 2-AA pretreatment on phosphorylation of (A) NF-kB p65,

(B) p38, (C) JNK1/2, and (D) ERK1/2 following 2-AA (2 mM)

stimulation. Loading was normalized relative to mouse b-actin.

(TIF)

Figure S6 4-AA pretreatment does not alter activation of
AP-1 in macrophages upon 4-AA stimulation. A TransAM

AP-1 transcription factor assay after a 48 h pretreatment with 4-

AA (0.8 mM) followed by stimulation with 4-AA, showing binding

of c-Fos (A) and c-Jun (B) to the AP-1 promoter. Mean values

calculated from three replicate experiments are depicted with SD

error bars (p,0.05, Student’s t test).

(TIF)
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