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Abstract

Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a human malignancy notorious for its
highly metastatic nature. Among EBV-encoded genes, latent membrane protein 1 (LMP1) is expressed in most NPC tissues
and exerts oncogenicity by engaging multiple signaling pathways in a ligand-independent manner. LMP1 expression also
results in actin cytoskeleton reorganization, which modulates cell morphology and cell motility— cellular process regulated
by RhoGTPases, such as Cdc42. Despite the prominent association of Cdc42 activation with tumorigenesis, the molecular
basis of Cdc42 activation by LMP1 in NPC cells remains to be elucidated. Here using GST-CBD (active Cdc42-binding
domain) as bait in GST pull-down assays to precipitate active Cdc42 from cell lysates, we demonstrated that LMP1 acts
through its transmembrane domains to preferentially induce Cdc42 activation in various types of epithelial cells, including
NPC cells. Using RNA interference combined with re-introduction experiments, we identified FGD4 (FYVE, RhoGEF and PH
domain containing 4) as the GEF (guanine nucleotide exchange factor) responsible for the activation of Cdc42 by LMP1.
Serial deletion experiments and co-immunoprecipitation assays further revealed that ectopically expressed FGD4
modulated LMP1-mediated Cdc42 activation by interacting with LMP1. Moreover, LMP1, through its transmembrane
domains, directly bound FGD4 and enhanced FGD4 activity toward Cdc42, leading to actin cytoskeleton rearrangement and
increased motility of NPC cells. Depletion of FGD4 or Cdc42 significantly reduced (,50%) the LMP1-stimulated cell motility,
an effect that was partially reversed by expression of a constitutively active mutant of Cdc42. Finally, quantitative RT-PCR
and immunohistochemistry analyses showed that FGD4 and LMP1 were expressed in NPC tissues, supporting the potential
physiologically relevance of this mechanism in NPC. Collectively, our results not only uncover a novel mechanism underlying
LMP1-mediated Cdc42 activation, namely LMP1 interaction with FGD4, but also functionally link FGD4 to NPC
tumorigenesis.

Citation: Liu H-P, Chen C-C, Wu C-C, Huang Y-C, Liu S-C, et al. (2012) Epstein-Barr Virus-Encoded LMP1 Interacts with FGD4 to Activate Cdc42 and Thereby
Promote Migration of Nasopharyngeal Carcinoma Cells. PLoS Pathog 8(5): e1002690. doi:10.1371/journal.ppat.1002690

Editor: Bill Sugden, University of Wisconsin-Madison, United States of America

Received September 24, 2011; Accepted March 26, 2012; Published May 10, 2012

Copyright: � 2012 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project is supported by the National Science Council, Taiwan Grants NSC-97-2320-B-182-001-MY3 and NSC-100-2320-B-182-0200 to Y-S Chang, and
the Chang Gung Memorial Hospital, Taiwan Grant CMRPD190132 to Y-S Chang. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ysc@mail.cgu.edu.tw

Introduction

Epstein–Barr virus (EBV) is a human c-herpesvirus that is

closely associated with many human malignancies, including

nasopharyngeal carcinoma (NPC), Burkitt’s lymphoma, T-cell

lymphoma, and gastric carcinoma [1]. NPC, which is prevalent in

Taiwan and southeastern China, is a human squamous cell cancer

notorious for its highly metastatic nature [2]. In NPC, EBV

infection is predominantly latent and viral gene expression is

restricted. Among the expressed viral genes, latent membrane

protein 1 (LMP1) is detected in most NPC tissues [3]. LMP1 has

oncogenic properties to transform rodent fibroblast cell lines [4,5]

and promote cell growth in soft agar [6]. LMP1 is a 62-kDa

integral membrane protein composed of a short N-terminal

domain, six transmembrane domains, and a 200-amino-acid (aa)

cytoplasmic tail at the C-terminus [7]. By mimicking TNFR

(tumor necrosis factor receptor) family members, LMP1 through

its cytoplasmic tail engages TRAFs (TNFR-associated factors) and

TRADD (TNFR-associated death domain protein) to transduce

multiple signaling pathways, including nuclear factor-kappa B

(NF-kB)-mediated transcription [8] and the c-Jun amino-terminal

kinase (JNK) pathway [9,10]. Unlike TNFR-based signaling,

however, LMP1 appears to signal in a ligand-independent fashion

relying on its N-terminus and transmembrane domains to self-

associate in the lipid rafts [11–13]. As a result, LMP1 is a

constitutively active receptor [14–16].

In addition to growth transformation, LMP1 has also been

linked to regulation of the actin cytoskeleton. In lymphocytes,

LMP1 expression leads to the formation of membrane protrusions

and membrane ruffling, which involve actin reorganization [5]. In

Swiss 3T3 fibroblasts, LMP1 is capable of inducing the assembly of

actin-rich surface protrusions called filopodia [17]. Moreover, the
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LMP1-induced formation of filopodia in fibroblasts can be

abolished by a dominant-negative mutant of Cdc42, a member

of the Rho (Ras-homology) GTPase family [17], implying that

LMP1 is capable of activating Cdc42. Rho GTPases, mainly

comprising members of the Cdc42, Rac and Rho subfamilies,

actively regulate various actin-dependent functions such as cell

migration, adhesion, cytokinesis, axon guidance, and phagocytosis

in all eukaryotic cells [18]. Cdc42 in particular is well known to

regulate actin filament (F-actin) organization and vesicle trafficking

[19–21]. Like all GTPases, Cdc42 acts as a binary switch cycling

between an inactive (GDP-bound) and an active (GTP-bound)

conformational state. The activation of Cdc42 is mediated by

guanine nucleotide exchange factors (GEFs), which convert the

GDP-bound form of Cdc42 to the GTP-bound form [20,22,23].

Activated Cdc42, in turn, binds to its downstream effectors, such

as the Wiskott-Aldrich syndrome protein (WASP) [24,25], through

which it ultimately generates a variety of cellular effects [26,27].

Not surprisingly, given the prominent role of Cdc42 in so many

aspects of cell biology, aberrant activation of Cdc42 (or

dysfunction of Cdc42 GEFs) results in pathogenesis, including

tumorigenesis and tumor progression, cardiovascular diseases,

diabetes, and neuronal degenerative diseases [28,29].

FGD4 (FYVE, RhoGEF and PH domain-containing 4), also

known as Frabin (FGD1-related F-actin binding protein), like

FGD2 and FGD3, is a Cdc42-specific GEF that shows significant

sequence homology to FGD1, which was originally discovered by

positional cloning as the gene responsible for a human X-linked

skeletal disease called faciogenital dysplasia [30–33]. It has been

revealed that mutations in the gene encoding FGD4 cause an

inherited neurological disease commonly referred to as Charcot-

Marie-Tooth (CMT) disease, a type of hereditary motor and

sensory neuropathy [34]. All FGD proteins possess a similar

domain organization, whereas each FGD has a unique N-terminal

region [35]. FGD4 consists of an N-terminal FAB (F-actin-

binding) domain, a DH (Dbl homology) domain containing the

principal GEF catalytic unit, and multiple phosphoinositide-

binding domains, including two PH (pleckstrin homology)

domains and an FYVE (Fab1, YOTB, Vac1, and EEA1) domain

at the C-terminus [30,35]. Accordingly, FGD4 likely couples the

actin cytoskeleton to the cellular membrane by localization to the

membrane and simultaneously binding F-actin. In fibroblasts, it

has been shown that rat Fgd4 binds along the sides of F-actin

through the FAB domain and directly induces activation of Cdc42

in the vicinity of actin structures, resulting in actin reorganization

[30]. However, the mechanisms by which external or internal

stimuli transduce the signals to activate FGD4 largely remain

unclear.

In the present study, we sought to investigate the activation of

Cdc42 by LMP1 in NPC cells, which are physiologically relevant

to EBV. Importantly, we uncovered a novel mechanism under-

lying LMP1-mediated Cdc42 activation, showing that LMP1

physically interacts with FGD4, leading to functional consequenc-

es associated with NPC tumorigenesis and tumor progression.

Results

LMP1 preferentially induces Cdc42 activation in epithelial
cells

To assess the effect of LMP1 on Cdc42 activation in cells, we

carried out GST-pull-down assays using GST-CBD (containing

the active Cdc42-binding domain of WASP) as bait to precipitate

active Cdc42 in lysates of 293 Tet-On cells, in which the

expression of LMP1 was induced by doxycycline (Dox). As shown

in Figure 1A, LMP1 expression led to a 4.8-fold increase in the

level of active Cdc42 compared with the control without affecting

total Cdc42 expression levels. Moreover, LMP1-mediated Cdc42

activation was specific since activation of Rac1 and RhoA, two

related members of Rho GTPase family, was not significant.

To corroborate these phenomena in EBV-associated cells, we

conducted similar GST pull-down assays using nasopharyngeal

epithelial cells (NP69) and four NPC cell lines, each of which

expressed LMP1 or empty vector (control). Consistent with the

results obtained in 293 Tet-On cells, LMP1 expression led to a

3.3-fold increase in active Cdc42 in NP69 cells (Figure 1B), and

induced 4.6-, 6.7-, 10.2-, and 10.6-fold increases in active Cdc42

in four tested NPC cell lines (TW02, TW01, TW04, and TW06),

respectively (Figure 1C). In contrast, there was no evidence for

Rac1 or RhoA activation by LMP1 in NP69 cells or NPC cells

(Figure 1B and 1C). Collectively, these results demonstrate that

LMP1 preferentially induces Cdc42 activation in various types of

epithelial cells.

LMP1 transmembrane domains are required for Cdc42
activation

To dissect the functional domains of LMP1 responsible for its

activation of Cdc42, we generated a series of LMP1 deletion

constructs (Figure 2A) and examined their effects on Cdc42

activation in NPC cells. Deletion mutants lacking transmembrane

domains 3 and 4 (DTM3/4) or 3–6 (DTM3–6) exhibited

substantially impaired ability to activate Cdc42, producing 3.1-

and 3.5-fold increases, respectively, compared to the 9.7-fold

increase induced by full-length LMP1 (Figure 2B). In contrast,

deletion of the entire C-terminal cytoplasmic tail (DCT) of LMP1

did not interfere with Cdc42 activation (a 9.3-fold vs. a 9.7-fold

increase), indicating that C-terminus-dependent LMP1-trans-

duced signaling pathways are not involved in this event. To

confirm the importance of the transmembrane domains of LMP1

in Cdc42 activation, we replaced this region with the transmem-

brane domain of a TNFR member, CD40 (denoted CD40CT in

Figure 2A). As shown in Figure 2C, the resulting chimera failed to

activate Cdc42 (1.3-fold increase vs. 7.0-fold increase for chimeric

and wild-type LMP1, respectively), indicating that the transmem-

brane domains of LMP1 are required for Cdc42 activation. To

verify whether the LMP1-induced activation of Cdc42 was

associated with remodeling of the actin filaments, we next

Author Summary

Epstein-Barr virus (EBV) is closely associated with human
malignancies, including nasopharyngeal carcinoma (NPC).
Among EBV-expressed genes, latent membrane protein 1
(LMP1) has been detected in most NPC tissues and has the
ability to transform cell growth and drive cell migration,
both of which are highly associated with tumorigenesis
and tumor progression. Previous reports have demon-
strated that cell migration primarily involves cytoskeleton
rearrangement, and the RhoGTPase Cdc42 is known to
actively mediate such rearrangement processes. Using
LMP1-expressing NPC cells, we discovered that LMP1
induces Cdc42 activation by directly binding to FGD4, a
positive regulator of Cdc42, thereby promoting motility of
NPC cells. The observed correlation between FGD4 and
LMP1 expression in NPC tissues provides support of
physiological relevance. Notably, FGD4 has recently been
shown to be responsible for a type of inherited neural
disease. Our findings not only provide a novel insight into
EBV pathogenesis, but also suggest a role for FGD4 in
tumorigenesis.

LMP1 Activates Cdc42 Through Interaction with FGD4
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conducted the immunofluorescence staining using NPC cells which

expressed Flag-LMP1 or its various transmembrane domains-

truncated forms. As shown in Figure 2D, expression of Flag-LMP1

and its C-terminus-deleted form (DCT) led to formation of

microspike-like actin structures (filopodia) at the plasma membrane

and actin bundles at the perinuclear regions (Golgi apparatus). In

contrast, expression of the transmembrane domains-truncated form

DTM3/4 or DTM3–6, or the chimera CD40CT failed to induce

the actin remodeling as described above. The truncated form

DTM1/2 remained a moderate ability for the actin remodeling

compared to the DTM3–6 or the CD40CT chimera, correlating

with the extent of Cdc42 activation.

Since the transmembrane domains confer properties on LMP1

that distinguish it from TNFR family members [13,14], we next

investigated whether the TNFR members, TNFR and IL-1R

(interleukin-1 receptor), were capable of activating Cdc42 in NPC

cells. Compared with vehicle controls, treatment of NPC cells with

the TNFR ligand TNF-a (50 or 100 ng/ml) or the IL-1R ligand IL-

1a (10 ng/ml) for 30 min had little effect on Cdc42 activation

(Figure S1A) and on actin remodeling (Figure S1B). While NPC

cells seemed to be insensitive to IL-1a induction of NF-kB signaling,

positive controls showed that TNF-a induced degradation of

inhibitor kappa B (IkBa) protein (Figure S1A) and subsequent

nuclear translocation of a NF-kB subunit p65 (Figure S1B),

indicating activation of NF-kB signaling [36] and confirming the

functional integrity of TNF-a in this experimental setting. These

data conclusively demonstrated that the action of LMP1 was distinct

from that of TNFR with respect to Cdc42 activation in NPC cells.

LMP1 appears to induce Cdc42 activation at LMP1-
resident sites

To better elucidate the nature of LMP1-mediated Cdc42

activation, we sought to dissect the spatial pattern of Cdc42

Figure 1. LMP1 preferentially induces Cdc42 activation in epithelial cells. (A) 293 Tet-On cells were treated with 5 mg/ml doxycyclin (Dox)
for 24 h to induce LMP1 expression. After a 6-h serum starvation, cells were lysed and the lysates were incubated with immobilized GST-CBD (active
Cdc42-binding domain of WASP), GST-PBD (active Rac1-binding domain of PAK1), or GST-RBD (active RhoA-binding domain of Rhoteckin) at 4uC for
1 h to pull down the active form of Cdc42, Rac1, or RhoA in cells. Details are provided in Materials and Methods. Total (input) and active (GTP-bound)
levels of Cdc42, Rac1, or RhoA were analyzed by Western blotting with the respective antibody. Numbers represent relative fold-changes of GTPase
activation determined based on densitometric quantitation. The trace in the absence of LMP1 was set as 1. The constant amounts of GST-fusion
proteins for pull-down assays were shown by Ponceau S staining. (B) Cell lysates from NP69 cells (denoted C) or stable LMP1-expressing NP69 cells
(denoted L) incubated in serum-free media for 6 h were harvested for GST pull-down assays, and levels of active Cdc42, Rac1, and RhoA were
assessed as described above. (C) A variety of NPC cell lines, NPC-TW01, -TW02, -TW04, and -TW06, were transfected with an LMP1 expression plasmid
or empty vector (control) and incubated for 24 h. Following a 6-h serum starvation, cells were lysed and the lysates were applied to GST pull-down
assays. The resulting products were analyzed for active Cdc42, Rac1, and RhoA, as described above.
doi:10.1371/journal.ppat.1002690.g001
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Figure 2. The transmembrane domains of LMP1 are required for induction of Cdc42 activation and the associated F-actin
rearrangement. (A) Schematic illustrations of Flag-tagged LMP1 and its truncated derivatives. FL, full-length LMP1; DCT, deletion of the C-terminus;
DTM1/2, deletion of transmembrane domains 1 and 2; DTM3/4, deletion of transmembrane domains 3 and 4; DTM3–6, deletion of transmembrane
domains 3–6. CD40CT indicates that the entire transmembrane region of LMP1 (aa 1–177) is replaced with that of CD40 (aa 1–214). (B) NPC-TW04
cells that had been transfected with 1 mg of plasmid encoding Flag-LMP1 or its truncated versions were grown for 24 h, followed by serum starvation
for 6 h. Then cell lysates were harvested for GST pull-down assays using GST-CBD beads as bait (detailed in Materials and Methods) to pull-down
active (GTP-bound) Cdc42 in cells. The resulting products were analyzed by Western blotting with an anti-Cdc42 antibody. The levels of active Cdc42
were quantified as described above. The trace in the absence of LMP1 was set as 1. The constant amounts of GST-CBD used in pull-down assays were
shown by Ponceau S staining. (C) NPC-TW04 cells that had been transfected with 1 mg of plasmid encoding Flag-LMP1 or the chimera CD40CT were
lysed after incubation as described above. Cell lysates were harvested for GST-CBD pull-down assays, and the level of active Cdc42 was determined as
described above. (D) Induction of F-actin rearrangement by LMP1. NPC-TW04 cells that had been grown on poly-L-lysine-coated coverslips overnight
were transfected with 0.5 mg of plasmid encoding Flag-tagged full-length, truncated, or chimeric LMP1, and then incubated for 24 h. Following a 6-h
serum starvation, cells were fixed and permeabilized, followed by subsequent staining with primary anti-Flag (M2) and FITC-conjugated secondary
antibodies. For actin filament (F-actin) staining, cells were co-stained with TRITC-conjugated phalloidin. Images were acquired using a ZEISS LSM510
confocal microscope as detailed in Materials and Methods. Scale bars, 20 mm. Transfection of an empty vector had no effect on actin organization
(data not shown).
doi:10.1371/journal.ppat.1002690.g002
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activation upon LMP1 expression. For this aim, we generated an

EGFP-CBD construct containing the active Cdc42-binding

domain of WASP to locate active Cdc42 inside cells. Following

transfection of 293 Tet-On cells with pEGFP-CBD, LMP1

expression was induced by doxycycline (Dox) and cells were

analyzed by confocal microscopy. As shown in Figure S2A (upper

panel), LMP1 expression led to EGFP-CBD co-distribution at

LMP1-resident sites (i.e., Golgi apparatus and plasma membrane).

In contrast, a more homogenous distribution of EGFP-CBD was

evident in cells in which LMP1 expression was not induced

(bottom panel), implying Cdc42 activation at LMP1-resident sites.

We next verified whether LMP1 expression resulted in distribution

of Cdc42 to LMP1-resident sites using NPC cells expressing

EGFP-LMP1 or the truncated form DTM3–6. As shown in Figure

S2B, a portion of Cdc42 was co-distributed with EGFP-LMP1 (the

inset) rather than with the DTM3–6 form in NPC cells. These data

suggest the possibility that certain factors that act upstream of

Cdc42-activation cascades may co-localize with LMP1 and

participate in this event.

FGD4 is the GEF responsible for LMP1-mediated Cdc42
activation

On the basis of the above observation (Figures 2 and S2) and the

preferential activation of Cdc42 by LMP1 (Figure 1), we

hypothesized that LMP1 modulates a Cdc42 GEF and thereby

activates Cdc42. To verify this, we first surveyed the literature for

candidate Rho GEFs that show specificity toward Cdc42 and

localize to the Golgi apparatus and the plasma membrane, where

LMP1 was expressed as well (Figure 2E). A subset of GEFs that meet

such criteria, including FGD1 [37], FGD3 [32], FGD4 [38],

intersectin-1 (ITSN1) [39], and DOCK9 (zizimin) [40], was selected

for further evaluation. The expression of these GEFs at the

transcriptional level was validated in NPC cells using quantitative

reverse transcription-polymerase chain reaction (RT-PCR; data not

shown). To evaluate the effects of these GEFs on LMP1-mediated

Cdc42 activation, we performed RNA interference using small

interfering RNA (siRNA) to deplete each GEF from LMP1-

expressing NPC cells, followed by precipitation of active Cdc42, as

described above. The knockdown efficiency of each siRNA toward

its targeted GEF was analyzed by quantitative RT-PCR (Figure

S3A) and Western blotting. As shown in Figure 3A, knockdown of

FGD4 (siFGD4) reduced the LMP1-induced Cdc42 activation from

the 2.3-fold increase observed in control siRNA (siCtrl)-treated cells

to a 0.8-fold increase. In contrast, knockdown of each of the other

GEFs had little effect on LMP1-induced Cdc42 activation. A

quantitative analysis of data from five independent experiments

further reinforced the inhibitory effect of FGD4 knockdown on

LMP1-induced Cdc42 activation (Figure 3B). To reproduce the

phenomenon in epithelial cells other than NPC cells, we carried out

similar knockdown experiments using 293 Tet-On cells with or

without Dox induction. As shown in Figure 3C, knockdown of

FGD4 consistently reversed LMP1-mediated Cdc42 activation,

reducing the fold-increase from 2.3 to 0.5, indicating that this effect

was not restricted to NPC cells.

To reinforce the functional role of FGD4, we re-introduced

FGD4 expression by ectopically expressing FGD4 (Myc-FGD4) in

FGD4-depleted NPC cells that co-expressed LMP1, and then

assessed the activation of Cdc42 by LMP1. As shown in Figure 3D,

depletion of FGD4 consistently eliminated LMP1-mediated Cdc42

activation, reducing Cdc42 activation from a 3.0-fold increase to a

1.0-fold increase. In contrast, re-introduction of FGD4 expression

attenuated this reduction, limiting it to a 2.2-fold increase.

Collectively, these results confirm that FGD4 indeed plays a role

in the activation of Cdc42 by LMP1. As noted, FGD4 depletion

had no effect on the basal level of Cdc42 activation in cells lacking

LMP1 (Figure 3). Accordingly, the data demonstrate that FGD4 is

primarily involved in mediating LMP1-induced Cdc42 activation.

FGD4 modulates LMP1-induced Cdc42 activation
through protein-protein interaction

What little has been learned to date about the function of FGD4

has mainly been gleaned from experiments involving manipulation

of rat Fgd4 [30,35,38,41]. Despite the high sequence homology

between rat Fgd4 and human FGD4 (Figure S3B), it is uncertain

whether the functions of both proteins are identical. To

characterize the function of human FGD4 in NPC cells, we

generated a series of truncated human FGD4 constructs

(Figure 4A) to examine their effects on Cdc42 activation

(Figure 4B–4D) and actin remodeling (Figure S4A). As shown in

Figure 4B, expression of Myc-FGD4 (FL) activated Cdc42

compared with the vector control, increasing the level of active

Cdc42 by 3.3- (right panel) and 7.8-fold (left panel) in two different

experiments. The immunofluorescence staining revealed that

expression of Myc-FGD4 induced filopodia formation at the

plasma membrane (Figure S4A). Deletion of the FAB domain

(DFAB) of FGD4 did not affect the activation of Cdc42 (Figure 4C)

and the induction of filopodia (Figure S4A). In contrast, deletion of

the DH domain (DDH vs. FL; PH1–2 vs. DFAB) substantially

impaired the activity of FGD4 toward Cdc42 (Figure 4B and 4C)

as well as induction of actin remodeling (Figure S4A) and

recruitment of Cdc42 (Figure S4B), indicating that the DH

domain is essential for a full FGD4 activity. Moreover, deletion of

the PH1-to-PH2 domains (denoted FAB–DH) caused a functional

impairment of FGD4 (Figures 4B, 4C, and S4A) but left its ability

to recruit Cdc42 unchanged (Figure S4B), suggesting some aspect

of the function of PH1-to-PH2 domains, such as membrane

targeting, is also needed for a full FGD4 activity.

To investigate how FGD4 affects LMP1-mediated Cdc42

activation, we assessed the activation of Cdc42 by LMP1 in NPC

cells expressing LMP1 together with various forms of FGD4. As

shown in Figure 4B, ex‘pression of LMP1 alone led to activation of

Cdc42 compared with vector-transfected cells, increasing active

Cdc42 levels by 5.1- (right panel) and 8.7-fold (left panel) in two

different experiments. Co-expression of LMP1 with the full-length

FGD4 and with the DFAB form further augmented LMP1-

mediated Cdc42 activation by 1.2- and 1.3-fold, respectively

(Figure 4B), in agreement with the intact activities of these FGD4

proteins (Figure 4C). In contrast, co-expression of LMP1 with the

truncated forms of FGD4 that exhibited impaired FGD4 activities

(DDH, PH1–2, and FAB–DH) instead reduced LMP1-mediated

Cdc42 activation on average by 62%, 50%, and 39%, respectively

(Figure 4D), revealing that FGD4 indeed acts downstream of LMP1

to modulate Cdc42 activation.

On the basis of the known ability of PH domains to bind to

phosphoinositides as well as proteins [42,43] and our observation

that LMP1-mediated Cdc42 activation occurred at LMP1-resident

sites (Figure S2), we speculated that LMP1 likely interacted with

FGD4. To verify the interaction between LMP1 and FGD4, we

performed co-immunoprecipitation assays using NPC cells co-

expressing LMP1 and various forms of FGD4. As shown in

Figure 4E, LMP1 was co-precipitated with full-length, DFAB, and

DDH forms of FGD4, indicating that LMP1 interacted with

FGD4 in a manner that did not require FAB or DH domains.

Consistent with this, the FAB–DH form showed an impaired

ability to interact with LMP1, in contrast to the PH1–2 form,

which was sufficient for interaction with LMP1. Collectively, these

results revealed that the PH1-to-PH2 domains of FGD4 are

mainly responsible for the interaction of FGD4 with LMP1.

LMP1 Activates Cdc42 Through Interaction with FGD4
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LMP1 transmembrane domains are required for the
interaction with FGD4 and the promotion of FGD4
activity

To corroborate the impact of the LMP1-FGD4 interaction on

LMP1 activation of Cdc42, we next examined if the transmem-

brane domains of LMP1, which were necessary for inducing

Cdc42 activation (Figure 2B and 2C), were responsible for the

interaction with FGD4. To accomplish this, we performed co-

immunoprecipitation assays using anti-Myc affinity resins to

precipitate Myc-FGD4-associated protein complexes in lysates of

NPC cells co-expressing Myc-FGD4 plus Flag-LMP1 or its

chimera, CD40CT. As shown in Figure 4F, wild-type LMP1 but

Figure 3. FGD4, a Cdc42 GEF, is involved in LMP1-mediated Cdc42 activation. (A) Identification of FGD4 as a GEF candidate involved in
LMP1-mediated Cdc42 activation in NPC cells. The potential GEF involved in the activation of Cdc42 by LMP1 was identified by co-transfecting NPC-
TW04 cells with 1 mg of Flag-LMP1 expression plasmid or empty vector (control), and siRNAs (25 mM) directed against DOCK9 (siDock9), intersectin-1
(siITSN1), FGD4 (siFGD4), FGD1 (siFGD1), FGD3 (siFGD3) or non-targeting control (siCtrl). Following a 6-h serum starvation at 48 h post-transfection,
cells lysates were harvested for GST-CBD pull-down assays. The knockdown efficiency for individual GEFs was analyzed by Western blotting with the
respective antibody. The level of active Cdc42 was determined as described above. The constant amounts of GST-CBD for pull-down assays were
shown by Ponceau S staining. The results shown are representative of five independent experiments. Quantitative data are shown in B. The relative
fold-changes in active Cdc42 are presented as means 6 SDs (*P = 0.0052; paired t-test). (C) Confirmation of FGD4 involvement in 293 Tet-On cells. 293
Tet-On cells that had been transfected with 25 mM control or FGD4 siRNA and incubated for 24 h were further treated with Dox (5 mg/ml) for 24 h to
induce LMP1 expression. Cell extracts were then harvested for GST-CBD pull-down assays and the level of active Cdc42 was determined as described
above. (D) Normalizing the reduced levels of active Cdc42 in FGD4-depleted cells by re-introduction of FGD4. NPC-TW04 cells were co-transfected
with 25 mM control or FGD4 siRNA, together with 1 mg of Flag-LMP1 expression plasmid or empty vector (control), plus 2 mg of pMyc-FGD4
expression plasmids or Myc vector. Following a 6-h serum starvation at 48 h post-transfection, cells lysates were harvested for GST-CBD pull-down
assays, and the level of active Cdc42 was analyzed as described above.
doi:10.1371/journal.ppat.1002690.g003
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Figure 4. FGD4 modulates LMP1-mediated Cdc42 activation through protein-protein interaction. (A) Schematic illustrations of Myc-
tagged FGD4 and its truncated derivatives. FL, full-length FGD4; DFAB, deletion of the F-actin-binding domain; DDH, deletion of the Dbl homology
domain (catalytic domain); PH1 and PH2, pleckstrin homology domains 1 and 2; FYVE, a zinc finger domain named after Fab1, YOTB, Vac1, and EEA1.
(B) Characterization of FGD4 function and its effect on LMP1-mediated Cdc42 activation. NPC-TW01 cells were co-transfected with 1.5 mg of Myc-
FGD4 expression plasmids and 1 mg of Flag-LMP1 expression plasmid or empty vector (control). After 24-h incubation and a following 6-h serum
starvation, cells were lysed for GST-CBD pull-down assays and the level of active Cdc42 was determined as described above. The constant amounts of
GST-CBD for pull-down assays were shown by Ponceau S staining. The domain of FGD4 required for Cdc42 activation was determined by calculating
the relative fold-change in active Cdc42 with expression of truncated FGD4 versus expression of full-length FGD4. The mean 6 SD of five
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not CD40CT was co-precipitated with Myc-FGD4, indicating that

the transmembrane domains of LMP1 are required for its

interaction with FGD4. To explore the role of this protein-protein

interaction in FGD4 activity, we assessed Cdc42 activation by

Myc-FGD4 in the presence of LMP1 or CD40CT. The results

showed that co-expression of Myc-FGD4 with LMP1 increased

the level of active Cdc42 by 1.8-fold compared with expression of

FGD4 alone (Figure 4F). In contrast, co-expression of FGD4 with

CD40CT did not promote Cdc42 activation (1.1-fold). Taken

together, these data revealed that LMP1 interacts with and

coordinates the activity of FGD4.

To investigate whether Myc-FGD4 was co-precipitated with

LMP1 in a reciprocal way, we conducted co-immunoprecipitation

assays using anti-Flag affinity resins to precipitate Flag-LMP1-

associated protein complexes in lysates of NPC cells co-expressing

Myc-FGD4 with various forms of LMP1. As shown in Figure 5A,

Myc-FGD4 was co-precipitated with Flag-LMP1 but not with the

CD40CT chimera, consistent with the result shown in Figure 4F.

In contrast, Myc-FGD4 was not co-precipitated with the truncated

form DTM3/4 or DTM3–6, indicating that the transmembrane

domains 3 and 4 were the minimal region required for LMP1

interaction with FGD4. Moreover, deletion of the short N-

terminal domain (DNT) did not affect LMP1 co-precipitation of

Myc-FGD4 (Figure 5A). We next corroborate the interaction

between endogenous FGD4 and LMP1 by co-immunoprecipita-

tion assays using NPC cells expressing various forms of LMP1.

The resulting cell lysates were subsequently incubated with an

anti-FGD4 antibody coupled with protein G beads to precipitate

endogenous FGD4. As shown in Figure 5B, Flag-LMP1 was co-

precipitated with FGD4, indicating a physical interaction between

FGD4 and LMP1. Notably, neither the CD40CT chimera nor the

LMP1 truncated form lacking the transmembrane domains 3 and

4 (DTM3/4 and DTM3–6) could be detected in the FGD4-

associated protein complexes, confirming the observation that

LMP1 mainly relies on its transmembrane domains 3 and 4 to

interact with FGD4.

LMP1 directly interacts with FGD4
To further investigate whether LMP1 directly interacted with

FGD4, we conducted in vitro affinity chromatography assays using

GST-FGD4 as bait to precipitate in vitro-translated, [35S]methio-

nine-labeled LMP1. As shown in Figure 5C, in vitro-translated,

[35S]methionine-labeled LMP1 was precipitated by GST-FGD4,

indicating a direct interaction between LMP1 and FGD4.

To buttress the direct interaction between LMP1 and FGD4

within live cells, we carried out an advanced bioluminescence

resonance energy transfer (BRET2) assay using NPC cells. This

technology uses Renilla luciferase (Rluc) as the donor molecule and

a GFP2 as the acceptor molecule in an assay analogous to

fluorescence resonance energy transfer (FRET) but without the

need for the use of an excitation light source. As shown in

Figure 5D, the BRET signal was evident in cells co-expressing

Rluc-LMP1 and GFP2-FGD4, but not in the controls (Rluc/

GFP2, Rluc-LMP1/GFP2, and Rluc/GFP2-FGD4; P = 0.005,

0.016, and 0.004, respectively, vs. Rluc-LMP1/GFP2-FGD4).

Moreover, expression of Flag-LMP1 in combination with Rluc-

LMP1/GFP2-FGD4 competitively decreased the BRET ratio

(P = 0.004; paired t-test), providing evidence for specificity.

LMP1 transmembrane domains are required for its co-
localization with FGD4, the redistribution of actin, and
the promotion of NPC cell motility

To investigate whether LMP1 affected the localization of FGD4

through protein-protein interaction, we performed subcellular

fractionation using postnuclear extracts of NPC cells expressing

LMP1 or the DTM3–6 form (Figure 5E), and performed immuno-

fluorescence staining of FGD4 using NPC cells expressing various

forms of LMP1 (Figure 6A). As shown in Figure 6A, LMP1

appeared to recruit a fraction of FGD4 to the perinuclear regions

(Golgi apparatus) where LMP1 was localized, compared to a

primary cytoplasmic localization of FGD4 in control vector-

transfected cells (data not shown). In contrast, replacement

(CD40CT) or deletion of the transmembrane domains (in

particular DTM3/4 and DTM3–6) of LMP1 substantially

impaired its co-localization with FGD4. Moreover, expression of

full-length LMP1 led to FGD4 redistribution from fractions 2–5 to

fractions 2–9 compared with the vector-expressing cells

(Figure 5E); however, expression of the DTM3–6 form appeared

not to result in this redistribution, suggesting that LMP1

interaction with FGD4 affects the intracellular distribution of

FGD4. Concomitantly, LMP1 expression led to a notable

redistribution of b-actin (a component of F-actin) from fractions

1–18 to fractions 1–28 (Figure 5E), implying a rearrangement of

actin filaments. In contrast, expression of the DTM3–6 had no

effect on this event, agreeable with the immunofluorescence

staining data in Figure 2D. This redistribution was not due to a

general alteration of protein localization, because the distribution

of caveolin-1 (CAV1) was comparable in all examined cells. While

efforts to detect traces of Cdc42 in all fractions were not successful,

these data functionally linked the LMP1-FGD4 interaction with

actin redistribution, suggesting that LMP1 induces actin rear-

rangement by enhancing FGD4 activity toward Cdc42.

To investigate whether the above events contributed to cell

motility, we conducted transwell migration assays using NPC cells

expressing various forms of LMP1. As shown in Figure 6B, LMP1

expression clearly induced cell motility compared with the vector

control (P,0.001; paired t-test); however, deletion of the

transmembrane domains apparently impaired this ability of

LMP1 (P,0.01; paired t-test). Moreover, the CD40CT chimera

failed to induce cell motility compared with the vector control

(P,0.005; paired t-test), correlating with its eliminated activation

of Cdc42 (a 0.6-fold increase; Figure 6C).

FGD4 and Cdc42 coordinate for LMP1-induced actin
rearrangement and cell motility

To verify the requirement of FGD4 and Cdc42 in LMP1-induced

actin rearrangement, we used RNA interference to deplete FGD4

or Cdc42 from NPC cells, followed by expression of GFP-LMP1

and staining for F-actin. As shown in Figure 7A, expression of

independent experiments is shown in C (*, P,0.001; paired t-test). The effect of FGD4 on LMP1-mediated Cdc42 activation was demonstrated by
calculating the relative fold-change in active Cdc42 with expression of both LMP1 and FGD4 versus expression of LMP1 alone (B; numbers in italics).
The mean 6 SD of five independent experiments is shown in D (*P,0.05, **P,0.01; paired t-test). (E) Co-immunoprecipitation of Flag-LMP1 with
Myc-FGD4. NPC-TW01 cells that had been transfected with the indicated plasmids were lysed after incubation as described in B. The resulting cell
lysates were applied to co-immunoprecipitation assays with an anti-Myc affinity matrix. The precipitated protein complexes were analyzed by
Western blotting with anti-LMP1 (S12) and anti-Myc (9E10) antibodies. (F) NPC-TW01 cells that had been transfected with plasmids encoding Flag-
LMP1 or Flag-CD40CT together with Myc-FGD4 were lysed after incubation as described in B. A portion of the resulting cell lysate was analyzed by co-
immunoprecipitation assays using an ani-Myc affinity matrix and the remainder was analyzed by GST-CBD pull-down assays, as described above.
doi:10.1371/journal.ppat.1002690.g004
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Figure 5. LMP1 via its transmembrane domains 3 and 4 interacts with FGD4 and leads to redistribution of actin. (A) Co-
immunoprecipitation of Myc-FGD4 with Flag-LMP1. NPC-TW04 cells were co-transfected with 2 mg of expression plasmids for Myc-FGD4 plus 1.5 mg
of expression plasmids for Flag-tagged full-length, truncated, or chimeric LMP1. Cells were lysed at 24 h post-transfection, and the resulting cell
lysates were analyzed by co-immunoprecipitation assays using an anti-Flag affinity matrix. Details are provided in Materials and Methods. After an
overnight incubation at 4uC, the precipitated protein complexes were analyzed by Western blotting using anti-Myc and anti-Flag antibodies. (B) Co-
immunoprecipitation of Flag-LMP1 with endogenous FGD4. NPC-TW04 cells transfected with 2 mg of expression plasmids for Flag-LMP1, its truncated
forms, or CD40CT chimera were lysed at 24 h post-transfection. The resulting cell lysates were analyzed by co-immunoprecipitation assays using anti-
FGD4 antibodies coupled with protein G beads. Details are provided in Materials and Methods. After an overnight incubation at 4uC, the precipitated
protein complexes were analyzed by Western blotting using anti-FGD4 and anti-LMP1 antibodies. (C) In vitro binding of LMP1 to FGD4. Equal
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GFP-LMP1 but not GFP alone in control siRNA (siCtrl)-treated

NPC cells resulted in filopodia formation at the plasma membrane.

In contrast, knockdown of either FGD4 or Cdc42 led to the

disappearance of such actin substructures resulting from GFP-

LMP1 expression, demonstrating the equivalent roles of FGD4 and

Cdc42 in LMP1-induced actin rearrangement.

amounts of in vitro-translated, [35S]methionine-labeled LMP1 proteins were incubated with immobilized GST or GST-FGD4, as detailed in Materials
and Methods. The bound LMP1 proteins were resolved by SDS-PAGE followed by autoradiography. The amounts of GST-fusion proteins (arrowhead)
were determined by Coomassie blue staining. (D) Detection of a direct interaction between LMP1 and FGD4 in living cells using BRET2 assays. BRET2

ratios were measured in NPC-TW04 cells expressing the indicated constructs. Cells were detached at 24 h post-transfection and analyzed by BRET2

assays as described in Materials and Methods. Expression of the GFP2-fused Renilla luciferase (Rluc-GFP2) served as a positive control. The data
represent the means 6 SDs of four independent readings from one representative result of four independent experiments (*P,0.01; paired t-test).
Expression levels of the indicated fusion proteins were determined by Western blot analysis of a portion of cell lysates using the respective
antibodies. (E) NPC-TW04 cells were transfected with 1 mg of plasmid for Flag-LMP1, its truncated form (DTM3–6), or empty vector, and then grown
for 24 h. Cell lysates were individually harvested for subcellular fractionation as described in Materials and Methods. Every fraction from fractions 1–9
and every other fraction from fractions 11–28 were analyzed by Western blotting with specific antibodies against LMP1, FGD4, b-actin, and CAV1.
doi:10.1371/journal.ppat.1002690.g005

Figure 6. Deletion of the transmembrane domains of LMP1 impairs its ability to co-localize with FGD4 and to promote cell motility.
(A) Co-localization of LMP1 with FGD4. NPC-TW02 cells grown on coverslips were transfected with 0.5 mg of expression plasmid for Flag-LMP1 or its
truncated or chimeric forms. Cells were fixed after a 24-h incubation and a following 6-h serum starvation, and then co-stained with primary anti-
FGD4 and anti-Flag antibodies and secondary FITC-conjugated (green) and TRITC-conjugated (red) antibodies, respectively. Nuclei were identified by
DAPI staining (blue). Images were acquired using a ZEISS LSM510 confocal microscope as detailed in Materials and Methods. Scale bars, 10 mm. (B)
Induction of cell motility by LMP1. NPC-TW02 cells were transfected with the plasmid for Flag-LMP1 or its truncated or chimeric forms. After 24 h, the
cells were re-seeded for transwell migration assays as detailed in Materials and Methods. Images of migrating cells in each experiment were acquired
at 2006magnification. The number of migrating cells was counted and presented as the mean 6 SD of four independent experiments (*P,0.01,
**P,0.005; paired t-test). (C) The level of active Cdc42 under each condition was determined by GST-CBD pull-down assays of cell lysates prepared
from a portion of cells used in transwell migration assays, as described above. The amounts of GST-CBD were determined by Ponceau S staining.
doi:10.1371/journal.ppat.1002690.g006
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Figure 7. The action of the LMP1-FGD4-Cdc42 axis in NPC cells leads to actin rearrangement and increased cell motility. (A) NPC-
TW02 cells grown on coverslips were co-transfected with the indicated siRNA duplexes plus pEGFP-LMP1 or pEGFP vector, and then incubated for
48 h. Following a 6-h serum starvation, cells were fixed and stained with TRITC-conjugated phalloidin to examine actin filament (F-actin)
arrangement. Images were acquired using a ZEISS LSM510 confocal microscope. Scale bar, 20 mm. (B) NPC-TW02 cells were co-transfected with the
indicated siRNA duplexes and a Flag-LMP1 expression plasmid or empty vector. After 24 h, the cells were re-seeded for transwell migration assays as
detailed in Materials and Methods. Images of migrating cells in each experiment were acquired at 2006magnification. The number of migrating cells
was counted and presented as the mean 6 SD of four independent experiments (*P,0.001, **P,0.01; paired t-test). (C) The level of active Cdc42
under each condition was determined by GST-CBD pull-down assay of cell lysates prepared from a portion of cells used in transwell migration assays,
as described above. ND, not detectable. (D) NPC-TW02 cells were co-transfected with control or FGD4 siRNA plus a Flag-LMP1 expression plasmid or
empty vector, with and without co-transfection of an expression plasmid for Flag-Cdc42DN (DN) or Flag-Cdc42CA (CA). At 24 h post-transfection, the
cells were re-seeded for transwell migration assays. Images of migrating cells in each experiment were acquired at 2006magnification. The number
of migrating cells was counted and presented as the mean 6 SD of three independent experiments (*P,0.05, **P,0.01; paired t-test). (E) The level of
active Cdc42 under each condition was determined by GST-CBD pull-down assay of cell lysates prepared from a portion of cells used in transwell
migration assays, as described above.
doi:10.1371/journal.ppat.1002690.g007
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To investigate whether the above events result in increased cell

motility, we next performed transwell migration assays using NPC

cells co-expressing Flag-LMP1 and siRNA specific for FGD4 or

Cdc42. The data revealed that, compared to vector-transfected

cells, expression of LMP1 in control siRNA (siCtrl)-treated cells

increased cell motility (Figure 7B, P = 0.0001). This LMP1-

induced cell motility was reduced by approximately 50% by

knockdown of either FGD4 (P = 0.008) or Cdc42 (P = 0.005;

Figure 7B). This reduced cell motility was associated with a

decreased level of LMP1 activation of Cdc42; knockdown of

FGD4 decreased the fold-increase in active Cdc42 from 4.7 to 0.9,

and knockdown of Cdc42 decreased active Cdc42 to undetectable

levels (Figure 7C). Despite its specificity toward Cdc42, FGD4 has

also been shown to indirectly promote Rac1 activation [44]. To

clarify whether Rac1 activation was involved in LMP1-induced

cell motility, we assessed the level of active Rac1 using NPC cells

prepared from similar experiments as described above. The results

revealed that neither knockdown of FGD4 nor reconstitution of

FGD4 can affect the activation of Rac1 in NPC cells (Figure S5A

and S5B). In addition, knockdown of Cdc42 had no effect on the

activation of Rac1 or RhoA (Figure S5C). Furthermore, neither

knockdown of Rac1 nor knockdown of RhoA can affect the

LMP1-induced cell motility (Figure S5D and S5E). Taken

together, these data conclusively demonstrated that Rac1 and

RhoA are not involved in LMP1-induced cell migration of NPC

cells.

To buttress the requirement of Cdc42 activity for the LMP1-

induced cell motility, we conducted the transwell assays similar

to those used in Figure 7B, except we co-expressed Flag-LMP1

with Flag-Cdc42DN (a dominant negative mutant) in control

siRNA-treated cells to block Cdc42 activity, or co-expressed

Flag-LMP1 with Flag-Cdc42CA in FGD4 siRNA-treated cells to

bypass the effect of FGD4 depletion. As shown in Figure 7D,

co-expression of LMP1 with Cdc42DN reduced LMP1-induced

cell motility by approximately 50% (P = 0.02; paired t-test), a

reduction reminiscent of the effect of FGD4 depletion

(Figure 7B). Conversely, co-expression of LMP1 with Cdc42CA

partially reversed the reduction in cell motility caused by FGD4

depletion (Figure 7D, P = 0.004), revealing that active Cdc42 was

responsible for mediating the cell migration triggered by the

LMP1-FGD4 axis.

Both LMP1 and FGD4 are expressed in NPC tissues
To explore the physiological relevance of LMP1 and FGD4 in

NPC, we assessed LMP1 and FGD4 expression in NPC

specimens. We first performed quantitative RT-PCR analyses

using mRNAs isolated from specimens from 13 NPC patients and

14 controls. As shown in Figure 8A, LMP1 mRNA expression was

exclusively detected in NPC specimens. Moreover, FGD4 mRNA

was expressed at a higher level in NPC specimens than in controls

(0.42260.173 vs. 0.13160.135; P = 0.0005; two-tailed Mann

Whitney test); however, no correlation was observed between the

levels of FGD4 and LMP1 mRNA (P = 1; Spearman test). To

detect FGD4 and LMP1 proteins in NPC specimens, we next

conducted immunohistochemical staining for FGD4 and LMP1

on consecutive NPC tissue sections from 48 NPC cases. Among

them, both FGD4 and LMP1 were detectable in 29 cases and no

correlation was shown between the levels of FGD4 and LMP1

(P = 0.85; Spearman test). Despite this, it was notable that LMP1

and FGD4 exhibited similar staining patterns, prominently at the

cell membrane, as shown in three representative cases (Figure 8B).

These data provide a potential physiological relevance for the

LMP1-FGD4 interaction in NPC tissues.

Collectively, our data reveal that LMP1 induces Cdc42 activation

by directly binding to FGD4, promoting actin rearrangement and,

ultimately, cell migration.

Discussion

Although Puls et al. have previously linked Cdc42 activation to

LMP1-induced actin rearrangement in fibroblasts [17], the

molecular basis of Cdc42 activation by LMP1 and its role in

EBV-associated malignancy remained to be elucidated. Here, we

demonstrated that LMP1 induces Cdc42 activation in NPC cells

via a direct interaction with the Cdc42-specific GEF, FGD4,

leading to actin remodeling and increased cell motility. We further

verified the expression of LMP1 and FGD4 in NPC specimens,

not only providing support for the physiological relevance of this

mechanism but also linking FGD4 to tumorigenesis for the first

time.

Pathogenic microbes, including viruses, commonly hijack the

host cell processes, such as cytoskeleton reorganization, to benefit

their own survival in aspects of attachment, entry into cells,

movement within and between cells, as well as vacuole formation

and remodeling [45,46]. In addition to LMP1, several viral

proteins have been documented to affect the function of Rho

protein, which is highly involved in the regulation of cytoskeleton

organization. For instance, the E6 oncoprotein of high-risk human

papilloma virus type 16 interacts with a binding partner of a GEF

(ARHGEF16) to coordinate Cdc42 activation [47], and the Nef

protein of human immunodeficiency virus type 1 recruits the GEF

Vav1 into plasma membrane microdomains, where it associates

with and activates Cdc42/PAK2 (p21-activated kinase 2) [48]. To

our knowledge, our evidence that LMP1 elicits Cdc42 activation

via direct binding to a Cdc42-specific GEF is the first such

demonstration for a viral oncoprotein. It has been proposed that

FGD4 is targeted to a preexisting specific actin structure through

its FAB domain [35]. LMP1 interaction with FGD4 likely

promotes recruitment of FGD4 to the sites where LMP1 is

present (Figure 5E and 6A) and thereby elicits Cdc42 activation in

the vicinity of the actin structure associated with FGD4 (Figures 2D

and S2). This process ultimately results in spatial reorganization of

the actin cytoskeleton and regulates cell morphogenesis and cell

motility [35,49], in line with our observation that LMP1 induces

the formation of filopodia at the cell surface (Figures 2D and 7A)

and promotes cell migration via FGD4/Cdc42 (Figure 7B–7E).

In this study, we demonstrated that LMP1 directly interacts

with FGD4 (Figure 5C and 5D) and enhances FGD4 activity

toward Cdc42 (Figure 4F). The LMP1-FGD4 interaction requires

the transmembrane domains 3 and 4 of LMP1 and the PH1-to-

PH2 domains (phosphoinositide-binding domains) of FGD4

(Figures 4E, 4F, 5A, and 5B), indicating that the membrane/lipid

association of both proteins may allow or enhance their

interaction. We have previously identified that upon synthesis in

the endoplasmic reticulum (ER), LMP1, through its transmem-

brane domains 3–6, interacts with PRA1 (the prenylated Rab

acceptor 1) for transport from the ER to the Golgi apparatus [50],

an intracellular compartment where LMP1 primarily induces

signaling pathways [50,51]. Deletion of the LMP1 transmembrane

domains (in particular 3–6) or knockdown of PRA1 leads to LMP1

retention in the pre-Golgi compartment (Figures 2D, 5E, 6A, and

S2B; [50]) concomitant with a reduction of Cdc42 activation

(Figures 2B, 2C, and 6C; data not shown), implying that the

proper localization of LMP1 is needed for its full activation of

Cdc42. These data elicit an argument that the impaired FGD4

interaction of the truncated LMP1 (DTM3/4 and DTM3–6)

actually arises from the impaired trafficking process instead of
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deletion of specific transmembrane domains. Here we propose

that LMP1 interacts with FGD4 via the transmembrane domains

3 and 4, and subsequently recruits and/or enhances FGD4

association with the membrane during the Golgi-directed traffick-

ing of LMP1 (Figure 8C). This model is supported by several lines

of data as the following. First, expression of LMP1 but not its

truncated form (in particular DTM3–6) leads to FGD4 redistri-

bution toward the LMP1-containing fractions as demonstrated by

subcellular fractionation (Figure 5E) and immunofluorescence

staining (Figure 6A). These data suggest that LMP1 interaction

with FGD4 indeed occurs prior to LMP1 localization to specific

compartments. Second, the short N-terminus and the transmem-

brane domains 1 and 2 of LMP1 have been shown to be required

for targeting of LMP1 to the lipid raft [52,53]. Deletion of these

domains (denote DNT and DTM1/2) also impedes the Golgi-

directed trafficking of LMP1 (data not shown; Figures 2D and 6A)

but does not abolish LMP1 interaction with FGD4 (Figure 5A and

5B), revealing that this interaction is not restricted at certain

compartments but rather relies on the transmembrane domains 3

and 4 of LMP1. Agreeably, the CD40CT chimera fails to interact

with FGD4 (Figures 4F, 5A, and 5B) despite its intact membrane

localization (Figures 2D and 6A).

Figure 8. Expressions of LMP1 and FGD4 in NPC tissues. (A) Elevated FGD4 mRNA levels in NPC specimens compared with normal
nasopharyngeal tissues. mRNA was isolated from specimens of 13 NPC patients (NPC) and 14 control individuals with nasosinusitis (NPN). Each mRNA
sample was then reverse transcribed and analyzed by quantitative RT-PCR using specific primer sets. The expression levels of FGD4 or LMP1 in each
specimen were determined by normalizing the reading of FGD4 or LMP1 to that of COL4A6 (Collagen, type IV, alpha), an internal control that showed
a consistent expression level among specimens. The data were analyzed by Box-plot analyses. The box indicates the 25th and 75th percentiles of the
data range; the middle line indicates the median (*P = 0.0005; two-tailed Mann Whitney test). (B) Immunohistochemical staining for LMP1 and FGD4
in formalin-fixed, paraffin-embedded consecutive NPC tissue sections. Predominant expression of LMP1 and FGD4 was detected at the cell
membrane. The images shown are representative from three cases and were acquired at 4006magnification. (C) Model for the action of the LMP1-
FGD4-Cdc42 axis in NPC cells. The viral oncoprotein LMP1 interacts with FGD4, a Cdc42 GEF, mainly through the transmembrane domains 3 and 4
(TM3/4) of LMP1 and the PH1-to-PH2 domains (PH1-2) of FGD4. During the intracellular trafficking of LMP1 to the lipid-rich compartments (the Golgi
apparatus and the plasma membrane), LMP1 interaction with FGD4 may promote membrane association, oligomerization, and/or conformation
change of FGD4, leading to an enhanced FGD4 activity toward Cdc42. The LMP1-involved membrane association of FGD4 may also increase the
chance for FGD4 to recruit Cdc42 (via the FGD4 DH domain) that is targeted to the membrane by independent mechanisms, thereby inducing Cdc42
activation. Once activated, active Cdc42 subsequently binds downstream effectors that are involved in regulating the arrangement of actin filament,
ultimately contributing to increased cell motility of NPC cells.
doi:10.1371/journal.ppat.1002690.g008
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Like some GEFs whose activation is stimulated by protein-

protein interaction [54–56], it is assumed that FGD4 activation is

potentiated by interaction with LMP1 or self-oligomerization

(Figure S4C). Further localization of LMP1 and FGD4 to lipid-

rich compartments (the Golgi apparatus and the plasma mem-

brane) likely strengthens the LMP1-FGD4 interaction and the

membrane association of FGD4, leading to an enhanced FGD4

activity toward Cdc42 (the model in Figure 8C). Conceivably, the

lipid in the membrane may enhance stimulation of FGD4

activities. In line with this, deletion of the PH1-to-PH2 domains

of FGD4 substantially impairs its activation of Cdc42 (Figure 4C),

indicating that membrane/lipid association is involved in the

regulation of FGD4 activity. As the truncated LMP1 (DTM3/4

and DTM3–6) still retains ,30% activation of Cdc42, we

speculate that the targeting of LMP1 to the lipid raft (via the N-

terminus and the transmembrane domains 1 and 2) may indirectly

assist FGD4 to associate with the lipid/membrane. Further

investigation will be needed to clarify the mechanisms in greater

details. Importantly, LMP1-induced Cdc42 activation can be

blunted by knockdown of FGD4 (Figure 3) or overexpression of

functionally impaired forms of FGD4 (Figure 4D), indicating that

LMP1 acts upstream of FGD4 rather than in parallel with it to

induce Cdc42 activation. We propose that the functionally

impaired forms of FGD4 (DDH and PH1-2) inhibit LMP1-

induced Cdc42 activation by competitively impeding the interac-

tion between LMP1 and full-length FGD4 (Table S1). Intriguingly,

the FAB-DH form of FGD4, which interacts poorly with LMP1,

could still inhibit LMP1-induced Cdc42 activation, probably by

competing with full-length FGD4 for access to Cdc42. Apart from

this, phosphatidylinositol 3-kinase (PI3K) has been linked to the

translocation of FGD4 during infection of the enteric parasite

Cryptosporidium parvum [57]. In this case, C. parvum infection induces

recruitment of FGD4 to the host cell-parasite interface; this

process, which results in Cdc42 activation, is dependent on PI3K

and is required for C. parvum-induced actin remodeling and cellular

invasion [57]. Although it has been demonstrated that LMP1 is

able to act through its C-terminus to activate PI3K [58], our study

found that this region is dispensable for LMP1 activation of Cdc42

(Figure 2B). Moreover, treatment of LMP1-expressing cells with

the PI3K inhibitors, wortmannin and LY294002, did not block the

LMP1-induced Cdc42 activation (data not shown), indicating that

the LMP1-associated functional regulation of FGD4 involves the

LMP1-FGD4 interaction instead of PI3K activity.

We noted that LMP1, together with FGD4, is expressed

heterogeneously at the plasma membrane as well as the Golgi

apparatus (Figure 6A) and induces Cdc42 activation at these sites

(Figure S2A). It has been suggested that restricted localization of

active Cdc42 is important for its distinct functions [59], suggesting

the possibility that LMP1 induction of Cdc42 activation at the

plasma membrane and the Golgi apparatus serves distinct

purposes. Given that Cdc42 also controls the intracellular protein

trafficking, including the Golgi-to-ER retrograde transport [60,61]

and protein exit from the trans-Golgi network [19,62], it is

conceivable that the LMP1-FGD4-Cdc42 cascade may have a

regulatory role in intracellular protein transport apart from cell

migration. We speculate that LMP1-induced Cdc42 activation

may attenuate Golgi-to-ER retrograde protein transport [60],

promoting LMP1 retention at the Golgi apparatus and sustaining

LMP1-mediated signaling. Further investigation will be needed to

dissect the interplays between LMP1 and FGD4 within distinct

compartments and elucidate how their functions are coordinated

to affect cellular processes.

Although FGD4 has been implicated in neural development

[29,63,64], we here delineate a potential role for FGD4 in NPC

progression that is associated with LMP1. We verified the

expression of LMP1 and FGD4 in NPC tissues at both mRNA

and protein levels using the quantitative RT-PCR and immuno-

histochemistry, respectively (Figure 8A and 8B). Intriguingly,

FGD4 mRNA expression appears to be elevated in cancerous

tissues compared to the normal controls (Figure 8A), although the

underlying mechanism remains to be identified. In any case, it is

conceivable that higher levels of FGD4 in NPC tissues lead to an

increase in FGD4 function. In addition, it was recently shown that

FGD1, which is functionally related to FGD4, is up-regulated in

human prostate and breast cancer, and regulates cancer cell

invasion by modulating Cdc42 activation in a cell model [65].

Accordingly, our findings highlight the importance of elucidating

the mechanism by which FGD4 and its related proteins are

dysregulated in tumor development.

Materials and Methods

Ethics statement
This research followed the tenets of the Declaration of Helsinki

and all subjects signed an informed consent approved by

Institutional Review Board of Chang Gung Memorial Hospital

before their participation in this study and for the use of tissue

samples collected before treatment.

Cell culture
NPC-TW01, -TW02, -TW04 and -TW06 cell lines, which had

been established using NPC biopsy specimens collected from four

NPC patients, respectively [66,67], were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS) at 37uC in a humidified 5% CO2 environ-

ment. The inducible LMP1-expressing 293 cell line (293 Tet-On),

generated previously [50], was grown on 1% collagen-coated

dishes and maintained in DMEM supplemented with 10% FBS,

100 mg/ml G418, and 50 mg/ml hygromycin. The human

embryonic kidney cell line HEK293, obtained from American

Type Culture Collection (ATCC; CRL 1573), was grown on 1%

collagen-coated dishes and cultured in DMEM containing 10%

equine serum. The nasopharyngeal epithelium cell line (NP69) and

a stable LMP1-expressing NP69 cell line (NP69-LMP1) were

generous gifts from Dr. Sai-Wah Tsao (University of Hong Kong,

China). The growth medium used for NP69 and NP69-LMP1 cells

has been previously described in detail [68]. Unless specified, all

the reagents were purchased from Invitrogen (Carlsbad, CA,

USA).

Clinical specimens
Freshly frozen biopsied tissues from 13 NPC patients and 14

control individuals with nasosinusitis, and slide-mounted consec-

utive NPC tissue sections from 48 NPC patients were collected at

Chang Gung Memorial Hospital (Lin-Kou, Taiwan). Clinical data

for the NPC patients are presented in Table S2.

Antibodies
The anti-LMP1 monoclonal antibody (S12) was affinity purified

from a hybridoma. Mouse anti-Flag (M2) and anti-HA (12CA5)

antibodies were purchased from Sigma-Aldrich (St. Louis, MO,

USA); a mouse anti-Myc tag (9E10) antibody was purchased from

Cell Signaling Technology (Danvers, MA, USA); mouse anti-

human Cdc42 and anti-Rac1 antibodies were purchased from BD

Transduction Laboratories (BD Biosciences, San Jose, CA, USA);

a mouse anti-human RhoA antibody was purchased from Santa

Cruz Biotechnologies, Inc. (Santa Cruz, CA, USA). Rabbit

antibodies against human DOCK9, intersectin-1, FGD3, and
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CAV1 were purchased from Santa Cruz Biotechnologies; rabbit

anti-human FGD1 antibody was purchased from GeneTex

(Irvine, CA, USA); rabbit anti-human FGD4 antibody was

purchased from both Novus Biologicals (Littleton, CO, USA)

and GeneTex (Irvine, CA, USA). Fluorescein isothiocyanate

(FITC)-, tetramethylrhodamine isothiocyanate (TRITC)-, and

horseradish peroxidase (HRP)-conjugated secondary antibodies

were purchased from BD Transduction Laboratories.

Plasmid construction
N-terminally Flag-tagged LMP1 as well as its truncated

derivatives were generated by ligation of PCR-amplified DNA

fragments to HindIII/BamHI-treated pCMV2-Flag (Kodak) as

described previously [50]. GFP-tagged LMP1 was generated by

ligation of DNA fragments to HindIII/BamHI-treated pEGFP-C3

(BD Biosciences). Full-length and truncated FGD4 constructs were

generated by PCR using human FGD4 cDNA as a template; the

resulting DNA fragments were subsequently inserted into

pCMV2-Flag at the EcoR1/XbaI sites or into pCMV-Myc (BD

Biosciences) at the KpnI/XbaI sites. Glutathione S-transferase

(GST)-tagged full-length FGD4 construct was created by ligating

the respective PCR-amplified DNA fragments into EcoRI/XhoI-

treated pGEX 4T.1 (BD Biosciences). Plasmids encoding the GST

fusion proteins, GST-CBD (containing the active Cdc42-binding

domain of Wiskott-Aldrich syndromewith protein, WASP; aa 201–

321), GST-PBD (containing the active Rac1-binding domain of

PAK1; aa 70–132), and GST-RBD (containing the active RhoA-

binding domain of Rhotekin; aa 7–113) were gifts from Dr.

Jacques Bertoglio (INSERM U461, Faculté de Pharmacie-Paris

Sud, Chatenay-Malabry, France). pEGFP-CBD was generated by

subcloning the DNA fragments encoding the CBD of WASP into

pEGFP-C3. Flag-tagged, constitutively active (CA) and dominant-

negative (DN) versions of Cdc42, Cdc42L61 and Cdc42N17,

respectively, were generated by site-directed mutagenesis using

primers bearing the desired sequence changes. The DNA

fragments were subsequently inserted into pCMV2-Flag at

EcoRI/BamHI sites. For BRET2 assays, N-terminally Rluc-tagged

LMP1 and GFP2-tagged FGD4 were generated by ligation of

PCR-amplified DNA fragments into KpnI/BamHI-treated

pRluc(h)-C2 and KpnI/XbaI-treated pGFP2-C1 vectors (PerkinEl-

mer Life and Analytical Sciences, MA, USA), respectively. Primer

sequences used for cloning are provided in Table S3.

Cell transfection and RNA interference
Unless specified, plasmid transfections were carried out using

Lipofectamine (Invitrogen), according to the manufacturer’s

instructions. Cells were incubated for 24 h prior to further

treatments. For RNA interference, cells were co-transfected with

25 nM siRNAs as a set of four duplexes (SMARTpool) directed

against a specific gene, together with plasmids indicated elsewhere,

using Lipofectamine 2000 (Invitrogen) according to the manufac-

turer’s instructions. Cells transfected with non-targeting duplexes

(siCtrl) were used as a negative control. Cells were incubated for

48 h before further treatments, and the efficiency of gene silencing

was estimated by quantitative RT-PCR and Western blotting. All

siRNAs were purchased from Dharmacon (CO, USA) except

Rac1 siRNAs, which were purchased from Invitrogen.

Quantitative RT-PCR
Total RNA was purified using TRIzol (Invitrogen) and 1 mg of

each sample was reverse transcribed using ImProm-II and

Oligo(dT)15 primers (Promega). The resulting cDNAs were

analyzed using the FastStart DNA Master SYBR Green I reagent

(Roche, Germany) on a LightCycler (Roche), according to the

manufacturer’s instructions. The reactions were incubated at 95uC
for 10 min, followed by 45 cycles of 95uC for 10 s, 60uC for 5 s

and 72uC for 10 s. Primer sequences used in RT-PCR experi-

ments are presented in Table S4. The levels of individual target

mRNAs were normalized to the level of glyceraldehyde-3-

phosphate dehydrogenase (GADPH) mRNA in each sample.

Purification of GST-fusion proteins
pGEX construct-transformed Escherichia. coli (strain BL21) were

grown to mid-exponential phase, induced for 4 h with 0.5 mM

isopropylthiogalactoside and lysed by sonicating in PBST buffer

(16phosphate-buffered saline [PBS] with 2 mM EDTA, 0.1% b-

mercaptoethanol, 0.2 mM phenylmethylsulfonyl fluoride [PMSF],

and 5 mM benzamidine). The GST fusion proteins were purified

from bacterial lysates by incubation with glutathione-coupled

Sepharose beads (Amersham Biosciences).

Precipitation of active Cdc42, Rac1, and RhoA
The cellular level of the GTP-bound form of Cdc42 was

determined using the GST-CBD pull-down assays. Briefly, at

given incubation time after transfection, cells were cultured in

serum-free media for an additional 6 h and lysed in Nonidet P-40

(NP-40) lysis buffer (1% NP-40, 20 mM Tris-HCl pH 7.5,

150 mM NaCl, 1 mM Na3VO4, 5 mM EDTA pH 8.0, 10%

glycerol, 10 mg/ml leupeptin, 10 mg/ml aprotinin, 1 mM PMSF).

After centrifugation, the resulting lysates (1 mg protein) were

incubated with 20 mg of immobilized GST-CBD proteins at 4uC
for 1 h. CBD-bound proteins were centrifuged, washed three

times in NP-40 lysis buffer, boiled in sodium dodecyl sulfate (SDS)

sample buffer and analyzed by Western blotting, as described

below, using a Cdc42-specific antibody. GST-PBD and GST-

RBD were used for precipitation of active forms of Rac1 and

RhoA, respectively, following a similar procedure.

In vitro transcription/translation and in vitro affinity
chromatography assays

Full-length LMP1 cDNA was constructed and cloned into

pcDNA3.1 for in vitro transcription/translation. [35S]methionine-

labeled proteins were generated using the TNT Coupled

Reticulocyte Lysate System (Promega, Madison, WI, USA),

following the manufacturer’s recommendation. Briefly, a reaction

mixture (total volume, 100 ml) containing 50 ml of TNT Rabbit

Reticulocyte Lysate, 4 ml of TNT Reaction Buffer, 2 ml of TNT

T7 RNA Polymerase, 2 ml of Amino Acid Mixture Minus

Methionine (1 mM), 2 ml of RNasin Ribonuclease Inhibitor

(Promega), 2 mg of pcDNA3.1-LMP1, 4 ml of [35S]methionine

(10 mCi/ml; Izotop, Hungary), 4 ml of Canine Pancreatic

Microsomal Membrances (Promega), and 30 ml of nuclease-free

water was incubated at 30uC for 90 min. Equal amounts of the in

vitro-translated, [35S]methionine-labeled LMP1 protein were incu-

bated with 20 mg of GST or GST-FGD4 immobilized on

glutathione-Sepharose beads, rotated overnight at 4uC, and then

washed five times with NP-40 lysis buffer. The bound LMP1

proteins were resolved by SDS-PAGE on a 10% gel followed by

autoradiography.

Co-immunoprecipitation assays
Cells expressing Flag-tagged and/or Myc-tagged proteins were

extracted in 1% NP-40 lysis buffer as described above and

fractionated by centrifugation (10,000 g, 15 min at 4uC) to obtain

cell lysates. For co-immunoprecipitation, cell lysates (500 mg

protein) from NPC cells expressing Flag- or Myc-tagged proteins

were incubated with 40 ml of a 50% (w/v) slurry of anti-Flag M2
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agarose (Sigma-Aldrich) or with 25 ml of a 50% (w/v) slurry of

anti-Myc affinity matrix (Sigma-Aldrich), rotated overnight at 4uC,

and then washed five times with NP-40 lysis buffers. For co-

immunoprecipitation of endogenous FGD4 and LMP1, cell lysates

(1 mg protein) from NPC cells expressing LMP1 were incubated

with 2 mg of anti-FGD4 IgG or control IgG together with 20 ml of

a 50% (w/v) slurry of protein G (Amersham Biosciences), and

further processed using procedures similar to those above. The

resulting protein products were eluted with SDS sample buffer and

analyzed by Western blotting using appropriate primary and

secondary antibodies.

Western blot analysis
Cells were lysed in 1% NP-40 lysis buffer as described above.

Protein concentrations were determined using the Protein Assay

Reagent (Bio-Rad, CA, USA), and equal amounts of proteins (30–

50 mg/lane) were resolved by SDS-polyacrylamide gel electropho-

resis (SDS-PAGE) on 7.5%–12% polyacrylamide gels. The

proteins were then electro-transferred onto nitrocellulose (NC)

membranes (Amersham Biosciences). After blocking with 5% non-

fat powdered milk in TBS, membranes were incubated with the

respective primary antibodies overnight at 4uC. Membranes were

then incubated with the appropriate HRP-conjugated secondary

antibody for 1 h at room temperature. Protein bands were

detected using enhanced chemiluminescence reagents (Pierce

ECL, Thermo Scientific) and Fuji SuperRx film.

BRET2 assay
NPC-TW01 cells grown on a 10 cm-dish were transfected with

plasmids encoding donor Renilla luciferase (Rluc)-tagged LMP1

(1 mg) and acceptor GFP2-tagged FGD4 (3 mg). Cells were

detached at 24 h after transfection and washed with Dulbecco’s

Phosphate Buffered Saline (D-PBS; Invitrogen) and then resus-

pended in D-PBS to a final density of approximately 26106 cells/

ml. Approximately 16105 cells/well were distributed in a 96-well

white polystyrene microplate (Conig, NY, USA). The DeepBlueC

coelenterazine substrate (PerkinElmer Life and Analytical Scienc-

es) was added to a final concentration of 5 mM, and biolumines-

cence emission was monitored immediately using a Fluoroskan

Ascent FL microplate fluorometer (Thermo Electron Corporation,

MA, USA), which allows the sequential integration of signals

detected in 410-nm and 515-nm windows. The BRET2 ratio is

calculated as the following ratio: (emission of transfected cells at

515 nm – emission of non-transfected cells at 515 nm)/(emission

of transfected cells at 410 nm – emission of non-transfected cells at

410 nm). The expression level of each fusion protein was analyzed

by Western blotting with appropriate antibodies.

Subcellular fractionation
NPC-TW04 cells grown on a 10-cm dish were transfected with

1 mg of pFlag-LMP1, pFlag-LMP1DTM3–6, or pFlag-CMV2

vector and incubated for 24 h. Cells were then homogenized and

centrifuged, and the resulting supernatant was layered onto a

continuous sucrose gradient (10%–45% sucrose) and centrifuged

for 1 h at 55,000 rpm. using an SW55 rotor (Beckman, Fullerton,

CA, USA). The fractions were collected manually from the top of

the gradient and 30 ml of every other fraction was subjected to

Western blot analysis. Details of this assay have been described

previously [50,69].

Immunofluorescence microscopy
Cells grown on poly-L-lysine-coated coverslides were fixed with

4% formaldehyde, and permeabilized and blocked with 0.1%

saponin containing 1% BSA for 20 min at room temperature. For

co-staining of Flag-LMP1 and FGD4, cells were incubated with

anti-Flag antibody (M2; 1:200 dilution) and anti-FGD4 antibody

(GeneTex; 1:50 dilution) for 2 h at room temperature, followed by

incubation with the respective fluorophore-conjugated secondary

antibody for 45 min. For actin filament staining, cells were

incubated in TRITC-conjugated phalloidin (50 mg/ml; Sigma-

Aldrich) for 1 h after fixation. Nuclei were stained with 49,6-

diamidino-2-phenylindole (DAPI; Sigma-Aldrich). All coverslides

were mounted with the Vectashield reagent (Vector Laboratories

Inc., CA, USA) and visualized by confocal microscopy using a

ZEISS LSM510 META laser-scanning confocal microscope (Carl

Zeiss, Germany) with a 6361.32 NA oil-immersion objective.

Immunohistochemistry
For detection of LMP1 and FGD4, consecutive slide-mounted

NPC sections were first treated with proteinase K at room

temperature for 15 min. Endogenous peroxidase activity was

inhibited by incubating with 3% H2O2 (DAKO). Nonspecific

binding was blocked with Antibody Diluent and Background

Reducing Component (DAKO). Sections were then incubated

with anti-FGD4 (GeneTex; 1:50 dilution) and anti-LMP1 (S12,

1:15 dilution) antibodies at room temperature for 1 h. After a

washing step, a HRP-conjugated secondary antibody was added

and sections were incubated at room temperature for 20 min.

Tissue sections were then treated with DAB reagent (DAKO);

3,39-diaminobenzidine tetrahydrochloride was used as a chromo-

gen. All images were acquired on an Olympus BX51 microscope

(Olympus, Japan). Expression of LMP1 and FGD4 was evaluated

according to the simplified H score system [70], which is based on

the percentage of cell staining: 3 ($90%), 2 (50%–89%), 1 (10%–

49%), or 0 (0%–9%), and the intensity of cell staining: 3 (high), 2

(moderate), 1 (low), or 0 (no cell staining). The two scores were

multiplied by each other and then divided by three to get the final

score.

Transwell migration assay
The motility of NPC-TW02 cells was evaluated by transwell

migration assays using a chemotaxis chamber (Corning, NY,

USA). Using calcium phosphate precipitation, NPC-TW02 cells

were transfected with 1 mg of plasmid for Flag-LMP1, its

transmembrane domain-truncated forms, CD40CT chimera, or

empty vector. For knockdown experiments, NPC-TW02 cells were

co-transfected with siRNAs (37.5 nM) directed against FGD4

(siFGD4), Cdc42 (siCdc42) or non-targeting duplexes (siCtrl), plus

1 mg of pFlag-LMP1 or pCMV-Flag vector. In a subset of assays,

cells were co-transfected with pFlag-LMP1 (0.75 mg) plus pFlag-

Cdc42DN or pFlag-Cdc42CA (1.5 mg each). The oligonucleotides

were mixed thoroughly in 250 ml of solution A (136.7 mM NaCl,

19.2 mM HEPES, pH 6.95), 2.5 ml of solution B (57.6 mM

Na2HPO4), and 12.5 ml of solution C (2.5 M CaCl2). After 30-min

incubation at room temperature, the mixtures were added to cells

and incubated for 6 h at 37uC. Twenty-four hours after

transfection, cells were trypsinized and washed twice with

serum-free DMEM, and then resuspended in 100 ml of serum-

free DMEM and seeded into the insert chamber (36105 cells).

After a 20-h incubation, cells that had migrated to the opposite

side of the insert (immersed in DMEM supplemented with 10%

FBS) in the lower well were fixed and stained with crystal violet

(1% crystal violet and 5% formaldehyde in 70% ethanol) for

30 min, followed by washing twice with double-distilled H2O

(ddH2O) to remove the background staining. The number of

migrating cells was counted in images acquired at 2006
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magnification for each experiment and analyzed with NIH Image

J software.

Statistical analyses
Quantitative data were presented as means 6 SDs for five

independent experiments. Significance between groups was

calculated using two-tailed paired t-tests. For clinical specimens,

significance between groups was calculated using two-tailed

Mann-Whitney tests. Correlation between groups was analyzed

using two-tailed Spearman tests. A P-value,0.05 was considered

statistically significant.

Accession numbers
The Entrez Gene ID numbers for genes or proteins described in

this study are as follows: 5176215 (LMP1), 121512 (FGD4), 998

(Cdc42), 5879 (Rac1), 387 (RhoA), 60 (b-actin), 2245 (FGD1),

89846 (FGD3), 6453 (Intersectin-1), 23348 (DOCK9), 857

(CAV1), 7124 (TNF), 3552 (IL-1a), 958 (CD40).

Supporting Information

Figure S1 No apparent effect of TNF-a and IL-1a on
Cdc42 activation in NPC cells. (A) Neither TNF-a nor IL-1a
can induce Cdc42 activation. NPC-TW01 cells cultured for 24 h

after seeding were treated with recombinant TNF-a (50 or

100 ng/ml) or with IL-1a (10 ng/ml) for 30 min under a serum-

free condition. Cells without cytokine treatment were used as a

control. Each cell lysate was then harvested for the GST-CBD

pull-down assays to determine the level of active Cdc42. A reduced

protein level of IkBa indicates the activation of NF-kB signaling

under the indicated treatment. (B) No apparent effect of TNF-a
and IL-1a on actin organization. NPC-TW04 cells that had been

grown on poly-L-lysine-coated coverslips overnight were treated

with TNF-a (100 ng/ml) or with IL-1a (10 ng/ml) for 30 min

under a serum starvation condition. Then cells were fixed and

permeabilized, followed by subsequent staining with primary anti-

p65 and FITC-conjugated secondary antibodies. Cells were co-

stained with TRITC-conjugated phalloidin to reveal the actin

filaments. Nuclei were identified by DAPI staining. Translocation

of p65 from the cytoplasm to the nuclei evidenced the activation of

NF-kB signaling. Images were acquired using a ZEISS LSM510

confocal microscope. Scale bars, 20 mm.

(PDF)

Figure S2 LMP1 appears to induce Cdc42 activation at
LMP1-resident sites. (A) Spatial distribution of active Cdc42

upon LMP1 expression. 293 Tet-On cells that had been grown on

poly-L-lysine-coated coverslips overnight were transfected with

1 mg of plasmid encoding an indicator for active Cdc42, EGFP-

CBD, and incubated for 24 h with or without Dox (5 mg/ml)

induction of LMP1 expression. Following a 6-h serum starvation,

cells were fixed with 3.7% formaldehyde and subsequently stained

with primary anti-LMP1 (S12) and TRITC-conjugated secondary

antibodies. Nuclei were identified by DAPI staining (blue). Images

were acquired using a ZEISS LSM510 confocal microscope. Scale

bars, 15–17 mm. The insets were acquired at higher magnification

(scale bars, 2–5 mm). (B) Co-localization of a portion of Cdc42

with LMP1. NPC-TW04 cells grown on coverslips overnight were

transfected with 0.5 mg of plasmid for EGFP-LMP1 or its DTM3–

6 truncated form and then incubated for 24 h. Following a 6-h

serum starvation, cells were fixed and subsequently stained with a

primary anti-Cdc42 antibody (P1, Santa Cruz; 1:50 dilution) and a

TRITC-conjugated secondary antibody. Nuclei were identified by

DAPI staining (blue). Images were acquired using a ZEISS

LSM510 confocal microscope. Scale bars, 20 mm. The insets

demonstrated co-localization of a portion of Cdc42 with EGFP-

LMP1 (yellow spots) rather than with the DTM3–6 form.

(PDF)

Figure S3 Knockdown of FGD4 in NPC cells and
sequence comparison of FGD4 between species. (A)

Knockdown efficiency of the targeted GEFs in NPC cells

expressing LMP1 or transfected with empty vector (control). Total

RNA isolated from cells of each treatment group was reverse

transcribed and analyzed by quantitative RT-PCR using specific

primer sets. The knockdown efficiency for each targeted GEF in

each treatment is presented as a ratio of the mRNA level of each

GEF in the knockdown cells divided by that in the respective

control. (B) Sequence comparison of human, rat, and mouse

FGD4. Shaded regions represent the conserved functional

domains of FGD4. Asterisks (*) indicate identical amino-acid

residues.

(PDF)

Figure S4 Functional characterization of FGD4. (A) NPC-

TW01 cells grown on coverslips overnight were transfected with

0.5 mg of plasmid for Myc-FGD4 or its truncated forms and then

incubated for 24 h. Following a 6-h serum starvation, cells were

fixed and subsequently stained with a primary anti-Myc antibody

(9E10) and a FITC-conjugated secondary antibody. Then the cells

were co-stained with TRITC-conjugated phalloidin to indicate the

actin filaments. Images were acquired using a ZEISS LSM510

confocal microscope. Scale bars, 20 mm. (B) FGD4 associates with

Cdc42 mainly through the DH domain. NPC-TW01 cells were

co-transfected with 1 mg of expression plasmid for Flag-tagged

Cdc42 and 1 mg of expression plasmid for Myc-tagged full-length

or truncated FGD4. At 24 h post-transfection, the cells were lysed

and the resulting cell lysates were analyzed by co-immunoprecip-

itation using an anti-Flag affinity matrix. The precipitated proteins

as well as unprecipitated lysates (input) were analyzed by Western

blotting with anti-Flag and anti-Myc antibodies. (C) Self-

association of FGD4. NPC-TW01 cells were co-transfected with

1 mg of expression plasmid for Flag-FGD4 and 1 mg of expression

plasmid for Myc-FGD4 or its truncated forms. At 24 h post-

transfection, the cells were lysed and the resulting cell lysates were

subjected to co-immunoprecipitation assays using an anti-Flag

affinity matrix, as described above.

(PDF)

Figure S5 Rac1 and RhoA are not involved in the NPC
cell motility mediated by the LMP1-FGD4-Cdc42 axis.
(A) Knockdown or (B) re-introduction of FGD4 has no effect on

Rac1 activation. NPC-TW04 cells were co-transfected with

25 mM control or FGD4 siRNA and 1 mg of expression plasmid

for Flag-LMP1 or empty vector. In the case of re-introduction,

2 mg of Myc-FGD4 expression plasmids or Myc vector were added

into the transfection. After 48-h incubation and a following 6-h

serum starvation, cells were lysed for GST-PBD pull-down assays

and analyzed for the level of active Rac1. (C) LMP1-induced

Cdc42 activation is not associated with Rac1 or RhoA activation.

NPC-TW02 cells were co-transfected with control or Cdc42

siRNA duplexes and 1 mg of expression plasmid for Flag-LMP1 or

empty vector. After 48-h incubation and a following 6-h serum

starvation, cells were lysed for GST-PBD and GST-RBD pull-

down assays to analyze the levels of active Rac1 and active RhoA,

respectively. (D) Rac1 and RhoA are not involved in LMP1-

induced cell migration. NPC-TW02 cells were co-transfected with

control, Rac1 or RhoA siRNA duplexes plus a plasmid for Flag-

LMP1 or empty vector. Cells were then re-seeded for transwell

migration assays as detailed above. (E) The knockdown efficiency

was confirmed by Western blot analysis of a portion of cells used in
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transwell migration assays with anti-Rac1 and anti-RhoA

antibodies.

(PDF)

Table S1 Functional characterization of FGD4 domains
and their respective effects on LMP1-mediated Cdc42
activation.
(PDF)

Table S2 Clinical information for the nasopharyngeal
biopsies used in the quantitative RT-PCR and immuno-
histochemistry analyses.
(PDF)

Table S3 Primer sets for generating expression vectors.
(PDF)

Table S4 Primer sets for quantitative RT-PCR.

(PDF)
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