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Abstract

Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to
the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major
bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and
basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic
events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish
that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In
contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella
demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate
proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that
Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially
aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or
aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated
binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the
AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR),
adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR
and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung
epithelium that may be potentially useful in the development of novel treatments for P. aeruginosa infections.
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Introduction

Pseudomonas aeruginosa is an opportunistic human pathogen

associated with a broad spectrum of life-threatening infections in

the setting of epithelial injury and immunocompromise (reviewed

in [1]). This gram-negative pathogen ranks among the leading

causes of hospital-acquired pneumonia, urinary tract infections,

bloodstream infections, and surgical site infections. In addition to

their frequent occurrence, nosocomial P. aeruginosa infections are

often severe, with an excess attributable mortality rate of almost

50% for mechanically ventilated patients with P. aeruginosa

pneumonia [2]. The bacterium is also the leading cause of

respiratory morbidity and mortality in patients with cystic fibrosis

(CF) [3,4], as well as a frequent cause of exacerbations in

individuals with advanced chronic obstructive pulmonary disease

[5]. P. aeruginosa infections are also reported as a complication of

HIV infections and are becoming more frequent as patients with

AIDS survive longer [6–8]. Notably, therapeutic options are

becoming increasingly limited with the continued emergence and

spread of multi-drug resistant strains. Thus, increasing our

understanding of the pathogenesis of P. aeruginosa infections is

critical for the development of new therapeutics that target this

medically important pathogen.

The pathogenesis of P. aeruginosa infections is multifactorial and

complex. Bacterial attachment is an initial and critical step that

involves complex interactions between bacterial adhesins and host

receptors either on the apical (AP) or basolateral (BL) surface of

polarized epithelium. Using cultured epithelial cells grown as

polarized monolayers, which recapitulate simple epithelial tissue,

or as three-dimensional cysts, which mimic the organization of

simple epithelial organs, we have recently demonstrated that N-

glycans are necessary and sufficient for bacterial binding and

consequent entry and cytotoxicity at the AP surface of polarized

epithelium [9]. In contrast, heparan sulfate (HS) chains of heparan

sulfate proteoglycans (HSPGs) are necessary and sufficient to

mediate these events at the BL surface of polarized cells. We

showed that in incompletely polarized cells, a model for tissue

injury, HSPGs are upregulated at the AP surface, which leads to

enhanced binding and subsequent tissue damage by P. aeruginosa.

These results provide an explanation, at least to some extent, for
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the increased susceptibility of injured tissue to P. aeruginosa

infections. Although our previous work characterized distinct AP

and BL host receptors, the downstream host signaling pathways

associated with these critical events and bacterial binding partners

remained to be elucidated.

Two major adhesins have been identified in P. aeruginosa, flagella

and type IV pili (Tfp) [10–12]. The single polar flagellum is a

polymer composed of flagellin, the product of the fliC gene,

although a large number of gene products are required for flagellar

assembly and function [13]. Flagella are required for adhesion to

cells, swimming motility, and biofilm formation. In addition,

monomeric flagellin is recognized by the innate immune system,

either by binding to Toll-like receptor 5 (TLR5) at the cell surface

or by recognition of individual subunits by intracellular cytosolic

sensors [14–18] Mechanistic or structural details of the interaction

of flagella with the host epithelium are still lacking. The flagellar

cap protein of P. aeruginosa strain O1 (PAO1), but not other strains,

binds to LewisX oligosaccharides in mucins [19], but whether this

is relevant to binding to host epithelial cells is unknown.

Tfp are polarly localized appendages composed of pilin

polymers that undergo reversible assembly and disassembly,

allowing the bacteria to move over a solid surface in a process

termed twitching motility (reviewed in [20]). Tfp also function as

phage receptors, contribute to early steps in biofilm formation, and

serve as adhesins to mammalian cells [21]. Several studies have

identified different glycosphingolipids as host receptors for Tfp-

mediated binding at the AP surface of polarized cells [22,23],

although their roles in mediating bacterial binding remain

controversial [24,25].

Following adhesion to host epithelium, P. aeruginosa can induce

host cell death or enter non-phagocytic cells (reviewed in [10,26]).

Internalization may permit the bacteria to penetrate the epithelial

cell layer, reach the bloodstream, and disseminate to distant

organs and/or it may represent a host defense mechanism that

contributes to bacterial clearance [10,27]. The molecular events

underlying P. aeruginosa invasion into non-phagocytic cells are

incompletely understood. P. aeruginosa entry is an actin-dependent

process that involves Rho family GTPases [28], activation of

tyrosine kinases, such as Src [29,30] or Abl [31] kinases and

subsequent tyrosine phosphorylation of several host proteins,

including caveolin [32]. We have previously shown that

phosphatidylinositol 3-kinase (PI3K) and its effector protein Akt

(also known as the serine threonine protein kinase B) are necessary

and sufficient for and are activated upon bacterial internalization

into Madin Darby Canine Kidney (MDCK) cells [33]. However,

specific AP or BL upstream receptors associated with this event

have not yet been identified, and the PI3K/Akt pathway can be

activated by many stimuli, including growth factor receptors, such

as the epidermal growth factor receptor (EGFR) [34]. Further-

more, the role of bacterial ligands, e.g. Tfp or flagella, in these

newly described signaling events has also not been investigated.

In this work, we characterize important bacterial and host

factors that play an essential role in the complex binding and

signaling networks utilized by P. aeruginosa. We rigorously assess the

role of Tfp and flagella in mediating bacterial binding to specific

host N-glycans and HSPGs at the AP and BL surfaces, and test

whether such interactions dictate activation of specific signaling

pathways. We demonstrate that Tfp are necessary and sufficient to

mediate maximal bacterial binding to N-glycans at the AP surface,

while flagella are necessary and sufficient to mediate maximal

bacterial binding to HS chains of HSPGs at the BL surface of

polarized airway epithelium. We find that P. aeruginosa internal-

ization at the AP surface is dependent on Tfp binding to N-glycans

and, to some extent, on activation of PI3K and Akt. P. aeruginosa

internalization at the BL surface is dependent on flagella binding

to HS followed by activation of EGFR and PI3K/Akt pathway.

Remarkably, flagella-coated beads alone are sufficient to trigger

EGFR phosphorylation and activation of downstream adaptor

protein. Our work identifies key factors and interactions required

for establishing P. aeruginosa attachment and internalization,

affording new avenues for development of treatments for acute

and chronic P. aeruginosa infections.

Results

Tfp-deficient P. aeruginosa mutant binds preferentially to
HS at the BL surface while flagella-deficient mutant binds
preferentially to N-glycans at the AP surface of polarized
epithelium

Our previous studies established that P. aeruginosa binds

preferentially to N-glycan chains at the AP surface of polarized

epithelium, with preferential affinity for more complex chains after

up-regulations of N-glycosylation [9]. At the BL surface, the

bacterium binds preferably to HS chains of HSPGs. To determine

whether flagella or Tfp, the major P. aeruginosa adhesins,

differentially mediate binding to these distinct AP and BL host

receptors, we utilized isogenic mutants of PAO1 in which the gene

encoding PilA, the major subunit of the Tfp (PAO1DpilA) or the

gene encoding FliC, the major subunit of flagella (PAO1DfliC), is

deleted. Standard adhesion assays, in which bacteria were added

for 2 h to the AP or BL surface of polarized Calu-3 cells grown as

polarized monolayers on Transwell filters, were performed [9].

While other P. aeruginosa adhesins have been identified, such as the

cup fimbrial adhesins [35] and lectins PA-IL (LecA) and PA-IIL

(LecB) [36], Tfp and flagella were the predominant adhesins under

the conditions of our experiments, as the PAO1DfliCDpilA double

mutant exhibited undetectable binding (data not shown and [21]).

Consistent with our previously published studies utilizing PAK

[9], PAO1 bound approximately 2-fold more efficiently to the BL

surface than to the AP surface of polarized airway epithelium

(Figure 1A). Both the Tfp mutant (PAO1DpilA) and the flagella

Author Summary

Pseudomonas aeruginosa is one of the most virulent
nosocomial opportunistic pathogens that is associated
with a broad spectrum of life-threatening infections.
Antibiotic resistance is widespread and attributable
mortality remains near 50%. Complex binding to epithelial
cells is a key first step for this potent pathogen to unleash
its armamentarium of virulence factors. Polarized epithe-
lium has distinct apical (AP) and basolateral (BL) surface,
composed of different glycosylated molecules, and P.
aeruginosa can potentially employ different adhesins to
bind to these receptors. Using isogenic mutants as well as
in vitro cell-free assays, we demonstrate that bacterial type
IV pili are necessary and sufficient to mediate AP
interactions with N-glycans whereas bacterial flagella
interact with heparan sulfate chains of proteoglycans on
the BL surface. These interactions induce specific host
signaling pathways that lead to subsequent pathogenic
events, such as bacterial entry into host epithelium.
Moreover, we show that flagella alone are sufficient to
activate the epidermal growth factor receptor and the
adaptor protein on the BL surface. These studies reveal
new information about key players in the versatile
interactions of P. aeruginosa with the host and provide
appealing targets for blocking early binding steps essential
for establishment of P. aeruginosa infections.

P. aeruginosa Adhesins Mediate Distinct Binding
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mutant (PAO1DfliC) bound less efficiently to the AP or BL surfaces

of the epithelium when compared to PAO1 (Figures 1A–C),

suggesting that the absence of either of these two adhesins impacts

bacterial binding and that Tfp and flagella may function

synergistically. Importantly, PAO1DfliC still bound almost 2-fold

better than PAO1DpilA to the AP surface (P,0.05), but it bound

,9-fold less efficiently than PAO1DpilA to the BL surface

(P,0.05) (compare Figures 1B and C). Furthermore, while

PAO1DpilA bound ,3-fold more efficiently to the BL surface

than to the AP surface of polarized epithelium (Figure 1B),

PAO1DfliC adhered over 5-fold better to the AP surface than to

the BL surface (Figure 1C). These results suggest that Tfp are the

predominant adhesin at the AP surface whereas flagella function

as the major adhesin at the BL surface.

We then investigated the role of host N-glycans in Tfp- or flagella-

mediated binding. N-glycans are found on both AP and BL surfaces

of polarized epithelium whereas HS chains are expressed

predominantly on the BL surface of polarized epithelium [9].

When the expression of more complex N-glycans was triggered by

long-term culture of Calu-3 cells in the presence of mannose (Man)

[37], we observed a 2-fold increase in the binding of PAO1 or

PAO1DfliC to the AP surface of polarized airway epithelium.

However, no effect on the BL binding of PAO1 or PAO1DfliC was

observed (Figure 1C). In control experiments, long-term culture of

Calu-3 cells in the presence of galactose (Gal), which does not

enhance N-glycosylation, had no effect on bacterial adhesion (data

not shown). Inhibition of N-glycosylation by pre-treatment of Calu-

3 cells with tunicamycin, which decreased N-glycosylation by 50%

under the conditions of our experiments (more extensive deglyco-

sylation disrupted the monolayer integrity), decreased the AP

adhesion of PAO1 (Figure 1A) and PAO1DfliC (Figure 1C) by 2.5-

fold, but had no effect on BL binding. These treatments did not

have statistically significant effects on binding of PAO1DpilA to the

AP surface of polarized cells (Figure 1B). Together, these results

suggest that Tfp bind primarily to N-glycans at the AP surface of

polarized epithelial cells.

We used two approaches to determine the role of host HS

chains of HSPGs in Tfp- and flagella-mediated bacterial

adherence. First, addition of excess heparin competitively

inhibited the binding of PAO1 and PAO1DpilA at the BL surface

of Calu-3 cells (Figures 1A and B), but had no effect on binding of

PAO1DfliC to the BL surface (Figure 1C). Since HSPGs are

predominantly expressed on the BL surface, it was not surprising

to observe that exogenous addition of heparin had little effect on

binding of PAO1 or of either adhesin mutant to the AP surface of

polarized cells. To rule out non-specific charge effects, we

demonstrated that addition of another highly negatively charged

glycosaminoglycan chain, chondroitin sulfate (CS), had no effect

on binding of PAO1, PAO1DpilA, or PAO1DfliC to either surface

(data not shown). Second, pre-treatment of cells with heparinase

III, an enzyme that cleaves HS chains, had a similar effect on

bacterial adhesion as did addition of excess heparin. It reduced

adhesion of PAO1 and PAO1DpilA to the BL surface of polarized

Calu-3 cells but had no effect on adhesion of PAO1DfliC.

Heparinase III treatment had no significant effect on the binding

of any of the strains to the AP surface of polarized Calu-3 cells.

Enzymatic removal of CS by chondroitinase ABC did not alter

bacterial attachment at either surface (data not shown), confirming

the specific role of HS in flagella-mediated binding of P. aeruginosa.

Together, these results demonstrate P. aeruginosa binding at the BL

surface is predominantly mediated by flagella interactions with HS

chains of HSPGs.

Flagella-coated beads bind directly to HS while Tfp-
coated beads bind directly to N-glycans in vitro

Two different in vitro binding affinity assays were utilized to

rigorously determine whether Tfp or flagella were sufficient to

mediate binding to N-glycans or HS, respectively. We have

previously developed a fluorometric assay that quantifies bacterial

attachment to plastic wells coated with various glycans [9]. Our

studies revealed that GFP-expressing PAO1 binds in a dose-

dependent manner to plastic wells coated with HS or to a complex

hybrid N-glycan chain ((Gal-GlcN)4Man3(GlcN)2), with the

strongest binding observed to HS. Here, we modified this assay;

in place of bacteria, we used 2-mm green fluorescent beads coated

with purified flagella or Tfp, isolated by shearing from PAO1DpilA

or PAO1DfliC, respectively (Figure S1). Coommasie Blue staining

of the purified adhesin preparations electrophoresed on SDS-

PAGE did not reveal any contaminating products (Figure S1). We

note that the sheared adhesins may be composed of short polymers

(i.e. flagella or Tfp) or the individual subunits (flagellin or pilin).

For ease of clarity, we will refer to them as flagella or Tfp.

As shown in Figure 2B, flagella-coated beads bound strongly in

a dose-dependent manner to HSPG or HS chains alone and at low

levels to different N-glycans (structures shown in Figure 2A), but

Figure 1. PAO1DpilA binds preferentially to HS at the BL surface and PAO1DfliC binds preferentially to N-glycans at the AP surface.
Calu-3 cells were grown as well polarized monolayers on Transwells for 9 days and treated with heparin, heparinase III (hepIII), mannose (Man), or
tunicamycin (tun). Host cell treatments are color-coded: treatments that affect HSPGs are indicated with shades of red and treatments that affect N-
glycans are indicated with shades of blue. (A) PAO1, (B) PAO1DpilA, or (C) PAO1DfliC were added to the AP or BL chamber for 2 h and standard
adhesion assays were performed. Shown is the mean +/2 SD for 4 independent experiments. *P,0.05 compared to cells infected with PAO1 at the
AP surface (black bar). **P,0.05 compared to cells infected with PAO1 at the BL surface (black bar).
doi:10.1371/journal.ppat.1002616.g001
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not measurably to single sugars (Man, N-acetylated glucosamine

(GlcNAc), fucose Fuc, or galactose (Gal)), CS, or to non-sulfated

hyaluronic acid (HA). These results suggest that i) flagella are

capable of strong binding to HS chains, that ii) sulfate groups of

HS provide binding sites and/or the anionic charge of sulfate is

necessary for the interaction, and that iii) flagella may also bind to

sugar sequences along the N-glycan chain in a polyvalent manner.

We next examined the binding specificity of beads coated with

sheared Tfp. In contrast to the results obtained with flagella-coated

beads, Tfp-coated beads bound most avidly to N-glycan chains

(Figure 2C), with the strongest binding to N-glycan-3, the most

complex N-glycan chain (Figure 2A). There was minimal binding

to the single sugars (Man, GlcNAc, Fuc, or Gal) indicating that

single sugars are not sufficient to mediate binding to Tfp. Likewise,

there was almost no binding to HSPGs, HS, or other

glycosaminoglycans, suggesting that Tfp almost exclusively

recognize N-glycan chains. Identical results were obtained with

beads coated with flagella or Tfp isolated from strain PAK (Figure

Figure 2. Flagella-coated beads bind directly to HS and Tfp-coated beads bind directly to N-glycans in vitro. (A) The structure of
different N-glycan chains used in the study (adapted from the manufacturer). (B) Flagella- or (C) Tfp-coated beads were added to 96-well plastic
plates coated with increasing concentrations of various molecules for 1 h. The fluorescence of the bound fraction was quantified in a plate reader and
the percent of binding above control (binding of coated beads to non-coated wells) is indicated. Shown is the mean +/2 SD for 6 independent
experiments. (D) Flagella- or (E) Tfp-coated green beads were mixed with red beads coated with the indicated molecules, mixed gently for 2 h, and
examined by IF. Exogenous heparin was added to competitively block flagella-HS aggregation, and exogenous N-glycan-3 to block flagella-N-glycan-
3 and Tfp-N-glycan-3 aggregation. Yellow clumps indicate aggregation of green and red beads. The fraction of green aggregates, red aggregates, and
mixed (yellow) aggregates from 3 separate experiments is shown beneath each panel. HSPGs: heparan sulfate proteoglycans, HS: heparan sulfate; HA:
hyaluronic acid; CS-4: 4-0-sulfated chondroitin sulfate; CS-6: 6-0-sulfated chondroitin sulfate; N-glycan-1: simple N-glycan chain; N-glycan-2: hybrid N-
glycan chain; N-glycan-3: complex N-glycan chain; Man: mannose; GlcNAc: N-acetylglucosamine; Fuc: fucose; Gal: galactose; BSA: bovine serum
albumin.
doi:10.1371/journal.ppat.1002616.g002
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S2) and with pili isolated from strain PA103 (Figure S3), suggesting

that the observed binding specificities are a general property of the

adhesins and are not strain-specific.

As a further test for the specificity of the binding of Tfp-coated

beads, we tested whether the C-terminus of Tfp, which contains

the binding determinants, was required. For these experiments, we

isolated sheared surface Tfp from a PA103 mutant, which harbors

a transposon insertion 13 amino acids from the C-terminus

(PA103 Mutant 9 [38]) (Figure S3). The mutant pilin is predicted

to be truncated between the two C-terminal cysteines required for

pilin folding [39]. Beads coated with Tfp isolated from PA103 pili

(Figure S3) demonstrated a similar binding specificity as beads

coated with Tfp from PAO1 (Figure 2) or PAK (Figure S2). In

contrast, the Mutant 9 Tfp-coated beads bound poorly to N-

glycans (Figure S3). These results suggest that three-dimensional

structure of pili is not compromised under the conditions of our

experiments and that the C-terminal binding determinants are

required for in vitro binding of Tfp to N-glycans.

We extended our studies using a complementary in vitro assay

that measures bead aggregation under defined shear forces to

detect molecular interactions [40]. As shown in Figure 2D, we first

tested the interaction of flagella-coated green fluorescent beads

with red fluorescent beads coated with various glycans. In control

experiments in which equal numbers of flagella-coated green

beads were mixed with BSA-coated red beads, 99% of the

aggregates comprised a single color (52% green and 47% red) and

only 1% were yellow. These results indicate that there is minimal

non-specific bead aggregation under the conditions of our

experiments. In contrast, when flagella-coated green beads were

mixed with HSPG-coated red beads, 80% of the aggregates were

yellow. This interaction was inhibited by exogenous addition of

heparin, with the number of yellow aggregates decreasing to

,10%. Aggregation of flagella-coated green beads with N-glycan-

3-coated red beads resulted in 34% yellow aggregates, which was

decreased to 16% when excess N-glycan-3 was added to

competitively inhibit binding. Together, both of these in vitro

assays confirm our cell-culture based experiments and demon-

strate conclusively that flagella can bind directly to HS and, to

much lesser extent, to complex N-glycan chains.

We next examined the binding of Tfp-coated green beads to

glycan-coated red beads (Figure 2E). Whereas Tfp-coated green

beads mixed with BSA-coated red beads resulted in only 2%

mixed yellow aggregates, incubation with N-glycan-3-coated red

beads resulted in 74% yellow aggregates, which was decreased to

12% upon addition of excess N-glycan-3 (Figure 2E). We also

tested the ability of Tfp-coated green beads to interact with red

beads coated with individual sugars. Mixing Tfp-coated green

beads with Man-coated red beads resulted in only 25% yellow

aggregates, and in 16% yellow aggregates when Tfp-coated green

beads were mixed with Gal-coated red beads. Importantly, Tfp-

coated green beads did not aggregate with HS-coated red beads.

These findings confirm that Tfp preferentially interact directly

with complex N-glycans in a polyvalent manner and individual

sugars do not provide enough strength and specificity for the

interaction. Taken together, in vitro binding assays conclusively

show that Tfp are necessary and sufficient to interact with N-

glycans, which corroborates our cell-culture based experiments.

Flagella or Tfp are sufficient to mediate binding to HS- or
N-glycan-rich areas, respectively, in polarized epithelium

Our results thus far suggest that Tfp are necessary in vivo and

sufficient in vitro to interact with N-glycans whereas flagella are

necessary in vivo and sufficient in vitro to interact with HS. As it is

possible that additional host molecules mediate bacterial binding

to cultured cells, we tested by IF microscopy whether Tfp-coated

or flagella-coated beads would be sufficient to mediate binding to

the AP surface of airway epithelial cells and compared these results

with the binding of PAO1DpilA and PAO1DfliC. For these

experiments we utilized Calu-3 cells grown as confluent mono-

layers on Transwell filters for a shorter time period (3 days rather

than the usual 9 days). Under these conditions, functional tight

junctions are formed, but the polarized distribution of HSPGs is

not complete, i.e. some HSPGs are still present at the AP surface

[9]. These 3-day grown monolayers, which we term incompletely

polarized, were briefly treated with heparinase III or tunicamycin

to further decrease the surface presentation of HSPGs or N-

glycans, respectively. The resulting patchy distribution of HSPGs

or N-glycans at the AP surface allowed us to correlate and quantify

by IF the binding of PAO1 flagella or Tfp mutants, or adhesin-

coated beads, to HS-rich or -poor areas (visualized with an

antibody to HS) or N-glycan-rich or -poor areas (visualized with

fluorescent lectin that binds to Man residues in N-glycan chains).

We first examined the binding of GFP-expressing PAO1DpilA

and PAO1DfliC to membrane regions rich in HS or N-glycan

chains. As shown in Figures 3A and B, significantly more

PAO1DpilA-GFP co-localized to HS-rich patches (65%) than to

HS-poor patches (35%) on the AP surface of heparinase III-treated

Calu-3 monolayers. In contrast, only ,30% of PAO1DfliC-GFP

bound to HS-rich patches whereas ,70% co-localized with HS-

poor patches. In Calu-3 cells briefly treated with tunicamycin, only

,40% of PAO1DpilAI-GFP co-localized to N-glycan-rich patches

whereas a much larger fraction, almost 70%, of PAO1DfliC-GFP

co-localized to N-glycan-rich areas (Figures 3C and D). In

summary, PAO1DpilA, for which flagella serve as the major

adhesin, preferentially co-localized with HS-rich areas. In contrast,

PAO1DfliC, for which Tfp serve as the major adhesin, preferen-

tially co-localized with N-glycan-rich areas at the AP surface of

incompletely polarized epithelium.

We then tested whether Tfp or flagella were sufficient to

mediate these specific interactions by quantifying the binding of

Tfp- or flagella- coated green fluorescent beads to N-glycan or

HSPG-rich areas at the AP surface. As shown in Figures 3E and F,

75% of flagella-coated beads co-localized with HS-rich areas at the

AP surface of heparinase III-treated Calu-3 cells. In stark contrast,

only 15% of Tfp-coated beads co-localized with HS-rich patches.

The opposite results were observed for binding to N-glycans:

,30% of flagella-coated beads compared to 80% of Tfp-coated

beads co-localized with N-glycan-rich areas (Figures 3G and H).

Importantly, the results paralleled what was observed with intact

bacteria. Altogether, these experiments demonstrate that Tfp are

sufficient to mediate P. aeruginosa binding to N-glycan chains and

that flagella are sufficient to mediate P. aeruginosa binding to HS

chains of HSPGs at the surface of airway epithelium.

Bacterial internalization is mediated by Tfp-dependent
binding to N-glycans at the AP surface or by flagella-
dependent binding to HS at the BL surface of polarized
epithelium

Following binding to the epithelium, P. aeruginosa is able to enter

into non-phagocytic cells; this event is most readily detectable in

,75% of clinical, environmental, and laboratory strains, including

PAO1 or PAK, that do not secrete the potent phospholipase ExoU

but that encode ExoS [31,41]. In order to examine the role of

flagella and Tfp interactions during entry at the AP or BL surface,

polarized Calu-3 cells were pre-treated with various agents and

standard bacterial invasion assays were performed. In general, the

results of the invasion assays with PAO1, PAO1DpilA, and

P. aeruginosa Adhesins Mediate Distinct Binding
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PAO1DfliC were directly proportional to adhesion assays (see

Figure 1), i.e., more binding resulted in more invasion.

Competitive inhibition with heparin or enzymatic cleavage of

HS by heparinase III reduced PAO1 and PAO1DpilA invasion at

the BL, but not AP surface, of polarized cells (Figures 4A and B).

Up-regulation of N-glycosylation by long-term culture of Calu-3

cells in the presence of Man enhanced the internalization of PAO1

or PAO1DfliC at the AP surface of polarized cells, while inhibition

of N-glycosylation with tunicamycin reduced bacterial entry at the

AP surface of polarized Calu-3 cells (Figures 4A and C). Notably,

inhibition of N-glycosylation had a small but statistically significant

effect on PAO1 and PAO1DpilA entry at the BL surface, although

it did not have any effect on bacterial binding. This finding

suggests that flagella-dependent entry, but not binding, at the BL

surface may be mediated by a yet unidentified N-glycosylated

receptor(s). Together, these data confirm that P. aeruginosa-induced

binding and subsequent entry into polarized epithelium are

primarily mediated by Tfp-dependent binding to host N-glycans

at the AP surface and by flagella-dependent binding to HS chains

at the BL surface of polarized epithelium.

Figure 3. Flagella mediate co-localization with HS-rich regions while Tfp mediate co-localization with N-glycan-rich areas in
polarized epithelium. Calu-3 cells were grown as incompletely polarized monolayers on Transwell filters for 3 days and briefly treated with
heparinase III or with tunicamycin. Binding of bacteria or adhesin-coated beads to the AP surface was examined by confocal microscopy with 3D
reconstructions of Z stack images and quantification of bacterial or coated-bead localization to HS-rich, HS-poor, N-glycan-rich, or N-glycan-poor
regions of the AP surface was determined. HS was visualized with an anti-HS antibody (purple), N-glycans with concanavalin A (purple), actin with
phalloidin (red). (A) Co-localization and (B) quantification of PAO1DpilA-GFP or PAO1DfliC-GFP binding to HS-rich (purple) or HS-poor (red) areas.
Black circles show co-localization of P. aeruginosa mutants with HS-rich areas. (C) Co-localization and (D) quantification of PAO1DpilA-GFP or
PAO1DfliC-GFP binding to N-glycan-rich (purple) or N-glycan-poor (red) areas. Black circles show co-localization of P. aeruginosa mutants with N-
glycan-rich areas. (E) Co-localization and (F) quantification of flagella- or Tfp-coated green beads binding to HS-rich or HS-poor areas. Black circles
show co-localization of flagella- or Tfp-coated green beads with HS-rich areas. (G) Co-localization and (H) quantification of flagella- or Tfp-coated
green beads binding to N-glycan-rich (purple) or N-glycan-poor (red) areas. Black circles show co-localization of flagella- or Tfp-coated green beads
with N-glycan-rich areas. Shown is the mean +/2 SD for 3 independent experiments. *P,0.01.
doi:10.1371/journal.ppat.1002616.g003
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Flagella-mediated bacterial entry at the BL surface and
Tfp-mediated entry at the AP surface of polarized
epithelium involve PI3K/Akt activation

We have previously shown that P. aeruginosa internalization at

the AP surface of incompletely polarized MDCK cells is actin-

dependent and requires activation of PI3K and its effector protein

Akt [33]. We therefore determined whether N-glycans and/or

HSPGs acted as host receptors upstream of this signaling pathway

and whether bacterial Tfp and flagella were bacterial partners

associated with the PI3K/Akt-dependent entry at the AP or BL

surface of polarized lung airway epithelial cells. Pre-treatment with

LY29004, an inhibitor of PI3K, did not affect PAO1 binding at

either the AP or BL surface of fully polarized Calu-3 cells (Figure

S4). However, it had a pronounced effect on bacterial invasion at

the BL surface, reducing it ,5 fold, and it had a smaller but

statistically significant effect on invasion at the AP surface

(Figure 4A.). PI3K-dependent entry at the BL surface required

flagella binding to HS, as inhibition of PI3K, competitive

inhibition with heparin, or heparinase-III treatment decreased

PAO1DpilA entry similarly to PAO1, but had no effect on the

already low levels of PAO1DfliC entry (Figures 4B and C). At the

AP surface, inhibition of PI3K caused a small but statistically

significant decrease in PAO1DfliC invasion. Simultaneous PI3K

inhibition and tunicamycin treatment did not further reduce

PAO1DfliC entry (Figure 4C), suggesting that PI3K-dependent

invasion at the AP surface could require Tfp-mediated binding to

N-glycans. Together, these results suggest that flagella-mediated

binding at the BL surface leads to P. aeruginosa internalization

through a PI3K-dependent pathway. At the AP surface, Tfp

mediated entry through a PI3K-dependent entry can also occur,

although consistent with our previously published results [9], BL

entry is more efficient than AP entry.

On the basis of our results, we would predict that flagella-

mediated binding and entry at the BL surface or Tfp-mediated

binding and entry at the AP surface should increase downstream

Akt phosphorylation. To test this hypothesis, polarized Calu-3 cells

were co-cultivated for 60 min with PAO1 or with adhesin

mutants, and Akt was immunoprecipitated followed by immuno-

blotting with anti-phospho AktSer473 antibody. The ratio of

phospho-Akt to total Akt was quantified and normalized to the

ratio observed in untreated cells. In control experiments, Calu-3

cells were AP or BL exposed to heparin-binding EGF-like growth

factor (HB-EGF) for 10 min since Akt phosphorylation is well

established as a downstream consequence of EGFR activation. BL

addition of HB-EGF increased Akt phosphorylation over 2-fold,

but had little effect when added to the AP surface (Figures 5A and

B), which is consistent with the known BL localization of EGFR in

polarized epithelium and, thus, BL activation of Akt. Addition of

PAO1 or PAO1DpilA at the BL surface resulted in activation of

Akt, with a 2.5-fold increase in the fraction of phosphorylated Akt

when compared to bacterial addition to the AP surface

(Figures 5A–D). However, AP addition of PAO1DpilA or BL

addition of PAO1DfliC failed to activate Akt (Figures 5C–F). This

observation is consistent with a requirement for initial Tfp-

mediated binding at the AP surface and flagella-mediated binding

at the BL surface. Inhibition of PI3K prior to the addition of

bacteria almost completely eliminated Akt phosphorylation at the

AP and BL surface (Figures 5A–F), consistent with the known role

of PI3K and Akt activation in P. aeruginosa entry [33].

We next determined whether Tfp or flagella-mediated activa-

tion of Akt involved HSPGs or N-glycans. Pre-treatment of Calu-3

cells with heparinase III reduced Akt phosphorylation to near

basal levels upon BL, but not AP, addition of PAO1 or PAO1DpilA

(Figures 5A–D). Inhibition of N-glycosylation with tunicamycin

partially reduced Akt activation upon AP addition of PAO1 and

PAO1DfliC (Figures 5A–B and E–F). Interestingly, inhibition of N-

glycosylation reduced Akt phosphorylation upon BL infection with

PAO1 or PAO1DpilA, which is consistent with our bacterial

invasion results (see Figure 4) and suggests involvement of yet

Figure 4. P. aeruginosa internalization at the AP surface of
polarized epithelium is mediated by Tfp-dependent binding to
N-glycans and subsequent PI3K activation and, at the BL
surface, by flagella-dependent binding to HS and subsequent
EGFR/PI3K activation. Calu-3 cells were grown as well polarized
monolayers on Transwells for 9 days and treated with heparin,
heparinase III (hepIII), mannose (Man), tunicamycin (tun), EGFR inhibitor
(AG1478), PI3K inhibitor (LY29004), or in combination. (A) PAO1, (B)
PAO1DpilA or (C) PAO1DfliC were added to the AP or BL chamber for
2 h and standard invasion assays were performed. Shown is the mean
+/2 SD for 4 independent experiments. *P,0.05 compared to cells
infected with PAO1 at the AP surface (black bar). **P,0.05 compared to
cells infected with PAO1 at the BL surface (black bar).
doi:10.1371/journal.ppat.1002616.g004
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unidentified N-glycosylated receptor in flagella-HS-dependent

invasion and activation of PI3K/Akt pathway. Together, these

results strongly suggest that activation of PI3K/Akt pathway at the

BL surface is primarily dependent on flagella-mediated bacterial

binding to HS chains of HSPGs, while at the AP surface it is

dependent on Tfp-mediated bacterial binding to N-glycan chains.

Flagella-mediated P. aeruginosa entry at the BL surface
involves EGFR activation

While many stimuli can activate the PI3K/Akt pathway, we

were particularly interested in interrogating whether flagella- or

Tfp-mediated binding to HSPGs or N-glycan chains and/or

subsequent bacterial entry involved growth factor receptors

(GFRs). Notably, GFRs require N-glycosylation for their activity

and many of them are also modulated by HSPGs; our work clearly

establishes the role of both N-glycans and HSPGs for P. aeruginosa

binding and internalization.

In preliminary studies, we investigated the role of epidermal

GFR (EGFR), platelet-derived GFR (PDGFR), and fibroblast

GFR (FGFR). While pharmacologic inhibition of any of the GFRs

did not affect bacterial binding, inhibition of EGFR and PDGFR,

but not FGFR, reduced bacterial internalization at the BL surface

of Calu-3 cells (Figure S4). We also confirmed the role of EGFR

and PDGFR in P. aeruginosa entry using siRNA gene silencing in

Figure 5. Akt is phosphorylated upon flagella-mediated P. aeruginosa entry at the BL surface and upon Tfp-mediated entry at the
AP surface of polarized epithelium. Calu-3 cells were grown as well polarized monolayers on Transwells for 9 days and treated with heparinase III
(hepIII), tunicamycin (tun), EGFR inhibitor (AG1478), or PI3K inhibitor (LY29004). As a control, cells were left untreated (un) or, as a positive control,
cells were treated with HB-EGF. (A, B) PAO1, (C, D) PAO1DpilA, or (E, F) PAO1DfliC were added to the AP or BL chamber for 1 h. Lysates were
immunoprecipitated with Akt antibody followed by immunoblotting with phospho- or total-Akt antibodies. Representative gels (A, C, E) and
quantification by densitometry of three gels (B, D, F) are shown. The ratio of phospho-Akt to total-Akt for untreated cells was set to 1. Shown is the
mean +/2 SD for 3 independent experiments. +P,0.05 compared to cells AP infected with PAO1. ++P,0.05 compared to cells BL infected with PAO1.
*P,0.05 compared to cells AP infected with PAO1 (B), PAO1DpilA (D), or PAO1DfliC (F). **P,0.05 compared to cells BL infected with PAO1 (B),
PAO1DpilA (D), or PAO1DfliC (F).
doi:10.1371/journal.ppat.1002616.g005
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HeLa cells (Figure S4). Simultaneous removal of HS by heparinase

III and pharmacologic inhibition of EGFR had the same effect as

heparinase III treatment alone (Figure S4). These results suggest

that EGFR may potentially mediate bacterial entry upon HS-

dependent bacterial binding, and thus EGFR was a logical

candidate to study further.

To elucidate the role of EGFR in flagella- and Tfp-mediated

bacterial internalization, we first showed that inhibition of EGFR

reduced invasion of PAO1 and PAO1DpilA at the BL surface of

polarized Calu-3 cells, but did not further decrease the invasion of

PAO1DfliC (Figure 4). Inhibition of EGFR did not have any effect

on bacterial internalization at the AP surface since EGFR is

predominantly expressed on the BL surface of polarized

epithelium. Simultaneous inhibition of N-glycosylation and

pharmacologic inhibition of EGFR reduced PAO1 and PAO1D-
pilA internalization at the BL surface similarly to what was

observed with each treatment alone (Figures 4A and B),

confirming that EGFR activity depends on its N-glycosylation.

Inhibition of PAO1DpilA entry by heparin, heparinase III

treatment, or PI3K inhibition reduced bacterial entry to similar

degrees, while EGFR inhibition had somewhat intermediate effect

(Figure 4B). Furthermore, combined heparinase III treatment and

EGFR inhibition reduced PAO1 and PAO1DpilA internalization

to a greater degree than inhibition of EGFR alone (Figures 4A and

B). These results suggest that bacterial internalization occurs

through multiple HSPG-dependent pathways, including one that

involves a flagella-HS-EGFR complex leading to PI3K activation

at the BL surface of polarized epithelium.

To further investigate the role of flagella or Tfp during EGFR-

dependent entry at the AP or BL surface of polarized epithelial cells,

we tested whether bacterial binding induced EGFR phosphoryla-

tion. Total EGFR was immunoprecipitated from cell lysates 1 h

after AP or BL infection with PAO1, PAO1DpilA or PAO1DfliC,

followed by immunoblotting with a monoclonal anti-phospho

EGFRSer1046/1047 antibody. The ratio of phospho-EGFR to total

EGFR was quantified and normalized to the ratio observed in

untreated cells. In control experiments, BL exposure of Calu-3 cells

to HB-EGF for 10 min increased EGFR phosphorylation 3-fold,

but had little effect when applied to the AP surface (Figures 6A and

B), consistent with the known BL localization of EGFR in polarized

epithelium. Binding of PAO1 or PAO1DpilA to the BL surface of

polarized epithelium resulted in a 2- to 2.5-fold increase in the

fraction of phospho-EGFR (Figures 6A–D). In contrast, binding of

PAO1DfliC failed to increase EGFR phosphorylation above

background levels (Figures 6E and F), suggesting that flagella-

mediated binding is required for EGFR activation. Activation of

EGFR upon BL addition of PAO1 or PAO1DpilA was reduced by

EGFR inhibition, removal of HS by heparinase III, or inhibition of

N-glycosylation by tunicamycin, confirming the involvement of

bacterial flagella, host HSPGs, and N-glycosylation in bacteria-

mediated EGFR phosphorylation.

Finally, we tested whether flagella-mediated PI3K activation was

EGFR dependent. Indeed, inhibition of EGFR decreased Akt

phosphorylation in response to BL addition of PAO1 or

PAO1DpilA, but not PAO1DfliC (Figures 5A–D). These results

indicate that P. aeruginosa-mediated internalization at the BL surface

occurs principally via flagella-mediated interactions through a

pathway that utilizes HSPGs and that involves EGFR and PI3K/

Akt activation. At the AP surface, Tfp mediates bacterial entry

through a PI3K/Akt pathway that is independent of EGFR.

Flagella are sufficient to induce EGFR phosphorylation
To elucidate whether Tfp and/or flagella alone were sufficient

to induce phosphorylation of EGFR, beads coated with purified

adhesins were added to polarized Calu-3 cells for 1 h and

immunoprecipitation/immunoblotting assays were performed as

previously for the whole bacteria. Remarkably, addition of flagella-

coated beads to Calu-3 cells increased the fraction of phospho-

EGFR (1.7-fold) (Figures 7 C and D), almost to levels seen upon

BL addition of PAO1 (2.2-fold) (Figures 6 A and B). In contrast, no

increase in the ratio of phospho-EGFR was observed upon

addition of the flagella-coated beads to the AP surface or upon AP

or BL addition of BSA-coated beads. Similar to what we observed

with PAO1 or PAO1DpilA, flagella-mediated phosphorylation of

EGFR was reduced after inhibition of EGFR, HS removal by

heparinase III, or inhibition of N-glycosylation by tunicamycin

(Figures 7C and D). Notably, AP or BL addition of Tfp-coated

beads did not detectably increase phospho-EGFR above back-

ground levels (Figures 7E and F). We were unable to detect

induction of Akt phosphorylation by either flagella- or Tfp-coated

beads (Figures 7A and B). Altogether, these results demonstrate

that flagella alone are sufficient to induce EGFR phosphorylation.

To confirm the specificity and significance of EGFR phosphor-

ylation triggered by flagella-coated beads, we tested other targets

of EGFR activation. As shown in Figures 7G and H, addition of

flagella-coated beads to the BL surface of polarized epithelium

resulted in phosphorylation of EGFR adaptor protein Shc (Src

Homology-2 Domain Containing Transforming Protein) [42]. Shc

exists in three isoforms (p46, p52, and p66) and we detected

elevated levels of phosphorylated p46 and p52 isoforms upon

infection with PAO1 or flagella-coated beads. In contrast, there

was no increase in the ratio of phospho-Shc upon addition of the

flagella-coated beads to the AP surface or upon AP or BL addition

of pili-coated beads. Although, at this point, we are not able to

show the activation of signaling events farther downstream of

EGFR, such as Akt phosphorylation, these results confirm the

significance of EGFR phosphorylation by flagella- but not pili-

coated beads.

HB-EGF, but not EGF, needs to bind to HS chains of HSPGs

to activate EGFR. Since our results demonstrate that flagella

likewise activate EGFR in an HS-dependent manner, we first

tested whether flagella-coated beads bind to EGFR or HB-EGF.

While flagella-coated beads bound with great avidity to HS coated

onto plastic wells, they did not bind measurably to the extracellular

domain of EGFR, to HB-EGF, or to EGF, used as a negative

control since it does not bind to HS to activate EGFR (data not

shown). Second, we tested whether HB-EGF can inhibit binding of

flagella-coated beads to HS chains. At a high concentration,

exogenous HB-EGF, but not EGF, slightly inhibited binding of

flagella-coated beads to HS coated onto plastic wells (Figure S5).

These results suggest that, at high concentrations, HB-EGF can

either compete with bacterial flagella for binding sites on HS

chains or it sterically hinders flagella binding to HS.

Discussion

Adhesion of pathogens to the host epithelium is an early and

critical step in mucosal infections, and successful pathogens exploit

specific niches to colonize, obtain nutrients, replicate, and

disseminate. In previous studies utilizing well polarized epithelial

cells, we have shown that the important nosocomial pathogen P.

aeruginosa binds preferentially to different host molecules at the AP

versus BL surface, specifically to N-glycans at the AP surface and

to HSPGs at the BL surface [9]. We hypothesized that these

complex P. aeruginosa-host interactions may be mediated by distinct

bacterial adhesins. In the current studies, we identify the bacterial

adhesins that are necessary and sufficient to mediate these different

binding specificities. We demonstrate that Tfp are necessary to
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mediate maximal binding and entry at the AP surface through N-

glycans, while flagella are required to mediate maximal binding

and entry through HSPGs at the BL surface of polarized

epithelium. While flagella have been shown previously to be

required for the host response to BL infection with P. aeruginosa

[43,44], our studies using beads coated with purified Tfp or

flagella are the first to demonstrate that Tfp or flagella are

sufficient to mediate the differential binding to N-glycans or

HSPGs, respectively.

Our studies reveal that flagella can also mediate, to a small

extent, bacterial binding to N-glycans at the AP surface of

polarized epithelium. However, we cannot determine at this point

how significant these interactions are in P. aeruginosa infections

due to the constrains of utilized assays; advanced more sensitive

assays need to be employed to further investigate these

interactions. Although we can detect N-glycan-dependent

bacterial binding at the BL surface, neither up- nor down-

regulation of N-glycosylation has any effect on the binding.

Therefore, we postulate that binding of P. aeruginosa to N-glycan

chains on the BL surface of polarized epithelium is not essential,

rather the protein core of N-glycoprotein(s) play a role in the

binding.

Figure 6. EGFR is phosphorylated upon flagella-mediated P. aeruginosa entry at the BL surface of polarized epithelium. Calu-3 cells
were grown as well polarized monolayers on Transwells for 9 days and treated with heparinase III (hepIII), tunicamycin (tun), or EGFR inhibitor
(AG1478). As a control, cells were left untreated (un) or, as a positive control, cells were treated with HB-EGF. (A, B) PAO1, (C, D) PAO1DpilA, or (E, F)
PAO1DfliC were added to the AP or BL chamber for 1 h. Lysates were immunoprecipitated with EGFR antibody followed by immunoblotting with
phospho- or total-EGFR antibodies. Representative gels (A, C, E) and quantification by densitometry of three gels (B, D, F) are shown. The ratio of
phospho-EGFR to total-EGFR for untreated cells was set to 1. Shown is the mean +/2 SD for 3 independent experiments. **P,0.05 compared to cells
BL infected with PAO1 (B) or PAO1DpilA (D).
doi:10.1371/journal.ppat.1002616.g006
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Figure 7. Flagella are sufficient to phosphorylate EGFR and Shc. Calu-3 cells were grown as well polarized monolayers on Transwells for 9
days and treated with heparinase III (hepIII), tunicamycin (tun), or EGFR inhibitor (AG1478). As a control, cell were left untreated (un); flagella-, Tfp-, or,
as a negative control, BSA-coated beads were added to the AP or BL chamber for 1 h. Lysates were immunoprecipitated with Akt or EGFR antibody or
directly immunoblotted with (A, B) phospho-Akt, (C–F) phospho-EGFR, or (G–H) phospho-Shc (three different isoforms p46, p52, and p66).
Representative gels (A, C, E, G) and quantification by densitometry of three gels (B, D, F, H) are shown. The ratio of phospho-Akt to total-Akt,
phospho-EGFR to total-EGFR, or phospho-Shc to total-Shc for untreated cells was set to 1. Shown is the mean +/2 SD for 3 independent experiments.
**P,0.05 compared to cells BL infected with PAO1.
doi:10.1371/journal.ppat.1002616.g007
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We investigated the consequences of these binding events on

induction of host cell signal transduction pathways. We find that

flagella-dependent bacterial binding to HS at the BL surface of

polarized epithelium leads to activation of EGFR, as evidenced by

increased phosphorylation of EGFR and of two of its associated

downstream targets, the adaptor protein Shc and the serine/

threonine kinase Akt. Strikingly, flagella alone are sufficient for

EGFR and Shc phosphorylation upon binding of flagella-coated

beads to the BL surface. Tfp-mediated bacterial binding at the AP

surface also results in increased Akt phosphorylation, although the

activation is less robust when compared to flagella-mediated

bacterial binding at the BL surface of polarized epithelium.

Although we were able to detect elevated levels of phosphor-

ylated EGFR and Shc upon binding of flagella-coated beads to the

BL surface, we were unable to detect induction of Akt

phosphorylation by either flagella- or Tfp-coated beads. Adhe-

sin-coated beads may not be sufficient to trigger more downstream

signaling events and additional bacterial factors may be required

[31,41]. Furthermore, adhesins coated onto beads may not be fully

functional. Although we show that three-dimensional structure of

isolated pili is most likely intact, Tfp extension/retraction is

compromised and, thus, certain Tfp functions may be hindered

when studied in the context of adhesin-coated beads. Finally, we

cannot exclude that our detections assays are not sensitive enough

to measure induction of downstream signaling events.

Based on our results, we propose a model (Figure 8), in which P.

aeruginosa binds in a Tfp-dependent manner to N-glycan chains of

one or more yet unidentified glycoproteins, which leads, to some

extent, to the activation of PI3K/Akt pathway at the AP surface of

polarized epithelium. It remains to be investigated whether other

signaling pathways are also activated upon Tfp-mediated binding

to N-glycans. At the BL surface, P. aeruginosa first binds in a

flagella-dependent manner to HS chains of HSPGs. An attractive

model is that a complex is formed between flagella, HPSGs, HB-

EGF, and EGFR, which then leads to activation of EGFR and

subsequent activation of the PI3K/Akt pathway. Flagella-mediat-

ed activation of EGFR most likely involves initial binding of

flagella to HS chains of HSPGs since flagella-coated beads bind

with great avidity to HS, but they do not bind measurably to HB-

EGF or to the extracellular domain of EGFR. We attempted to

discern whether flagella and HB-EGF compete for binding to HS;

however, only a high concentration of an exogenous HB-EGF, far

greater than concentrations required for EGFR phosphorylation in

vitro, interferes with flagella binding to HS. Finally, we cannot

exclude that other signal transduction pathways are activated upon

flagella mediated binding to HSPGs, independent and/or

dependent on EGFR phosphorylation.

One consequence of activation of EGFR and the PI3K/Akt

pathway is P. aeruginosa internalization into host epithelium.

Interestingly, inhibition of PI3K has a more pronounced effect

on bacterial internalization at the AP surface of incompletely

polarized epithelial cells (unpublished data and [33]) when

compared to well polarized cells here studied. This phenomenon

likely reflects differences in the composition of the AP versus BL

surface during different stages of cell polarization. There may be

increased levels of HSPGs on the AP surface of incompletely

polarized cells [9]; in addition, there may be differences in how P.

aeruginosa-mediated pathogenic events are affected by changes in

the levels of host receptors that occur during the polarization

process (unpublished data and [9]).

Bacterial binding and activation of EGFR and the PI3K/Akt

pathway most likely lead to other pathogenic events as well. We

have recently shown that inhibition of bacterial binding to N-

glycans at the AP surface and to HS at the BL surface reduces P.

aeruginosa-mediated host damage [9]. Similarly, pharmacologic

inhibition of EGFR reduces bacterial cytotoxicity at the BL surface

and inhibition of PI3K reduces bacterial toxicity at both the AP

and BL surface of polarized epithelium (unpublished data).

However, it has been shown that P. aeruginosa infection of

incompletely polarized corneal epithelial cells that leads to EGFR

activation through shedding of the HB-EGF ectodomain, followed

by activation of ERK1/2 and PI3K pathways, results in inhibition

of apoptosis in the early stage of bacterial infection [45]. Thus,

further studies are needed to elucidate the role of HSPGs- and

HB-EGF-dependent EGFR and PI3K/Akt pathways in P.

aeruginosa-mediated cell death.

Activation of EGFR and other growth factors is an emerging

theme in bacterial pathogenesis. Multiple pathogens have been

shown to activate EGFR, including Neisseria gonorrhea, Neisseria

meningitides, Helicobacter pylori, Pasteurella multocida, and Haemophilus

influenzae [46–52]. Of particular relevance are studies with N.

gonorrhea, which, similar to P. aeruginosa, binds to the AP surface of

polarized epithelial cells as microcolonies that initiate changes in

the host cell actin cytoskeleton and allow the microcolonies to

enter into epithelial cells. Upon binding, EGFR is phosphorylated,

its activation is required for N. gonorrhea internalization, and

phospho-EGFR is found in close apposition to a fraction of surface

bound microcolonies [49,52]. We were unable to determine by IF

microscopy whether phospho-EGFR co-localized with bound

flagella-expressing P. aeruginosa or with flagella-coated beads,

because of high background from staining with the anti-

phospho-EGFR antibody. Nonetheless, the similarities between

these two organisms are intriguing.

Our finding of Tfp- and flagella-dependent binding to N-

glycans at the AP surface and HSPGs at the BL surface of

polarized epithelium, respectively, and subsequent EGFR/PI3K/

Akt signaling events introduce another level of complexity to

diverse mechanisms of P. aeruginosa adhesion and establishment of

an infection. Several N-glycosylated receptors have been identi-

fied, including the Cystic Fibrosis Transmembrane Regulator

(CFTR), fibronectin, or integrins [53,54]. However, since

fibronectin and integrins are preferentially expressed at the BL

surface, their N-glycan chains are unlikely to be AP receptors for

bacterial Tfp. Although CFTR is expressed on the AP surface of

polarized epithelium [53], it is also unlikely that N-glycan chains of

CFTR mediate Tfp-dependent bacterial binding under the

conditions of our experiments, as we observed similar levels of

bacterial adhesion to the AP surface of epithelial cells that express

either very low or high amounts of CFTR ([9] and unpublished

data). Previous studies have also suggested that glycosphingolipids,

i.e., asialoGM1, may serve as AP receptors for Tfp [22,23];

however, glycosylation of sphingolipids differs from N-glycosyla-

tion and, thus, Tfp binding to N-glycans characterized in this

paper most likely represents a distinct mechanism by which P.

aeruginosa is able to infect the host.

Flagella, likely through its interaction with TLR5, have been

shown to activate the innate immune response preferentially at the

basolateral surface of polarized airway epithelial cells [43,44].

Utilizing informative flagella mutants or purified flagellin, it has

been possible to uncouple TLR5-mediated NFkB-dependent

inflammatory responses from EGFR-dependent epithelial cell

proliferation, wound repair, and antimicrobial peptide production

[55]. TLR5 activates EGFR through signaling events that are not

dependent on HSPGs [56] and, thus, TLR5 is very unlikely to be

involved in flagella- and HSPGs-dependent cascade leading to

EGFR phosphorylation. TLR5 is predicted to be N-glycosylated

[57] and since we show that modulation of N-glycosylation does

not affect flagella-mediated binding to the BL surface, N-glycan
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Figure 8. Model for Tfp- or flagella-mediated P. aeruginosa binding and induction of signaling pathways and events at the AP or BL
surface of polarized epithelium. At the AP surface, P. aeruginosa binds to N-glycan chains through Tfp, which results in activation of PI3K and Akt.
It remains to be investigated whether other signaling pathways can be activated upon Tfp binding to N-glycans. At the BL surface, (1) P. aeruginosa
binds to HS chains of HSPGs through flagella and (2) the binding results in formation of the complex with EGFR and HB-EGF, which leads to activation
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chains of TLR5 most likely do not mediate binding of bacterial

flagellin. Since expression of most TLRs can be variable [58] and

we can detect low flagella-dependent P. aeruginosa binding to N-

glycans on the AP surface of polarized epithelium, we cannot

exclude that in certain pathogenic conditions P. aeruginosa may

bind in a flagella-dependent manner to N-glycan chains of TLR5

on the AP surface.

Other bacterial factors have been implicated in mediating P.

aeruginosa binding to the host. P. aeruginosa LPS binds to TLR4,

predominantly expressed on the BL surface of polarized

epithelium, and it has been reported to stimulate human lung

epithelial wound repair through a TLR4- and EGFR-dependent

pathway that involves release of the EGFR ligand, TGF-a, by the

matrix metalloprotease TACE [59]. Flagellar components have

been shown to bind to LewisX derivatives found on secreted

mucins [19] and P. aeruginosa can additionally stimulate mucin

secretion in an EGFR-dependent manner, as shown in rat tracheal

cells [60]. Furthermore, two different P. aeruginosa lectins, PA-IL

(LecA) and PA-IIL (LecB), have been implicated in bacterial

binding to sugar moieties present on mucins or cell surface

receptors [36]. Work from our lab and others have implicated

more receptors and signaling pathways in P. aeruginosa entry or host

responses to bacterial infection, including PDGFR, Abl/Crk [31],

and Src family kinases [61], e.g. Lyn [62], and it will be of interest

to determine if any of these molecules are differently activated

upon Tfp- or flagella-mediated binding at the AP or BL surface of

polarized epithelium.

In summary, P. aeruginosa can utilize numerous adhesins or

virulence factors and exploit numerous host receptors to adhere

to the host epithelium. Studies focused on providing key insights

into multifactorial and complex P. aeruginosa binding are crucial

for comprehensive understanding of this event and identification

of potential therapeutic targets. Our findings introduce bacterial

and host players and link them with previously described

signaling events to build novel network of interactions and

events that lead to establishment of P. aeruginosa acute or chronic

infections. Tfp and flagella as well as corresponding glycosylated

host receptors are potentially valuable targets for designing

therapies that interfere with the initial steps in P. aeruginosa

infection and colonization. Such therapies could also target a

number of other carbohydrate-based interactions of P. aeruginosa

with the host, including bacterial binding to mucus and biofilm

formation [32,36]. Therefore, these anti-adhesive therapies are

a very attractive strategy for development of novel treatments

for a wide range of both acute and chronic P. aeruginosa

infections.

Materials and Methods

Bacterial strains
P. aeruginosa strain O1 (PAO1) was obtained from the ATCC

(ATCC 15692) and isogenic mutants PAO1DpilA and PAO1DfliC

were previously constructed in the laboratory [63]. PA103 [64]

was a kind gift of Dr. Dara Frank and PA103 Mutant 9 was

previously constructed in the laboratory [38]. All strains were

routinely grown shaking overnight in Luria-Bertani broth (LB

broth) at 37uC. GFP-expressing strains were created by electro-

poration of the pnpT2-GFP-pUCP20 plasmid as described

previously [9].

Bacterial adhesion and invasion assays
Following overnight growth in LB broth at 37u with shaking,

bacteria were added to well polarized cells at an MOI of 20. For

AP infections, the bacteria in serum-free MEM were added to the

AP chamber of cells grown on Transwells. For BL infections, the

Transwell insert was placed directly onto 50 ml of serum-free

MEM containing bacteria. After 2 h of infection at 37uC, adhesion

and invasion assays were performed as described previously [9].

Bacteria were enumerated by plating serial dilutions of cell lysates

to LB plates and counting colony-forming units (cfu). All assays

were carried out on triplicate wells, and results are reported as the

average of three to five experiments.

Isolation of flagella and Tfp
To isolate surface flagella or Tfp, PAO1DpilA, PAO1DfliC,

PA103, or PA103 Mutant 9 were grown shaking overnight in 2 ml

LB at 37uC and 100 ml of the culture was plated onto 1.5% LB

agar. Following growth at 37uC for 16 h, the bacteria were

scraped from the agar surface and resuspended in 5 ml PBS. A

volume of cells equivalent to an optical density at 600 nm (OD600)

of 20.0 was resuspended in 1 ml PBS. Cells were vortexed

vigorously at room temperature for 30 min to remove surface

flagella or Tfp by shearing. The suspension was centrifuged at

20,0006 g for 10 min at 4uC, the supernatant was collected and

centrifuged a second time to remove all cellular debris. The

resulting supernatant was dialyzed against PBS (pH 7.4) overnight

at 4uC and centrifuged at 20,0006 g for 20 min at 4uC to remove

insoluble proteins. Afterward, the supernatant was incubated

overnight at 4uC in 100 mM MgCl2 to precipitate flagella or Tfp.

The precipitate was collected by centrifugation at 4uC (15,0006 g

for 20 min), and the pellet was resuspended and dialyzed against

PBS (pH 7.4) overnight at 4uC. Afterward, the suspension was

centrifuged at 20,0006 g for 20 min at 4uC to remove insoluble

proteins, and flagella or Tfp were precipitated again in 100 mM

MgCl2 at 4uC. Dialysis, centrifugation, and precipitation steps

were repeated again to obtain flagella or Tfp of a high purity as

assessed by SDS-PAGE and staining in 0.25% Coomassie (Bio-

Rad) for 4 h. Destaining was done in 10% ethanol, 7.5% acetic

acid for 6 h or until bands appeared and the background was

clear.

Preparation of adhesin- or sugar-coated fluorescent
beads

For adsorption of bacterial adhesins to beads, 0.5 ml of 2.5%

suspension of Green Fluoresbrite Latex fluorescent beads (2 mm ;

Polysciences Inc.) were mixed with 200 mg of purified Tfp or

flagella in 0.1 M Borate Buffer overnight at room temperature

according to the manufacturer’s protocol. To determine the

coating efficiency, coated beads were eluted in SDS sample buffer

and analyzed by Western blotting. Following SDS-PAGE and

transfer, the membranes were probed with a 1:100,000 dilution of

primary a-FliC (for flagella) or a-PilA (for Tfp) [63] antibody

overnight at 4uC, followed by probing with a 1:25,000 dilution of

horseradish peroxidase-conjugated secondary antibody (Jackson

ImmunoResearch Laboratories). Gels were quantified by densi-

tometry using ChemiDoc XRS and coating efficiencies were

calculated. On average, 15–20% (30 mg) flagella and ,30%

(60 mg) Tfp were bound to the beads. For adsorption of

of EGFR and subsequent activation of PI3K/Akt. Other signaling pathways can be possibly activated upon flagella binding to HS, dependently or
independently of EGFR. Activation of PI3K/Akt at the AP surface, and EGFR and PI3K/Akt at the BL surface result in bacterial internalization and, most
likely, in other pathogenic and host response events.
doi:10.1371/journal.ppat.1002616.g008
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glycosylated molecules to beads, 0.5 ml of Red Fluoresbrite Latex

fluorescent beads (2 mm ; Polysciences, Inc.) were mixed with

400 mg of HS, N-glycan-3, Man, or Gal according to the

manufacturer’s protocol. Bead coating efficiency (30–40%) was

determined by eluting coated beads in SDS sample buffer, dotting

an aliquot on a Zeta-Probe membrane (Bio-Rad), staining the

membrane with 1% Toluidine Blue, and comparing the staining to

standards.

Cell culture
Calu-3 cells were obtained from the ATCC and maintained in

MEM supplemented with 10% fetal bovine serum (FBS;

Invitrogen) and L-glutamate at 37uC with 5% CO2. Cells were

grown as 2D monolayers on 12-mm Transwell filters (3-mm pore

size; Corning Inc.) as previously described [9]. For experiments,

Calu-3 cells were seeded at 1.56106 cells/well and cultured for 3

days (‘‘incompletely polarized monolayers’’) or at 16106 cells/well

on Transwells and cultured for 9 days (‘‘well polarized

monolayers’’). Under each condition, cells formed polarized

confluent monolayers as determined by polarized distribution of

some AP and BL membrane proteins and the presence of

functional tight junctions that were impermeable to small

molecules such as FITC-inulin (data not shown and [9]). However,

in incompletely polarized monolayers, distribution of HSPGs on

the BL surface was not fully polarized [9].

Enzymatic and inhibitory treatments
To remove glycosaminoglycans, Calu-3 cells were treated with

200 mU of heparinase III or chondroitinase ABC (Sigma-Aldrich)

in Hank’s Buffered Salt Solution (HBSS) containing 0.1% BSA at

37uC for 2 h (resulting in 60–65% reduction in glycosaminoglycan

expression), or, for partial removal of glycosaminoglycans, with

50 mU of heparinase III for 30 min (resulting in ,25% reduction

in expression). To assess the efficiency of treatments, HS chains

were visualized by IF staining with HS antibody (10E4;

Seikagaku), CS chains were visualized with FITC-WFA (CS-

specific lectin from Wisteria floribunda; Sigma-Aldrich), and staining

densities were quantified using ImageJ and compared to the

staining densities of untreated cells (data not shown and [9]). For

competition blocking experiments with glycosaminoglycans, cells

were pre-incubated with 5 mg/ml of heparin or CS (Sigma-

Aldrich) at 37uC for 1 h in serum-free MEM. For up-regulation of

N-glycosylation, cells were grown in the presence of 1 mM Man or

Gal (Sigma-Aldrich) in MEM with 10% FBS for 1 week (resulting

in 1.4-to-1.7 fold increase in N-glycosylation). To inhibit N-

glycosylation, cells were pre-treated with 1 mg/ml of tunicamycin

(Sigma-Aldrich) for 16 h (,50% reduction) or for 8 h (brief de-

glycosylation resulting in ,20% reduction) in MEM with 10%

FBS. To assess cell surface N-glycosylation, cells were stained with

the Man-specific lectin FITC-concanavalin A (Sigma-Aldrich),

staining densities were quantified using ImageJ and compared to

the staining densities of untreated cells (data not shown and [9]).

To inhibit EGFR, PDGFR, or FGFR, cells were pre-incubated

with 10 mM AG1478, AG1296, or PD173074 (Calbiochem) in

MEM with 10% FBS for 1 h. To inhibit PI3K, cells were pre-

incubated with 50 mM LY294002 (Sigma-Aldrich) in MEM with

10% FBS for 1 h. Inhibition efficiencies were quantified by

Western blotting using phospho-specific antibodies.

Protein depletion by siRNA
EGFR (sc-29301), PDGFR-a (sc-29443), PDGFR-b (sc-29442),

and control (sc-37007) siRNAs were purchased from Santa Cruz

Biotechnology. HeLa cells (ATCC CCL-2), grown in MEM

supplemented with 10% FBS, were transfected with siRNAs

according to the manufacturer’s instructions. After 42 h, standard

adhesion and invasion assays were performed. In parallel, lysates

were immunoblotted with appropriate antibodies to evaluate the

efficiency of protein depletion.

In vitro binding assays
HSPGs, glycosaminoglycans, N-glycan-1, -2, and -3, and sugars

(Sigma Aldrich; 0.1–10 mg in 0.2 ml ddH2O) were added to 96-

well polystyrene plate (Corning) and incubated overnight at 37uC
until evaporated. Wells were washed with ddH2O and blocked in

0.1% BSA for 0.5 h at room temperature. Bound molecules were

stained with 1% Toluidine blue (Sigma-Aldrich) and absorbance

was measured at 630 nm. The absorbance of known concentration

of molecules was used as the standard curve and the concentration

of bound molecules (mg/well) was calculated. 100 ml of flagella- or

Tfp-coated beads in ddH2O were added to coated wells and

incubated for 2 h on a rotary shaker. Non-adherent beads were

removed by washing with ddH2O. For some experiments, 5–

20 ng/ml HB-EGF or EGFR were added to heparin-coated wells

before addition of flagella-coated beads. Bound beads was

quantified using a SpectraMax 340PC plate reader using SOFT-

maxPro software (Molecular Devices) at lex = 480 nm and

lem = 530 nm. Beads bound to non-coated wells were used as a

control and subtracted out as background. The results are

reported as the average of six experiments, each with at least 6

replicates.

For the bead-bead aggregation assay, red fluorescent beads,

100 ml of green fluorescent beads coated with flagella or Tfp were

allowed to aggregate with 100 ml of red fluorescent beads coated

with various glycosylated molecules on a rotary shaker at 50 rpm

for 2 h in ddH2O. For competition blocking experiments, 5 mg/ml

of heparin or N-glycan-3 (Sigma-Aldrich) were added to wells.

Images of aggregates were acquired with a confocal microscope

(LSM 510; Carl Zeiss MicroImaging, Inc.) equipped with a 206
objective. Image processing was performed using Adobe Photo-

shop CS4 version 11.0.2. Quantification of the fraction of green,

red, and mixed (yellow) aggregates from 3 separate experiments

and 10 events per each sample was performed using UTHSCSA

Image Tool version 2.00 Alpha.

Immunoprecipitation and immunoblotting
Well polarized Calu-3 cells grown on Transwells for 9 days were

washed and placed in serum-free MEM for ,17 h. Bacteria at the

MOI of 200 or 50 ml adhesin-coated beads were added to the AP

or BL chamber for 1 h. As a control, 10 ng/ml HB-EGF was

added to the AP or BL-chamber for 10 min. The infected and HB-

EGF-treated monolayers were washed with cold PBS containing

1 mM sodium orthovanadate (Sigma-Aldrich). Cells were lysed in

modified radioimmunoprecipitation (RIPA) buffer (50 mM Tris,

pH 7.4, 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1% Triton

X-100, 0.5% deoxycholate, 0.1% SDS, 1 mM sodium orthova-

nadate, 50 mM NaF, 0.1 mM okadaic acid (Sigma-Aldrich),

1 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich), and pro-

teinase inhibitor tablets (Complete; Roche Diagnostics)) for

20 min, and cells were removed from the Transwell filters by

gentle scraping. The cell lysates were centrifuged at 16,0006 g for

20 min. Immunoprecipitation with Akt or EGFR antibody (Cell

Signaling Technology) using Magnetic Dynabeads Protein G

beads (Invitrogen) were performed according to the manufactur-

er’s protocol. For detection of Shc, whole cell lysates were used

without immuprecipitation. Cell lysates or eluted immune

complexes were separated on Novex-NuPAGE 10% Bis-Tris

SDS-PAGE gels (Invitrogen) and electroblotted to iBlot Nitrocel-

lulose Membranes using the iBlot Device (Invitrogen) according to
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the manufacturer’s protocol. Membranes were blocked in PBS

containing 0.05% Tween 20 and 5% non-fat milk (PBST) and

probed with a 1:1000 dilution of an antibody that recognizes Akt

phosphorylated on serine 473, EGFR phosphorylated on serine

1046/1047, or Shc phosphorylated on tyrosine 239/240 (Cell

Signaling Technology) in PBST, overnight at 4uC. Membranes

were then incubated with a 1:3000 dilution of horseradish

peroxidase-conjugated secondary antibody (Jackson ImmunoR-

esearch Laboratories) and detected by enhanced chemilumines-

cence using the Amersham ECL Western blotting detection kit

(GE Healthcare). For loading control, membranes were stripped

and re-probed with an antibody that recognizes all forms of Akt,

EGFR, or Shc (Cell Signaling Technology). Gels were quantified

by densitometry using ChemiDoc XRS.

Immunofluorescence microscopy and image analysis
Calu-3 cells grown on Transwells as incompletely polarized

monolayers were infected with PAO1DpilA-pGFP, PAO1DfliC-

GFP (MOI 50), or with 50 ml flagella- or Tfp-coated green

fluorescent beads for 2 h at room temperature. Afterwards, cells

were washed and fixed in PBS containing 1% paraformaldehyde

at 37uC for 0.5 h. After washing, cells were incubated with

primary antibodies overnight at 4øC and, afterwards, with

fluorescent secondary antibodies for 2 h at room temperature.

HS chains were stained with 1:500 anti-heparan sulfate antibody

(10E4; Seikagaku) followed by 1:2,000 AlexaFluor647-conjugat-

ed secondary antibody (Invitrogen). Actin filaments were stained

with 1:2,000 AlexaFluor594-phalloidin (Invitrogen) and Man

residues were detected by staining with 1:1,000 FITC-conjugat-

ed lectin concanavalin A (Sigma-Aldrich). Filters were excised

and mounted on microscope slides (Fisher Scientific) in

mounting medium (Vector Laboratories, Inc.). Samples from 3

separate experiments and 20 events per each sample were

examined with a confocal microscope (LSM 510; Carl Zeiss

MicroImaging, Inc.). Images and 3D reconstructions were

acquired by and processed in Meta 510 software. Image J

analysis was performed on TIFF files. Bacterial or bead binding

to Calu-3 cells and co-localization with surface markers was

quantified using the Image J plugin Voxel counter on 3D

reconstructions of TIFF images acquired with Meta 510

software. Voxel Counter (ImageJ plugin) was used to quantify

the volume of bound 3D bacterial or bead aggregates and a

minimum volume was set as a threshold to enable automated cell

counting using the 3D Object Counter (ImageJ plugin). Any

aggregate above the threshold was counted as one. The surface

area of membrane regions either enriched or depleted of HS or

N-glycans (as determined by staining with an anti-HS antibody

or with FITC-ConA, respectively) was measured in pixels by

ImageJ, and the number of bacterial or bead aggregates bound

was normalized per pixel of each specific surface area. The

percentage (compared to total) of bacterial or bead aggregates

bound to each specific region was determined.

Statistical analysis
Data are expressed as means 6 SD (standard deviation).

Statistical significance was estimated by ANOVA test using InStat

version 3.0b. Differences were considered to be significant at

P,0.05.

Supporting Information

Figure S1 Purity of isolated flagella and Tfp prepara-
tions. (A) Isolated flagella or Tfp from PAO1DpilA or PAO1DfliC,

respectively, were coated onto fluorescent beads. The total amount

used for coating, the supernatant fraction, and the bead-bound

portion were separated by SDS-PAGE and immunoblotted with a

polyclonal antibody to FliC (flagella) or to PilA (Tfp). (B) SDS-

PAGE gel stained by Coomassie Blue.

(TIF)

Figure S2 Flagella-coated beads bind directly to HS and
Tfp-coated beads bind directly to N-glycans in vitro.
Isolated flagella or Tfp from PAKDpilA or PAKDfliC, respectively,

were coated onto green fluorescent beads. 96-well plastic plates

were coated overnight with increasing concentrations of the

indicated molecules. (A) Flagella- or (B) Tfp-coated beads were

added to 96-well plastic plates coated with increasing concentra-

tions of various molecules for 1 h. The fluorescence of the bound

fraction was quantified in a plate reader and the percent of binding

above control (binding of coated beads to non-coated wells) is

indicated. Shown is the mean +/2 SD for 6 independent

experiments. HSPGs: heparan sulfate proteoglycans, HS: heparan

sulfate; HA: hyaluronic acid; CS-4: 4-0-sulfated chondroitin

sulfate; CS-6: 6-0-sulfated chondroitin sulfate; ; N-glycan-1: simple

N-glycan chain; N-glycan-2: hybrid N-glycan chain; N-glycan-3:

complex N-glycan chain; Man: mannose; GlcNAc: N-acetylglu-

cosamine; Fuc: fucose; Gal: galactose.

(TIF)

Figure S3 The C-terminus of Tfp is required for binding
of coated beads to N-glycans. Tfp were isolated from PA103

or PA103 Mutant 9 separated on (A) 12% SDS-PAGE gel stained

by Coomassie Blue. Tfp isolated from (B) PA103 or (C) PA103

Mutant 9 were coated onto green fluorescent beads and added to

96-well plastic plates coated with increasing concentrations of

various molecules for 1 h. The fluorescence of the bound fraction

was quantified in a plate reader and the percent of binding above

control (binding of coated beads to non-coated wells) is indicated.

Shown is the mean +/2 SD for 3 independent experiments.

HSPGs: heparan sulfate proteoglycans, HS: heparan sulfate; HA:

hyaluronic acid; CS-4: 4-0-sulfated chondroitin sulfate; CS-6: 6-0-

sulfated chondroitin sulfate; N-glycan-1: simple N-glycan chain;

N-glycan-2: hybrid N-glycan chain; N-glycan-3: complex N-glycan

chain; Man: mannose; GlcNAc: N-acetylglucosamine; Fuc: fucose;

Gal: galactose.

(TIF)

Figure S4 P. aeruginosa internalization, but not adhe-
sion, is dependent on EGFR, PDGFR, and PI3K. Calu-3

cells were grown as well polarized monolayers on Transwells for 9

days and treated with heparinase III (hepIII), EGFR inhibitor

(AG1478), PDGFR inhibitor (AG1296), FGFR inhibitor

(PD173074), PI3K inhibitor (LY29004), or in combination.

PAO1 was added to the AP or BL chamber for 2 h and (A)

standard adhesion or (B) invasion assays were performed. (C)

PAO1 invasion in HeLa cells after siRNA depletion of EGFR,

PDGFR-a, and PDGFR-b. Shown is the mean +/2 SD for 3

independent experiments. *P,0.05 compared to BL infected cells

(black bar) in panels A and B or to control in panel C.

(TIF)

Figure S5 High concentrations of HB-EGF compete with
binding of flagella-coated beads to HS in vitro. Flagella

isolated from PAO1DpilA were coated onto green fluorescent

beads and 96-well plastic plates were coated with 5 mg/well HS.

Increasing concentrations of HB-EGF or EGFR were added to

HS-coated wells, followed by addition of flagella-coated beads for

1 h. The fluorescence of the bound fraction above control (flagella-

coated beads bound to non-coated wells) was quantified in a plate

reader and normalized to flagella-coated beads bound to HS-
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coated wells (set to 1). Shown is the mean +/2 SD for 3

independent experiments.

(TIF)
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