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Abstract

Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously
shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular
virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon
bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal
vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected
with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against
infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns
passively immunized with anti-rGAPDH IgG antibodies, or F(ab’)2 fragments, indicating that protection achieved with
rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through
rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10
deficient (IL-102/2) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that
protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R
treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected
organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized
with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil
recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal
host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is
metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this
protein constitutes a powerful candidate for the development of a human vaccine against this pathogen.
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Introduction

Streptococcus agalactiae, also named Group B Streptococcus (GBS),

is a Gram-positive encapsulated commensal bacterium of the

human intestine that colonizes the vagina of up to 30% of healthy

women. This bacterium is the leading cause of neonatal

pneumonia, septicemia, and meningitis [1,2,3,4]. Neonatal GBS

infections are acquired through maternal transmission and may

result in early-onset disease (EOD), which occurs within the first

week of life, or in late-onset disease (LOD), that occurs after the

first week and accounts for most meningitis cases and deaths

[3,5,6]. Despite early antimicrobial treatment and improvement in

neonatal intensive care, up to 10% of neonatal invasive GBS

infections are lethal and 25 to 35% of surviving infants with

meningitis experience permanent neurological sequelae [3].

Because recommendations for intrapartum antibiotic prophylaxis

(IAP) for mothers in labor at risk for GBS infection have been

widely implemented in many countries, the incidence of EOD has

declined to ,1/1,000 births, but the incidence of LOD has slowly

increased in the last decade [7]. An unexpected burden of case

fatalities among children aged less than 90 days caused by GBS

infection was recently reported in different European countries

[8,9,10]. Moreover, recent reports described the emergence of

antibiotic-resistant GBS strains likely caused by the widespread use

of IAP [11,12].

Maternal vaccination is the best alternative to IAP to deal with

GBS neonatal infections. Vaccines to prevent GBS disease have

been initially developed by coupling capsular polysaccharide (CPS)
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antigens to immunogenic protein carriers. Glycoconjugate vac-

cines against nine GBS serotypes have been shown to be

immunogenic in animals, but the existence of distinct epitope-

specific capsular serotypes has hampered the development of a

global GBS vaccine [5,13]. Moreover, glycoconjugated vaccines

directed against the ten known serotypes of GBS would not protect

against infections by nontypeable GBS isolates that are increas-

ingly being reported [14,15,16,17].

The sequencing of numerous GBS genomes has accelerated

advances in vaccine development and new protein antigens have

been revealed using reverse vaccinology [5,18,19]. To avoid the

selection of mutants that escape immune recognition, the ideal

human GBS vaccine should be directed against structurally

conserved antigens that are essential for GBS virulence and/or

growth, but none of the hitherto described candidate antigens

fulfills these requisites.

The causes for the neonatal susceptibility to GBS infections are

still poorly understood. Newborn immune system is not completely

developed at birth, and undergoes an age-dependent maturation

until fully developed. Thus, invasive infections in the first days of

life pose serious threats for the newborn due to accentuated

deficiencies in both innate and adaptive arms of the immune

responses. Cases of early-onset GBS sepsis are usually character-

ized by an unexpectedly low number of neutrophils in infected

tissues [20,21,22,23]. This is commonly explained by the reduced

neutrophil chemotaxis and impaired granulocyte maturation

observed in neonates [24,25,26]. Of interest, high concentration

of plasma and cord blood IL-10 in preterm neonates evaluated for

sepsis was associated with mortality and is considered as an early

indicator of prognosis [27,28].

We have previously shown that the essential housekeeping

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

also acts as a GBS extracellular virulence factor that induces

rapid production of interleukin-10 (IL-10) by the host [29]. Adult

C57BL/6 mice (resistant to GBS infection) infected with a GBS

mutant strain that over-express GAPDH (oeGAPDH) had

increased bacterial colonization compared to mice infected with

wild-type (WT) GBS. Increased bacterial burden in oeGAPDH

infected C57BL/6 mice was accompanied by elevated serum

levels of IL-10. Consequently, acquired susceptibility of C57BL/6

mice to oeGAPDH infection was completely reverted in IL-10-

deficient animals [29]. This suggested that an exacerbated

production of IL-10 during GBS infection might facilitate

pathogen immune evasion. We demonstrate here that maternal

immunization with rGAPDH confers protection against GBS

infection in neonatal mice by abrogating the early IL-10

production detected upon the bacterial challenge. We also

demonstrate that blocking GAPDH-induced early IL-10 produc-

tion restores the recruitment of neutrophils in infected organs,

which is essential for pathogen elimination and host protection

against GBS infection.

Since GBS GAPDH is a structurally conserved enzyme that is

metabolically essential for bacterial growth in blood, it constitutes

an attractive target for the development of a human vaccine.

Results

GAPDH, a structurally conserved GBS protein
GAPDH, a key enzyme of the glycolytic pathway, is structurally

conserved in all 8 published GBS genomes (identity.99.8%).

Anti-rGAPDH IgG antibodies purified from sera of rGAPDH

immunized mice or rabbits were thus used to demonstrate the

presence of GAPDH in culture supernatants of ten unrelated GBS

clinical isolates (Figure 1A) belonging to different serotypes and/or

MLSTypes (Table S1). GBS GAPDH displays 44.7, 45.8 and

44.0% amino acid identity with rabbit, mice, and human

GAPDH, respectively (Figure 1B). However, western blot and

ELISA analysis revealed that rabbits and mice antibodies directed

against GBS rGAPDH do not react with human, mouse, or rabbit

GAPDH (Figure 2A and 2B). To favor the production of

antibodies recognizing linear buried epitopes, mice were immu-

nized with heat-denaturated rGAPDH (DT_rGAPDH). Anti-

DT_rGAPDH antibodies purified from the sera of these animals

did not show any cross-reactivity against mouse (self cross-

reactivity) or human GAPDH when analyzed by western blot

and ELISA (Figure 2C and 2E). These results are consistent with

the fact that the longest identical stretches observed between

eukaryotic and prokaryotic GADPH sequences are only 10-

aminoacid long (Figure 1B).

Maternal vaccination with rGAPDH protects neonates
from GBS infection

To test whether maternal immunization with rGAPDH

conferred protection to the offspring against GBS infection,

female BALB/c mice were immunized with rGAPDH in alum

adjuvant. Control mice were sham-immunized with the adjuvant

alone.

Pups born from sham-immunized or rGAPDH-immunized

females were infected intraperitoneally (i.p.) 48 h after birth with

56106 colony-forming units (CFU) of serotype III virulent GBS

strain NEM316. All but one mouse born from rGAPDH-

immunized mothers survived the infection (95% survival) whereas

22 out of 27 infected pups succumbed to GBS challenge in the

control group (18.5% survival) (Figure 3A). Most of the cases of

GBS meningitis and LOD are caused by a serotype III hyper

virulent clone, defined by multilocus sequence typing as ST-17

[30,31,32]. To better assess the effectiveness of maternal

vaccination with rGAPDH, pups born from sham- or rGAPDH-

immunized progenitors were i.p. infected 48 h after birth with

106 CFU of BM110, a serotype III GBS hyper virulent strain ST-

17 (Table S1). All ST-17 GBS challenged neonates born from

Author Summary

Streptococcus agalactiae (Group B streptococcus, GBS) is
the leading infectious cause of morbidity and mortality
among neonates. However, there is still no satisfactory
explanation of why neonates are so susceptible to GBS
infections. Intrapartum antibiotic prophylaxis (IAP) was
implemented in many countries but led to the emergence
of antibiotic-resistant GBS strains. Therefore, maternal
vaccination represents an attractive alternative to IAP.
Here, we show that the high susceptibility of newborn
mice to GBS infections is associated with their propensity
to produce elevated amounts of immunosuppressive
cytokine IL-10. We also demonstrate that IL-10 impairs
neutrophil recruitment into infected organs thus prevent-
ing bacterial clearance. We identified extracellular GAPDH
as the GBS factor that induces the high IL-10 production
detected early upon neonatal infection. We show that
maternal vaccination with recombinant GAPDH confers
robust protective immunity against lethal infection with a
GBS hyper-virulent strain in mice offspring. This protection
can also be obtained either by antibody neutralization of
GBS GAPDH or by blocking IL-10 binding to its receptor. As
GBS GAPDH is an essential protein for bacterial growth, it
is present in all GBS strains and thus constitutes an
appropriate target antigen for a global effective vaccine
against this pathogen.

rGAPDH Vaccination Against Neonatal GBS Disease
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sham-immunized mothers died whereas mortality rate dropped to

21.4% in neonates born from rGAPDH-immunized mothers

(Figure 3B). The protective effect conferred by rGAPDH maternal

immunization was also observed in neonate mice infected by the

subcutaneous (s.c.) route with 2.56104 BM110 CFU. As shown in

Figure 3C, none of the mice born from sham-immunized mothers

survived this infectious challenge whereas only 23% of mice born

from rGAPDH-immunized mothers died. Altogether, these results

show that maternal vaccination with rGAPDH protected the

offspring against GBS infections, including those caused by the

hyper virulent strain BM110.

Passive immunization with anti-rGAPDH F(ab’)2-
fragments protects newborns against GBS ST-17
challenge

Pups born from rGAPDH-immunized mothers presented

increased serum titers of anti-rGAPDH IgG antibodies when

compared with those born from sham-immunized mothers (Figure

S1). To evaluate the importance of these maternal antibodies in

the newborn protection against GBS infection, neonatal mice were

passively immunized with purified anti-rGAPDH IgG antibodies

12 h prior to GBS challenge. The passive antibody transfer

conferred protection against infection caused by the virulent

NEM316 or hyper virulent BM110 strains (Figure 4A and 4B).

Anti-rGAPDH IgG antibodies conferred a similar protection to

neonate mice infected by the s.c. route (data not shown). As

described by others [33], we observed that GAPDH is present at

the cell surface of GBS strains (Figure S2) and, it was therefore

conceivable that protection conferred by anti-rGAPDH antibodies

could be due to an enhanced opsonophagocytosis-mediated killing

of GBS. However, anti-rGAPDH IgG antibodies did not

enhanced in vitro phagocytosis or complement-mediated killing of

GBS BM110 cells (Figure 4C). This indicated that protection

conferred by anti-rGAPDH antibodies was not mediated by these

mechanisms. Furthermore, complete protection against GBS

infection was observed in neonate mice treated with purified

anti-rGAPDH F(ab’)2 fragments 12 h before i.p. infection with

BM110 strain. In contrast, all pups that received the same amount

of control F(ab’)2 fragments died within the first 3 days upon the

infectious challenge (Figure 4D). Altogether, these results demon-

strate that enhanced opsonophagocytic killing or complement

activation did not mediate the observed protective effect of anti-

rGAPDH antibodies.

GBS GAPDH induces early IL-10 production in newborn
mice

We have previously described a rise in IL-10 serum levels in

adult mice treated with rGAPDH [29]. As shown in Figure S3, a

Figure 1. GAPDH is a conserved GBS protein. (A) Extracellular proteins from culture supernatants of different GBS clinical isolates were
separated by SDS-page and analyzed by western-blot using anti-rGAPDH IgG obtained from rGAPDH-immunized rabbits. rGAPDH was used as a
positive control. The data are representative of four independent experiments. (B) Multiple alignment of the aminoacid sequences of the human,
rabbit, mice, and GBS GAPDH. The green vertical bars below the consensus sequences indicate identical aminoacid at the same position in all four
sequences. The two heavy black lines delineate the two conserved 10-aminoacid stretches of identity.
doi:10.1371/journal.ppat.1002363.g001
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similar increase in serum IL-10 levels was detected in newborn

mice 1 h after i.p. injection of rGAPDH. Inactivation of rGAPDH

enzymatic activity did not reduce this effect (Figure S3). This result

indicates that IL-10 production induced by GBS GAPDH is

independent of the dehydrogenase activity. We have also

described that adult mice infected with GBS oeGAPDH mutant

strain presented higher serum IL-10 levels than counterparts

infected with WT GBS [29]. Thus, we also quantified the levels of

serum IL-10 in mice pups at early times after GBS infection. As

shown in Figure 5, infection of newborn mice with GBS WT strain

NEM316 resulted in a rapid increase of serum IL-10 concentra-

tion. Maternal rGAPDH vaccination or treatment with anti-

rGAPDH F(ab’)2 fragments completely abrogated the elevated

amount of IL-10 found in the sera of infected pups born from

sham-immunized mothers or treated with control F(ab’)2
(Figure 5A and 5B). Altogether, these results strongly suggest that

the elevated IL-10 serum levels detected upon infection were due

to GBS GAPDH.

Protection conferred by anti-rGAPDH antibodies is
associated with inhibition of early IL-10 production in
GBS-infected pups

The results presented above indicate that newborn susceptibility

to GBS infection is most probably associated with early IL-10

production induced by GAPDH. To confirm this hypothesis, IL-

10 deficient (IL-102/2) pups and WT controls were infected with

this bacterium. In agreement with our hypothesis, IL-102/2 pups

were more resistant (78%) to GBS infection compared to WT

controls (10%) (Figure 6A). To demonstrate further the essential

role of IL-10 in neonatal susceptibility to GBS, newborn mice were

treated with anti-IL-10 receptor (IL-10R) mAb 12 h before

Figure 2. Antibodies against GBS GAPDH do not cross-react with human, rabbit or mouse GAPDH. (A and B) Reactivity of rabbit and
mouse anti-rGAPDH IgG against GBS, human (Hu), mouse (M) or rabbit (R) GAPDH were assessed by (A) western-blot or (B) ELISA analysis. (C and D)
Reactivity of anti-rGAPDH IgG purified from the sera of mice immunized with heat-denaturated rGAPDH (DT_rGAPDH) against GBS, human or mouse
GAPDH, were assessed by (C) western-blot or (D) ELISA analysis. ND, not detected.
doi:10.1371/journal.ppat.1002363.g002

rGAPDH Vaccination Against Neonatal GBS Disease
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NEM316 or BM110 GBS challenge. As expected, most pups

treated with anti-IL-10R mAb survived (86% or 82%, respectively)

while all control pups died (Figure 6B and 6C). No additional

protection was observed when newborn mice were treated

simultaneously with anti-IL10R mAb and anti-rGAPDH IgG

(Figure 7). Altogether, these results indicate that protection

achieved using anti-GAPDH antibodies is due to inhibition of

host IL-10 production. Several studies have shown that GBS can

survive for prolonged periods within the phagolysosome of

macrophages [34,35,36,37]. Interestingly, we observed that the

simultaneous addition of anti-rGAPDH IgG’s, or anti-IL10R

mAb, and GBS cells to bone marrow-derived macrophages

(BMMw) cultures inhibits the bacterial survival (Table 1). This

result, combined with those shown in Figure S3, indicates that the

Figure 3. Maternal immunization with rGAPDH protects newborn mice from GBS-induced death. Pups born from sham- or rGAPDH-
immunized mothers were infected i.p. 48 h after birth with (A) 56106 NEM316 CFU or with (B) 106 CFU of the ST-17 hyper virulent strain BM110. (C)
Mice pups were infected s.c. 48 h after birth with 2.56104 CFU of BM110. The results represent data pooled from three independent experiments. In
all figures depicting survival experiments, the numbers between parentheses represent the number of animals that survived the different infectious
challenges versus the total number of infected animals. Statistical differences (P values) between immunized versus sham-immunized groups are
indicated.
doi:10.1371/journal.ppat.1002363.g003
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inability of the macrophages to kill the intracellular GBS is due to

IL-10 production induced by GBS GAPDH.

GAPDH blocks neutrophil recruitment in injured organs
upon GBS infection

A plausible explanation for the observed protection induced by

maternal vaccination with rGAPDH could be that GAPDH-

mediated early IL-10 production, elicited upon the GBS challenge

in newborns, inhibits the initiation of a host-protective inflamma-

tory response. Neutrophil recruitment is an early event associated

with protection against bacterial infection in neonates. Moreover,

lack of neutrophil recruitment into infected organs has already

been associated with neonatal susceptibility against GBS infections

[21,22,23,38]. To confirm that neutrophil recruitment into

infected organs is an essential event for newborn protection

against GBS infection, neutrophils of newborn mice were depleted

by treatment with anti-Ly6G (1A8 clone) monoclonal antibodies

(Figure S4). We observed that either blocking IL-10 signaling with

neutralizing antibodies or anti-rGAPDH antibody treatment was

not sufficient to protect neutropenic pups infected with a lethal

inoculum of GBS (Figure 8).

In addition, we assessed the numbers and frequency of

neutrophils in the liver and lungs of GBS NEM316-infected pups

previously treated with anti-rGAPDH IgG or anti-IL10R mAb.

The frequency and the total number of neutrophils quantified

18 h after GBS challenge in the analyzed organs of infected pups

Figure 4. Passive immunization with purified anti-rGAPDH antibodies protects newborn mice from GBS-induced death. anti-rGAPDH
IgG or control IgG (80 mg) were injected i.p. into mice pups and 12 h after the immunization they were infected i.p. with (A) 56106 NEM316 CFU or
with (B) 106 CFU of the ST-17 hyper virulent strain BM110. The results represent data pooled from two independent experiments. (C) Upper panel:
BMM were stimulated in vitro with 106 CFU of GBS NEM316 (or BM110) plus 25 mg/mL of anti-rGAPDH IgG’s, or 10% of serum containing anti-GBS
antibodies, and incubated for 30 min at 37uC in 5% CO2. Data represent the mean + SEM. Results are representative of 3 independent experiments.
Statistical differences (P values) are indicated. Lower panel: complement-mediated killing of GBS. Mice peripheral blood leukocytes were stimulated
with 106 CFU of GBS NEM316 (or BM110) plus 25 mg/mL of anti-rGAPDH IgG’s, or 10% of anti-GBS serum, and 5% of rabbit serum was added to the
mixture as a source of complement. After 2 h of incubation period at 37uC, GBS CFU were evaluated on agar plates. Data represent the mean + SEM.
Results are representative of 2 independent experiments. Statistical differences (P values) are indicated. Similar results were obtained when a higher
concentration (100 mg/mL) of anti-rGAPDH IgG’s was used. (D) Pups were passively immunized with 80 mg of anti-rGAPDH F(ab’)2 fragments, or
control (Fab’)2 and infected 12 h later with 106 CFU of the ST-17 hyper virulent strain BM110. The results represent data pooled from two
independent experiments.
doi:10.1371/journal.ppat.1002363.g004
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treated with control IgG (or isotype control) was as low as with the

non-infected pups (data not shown). Treatment with either anti-

rGAPDH IgG or anti-IL-10R mAb prior to GBS infection

significantly increased the neutrophil recruitment in organs

(Figure 9A and 9B). Consistently, the organs of pups treated with

anti-IL10R mAb or anti-rGAPDH IgG contained significantly less

bacteria than those of untreated pups (Figure 9C). These results

indicate that an efficient neutrophil recruitment into infected

organs is crucial for neonatal protection against GBS infection

whereas impaired neutrophil recruitment facilitates GBS coloni-

zation. Moreover, no bacterial colonization was detected three

weeks after GBS infection in the brain or in any other organ of

pups born from rGAPDH-immunized mothers and infected with

NEM316 or with the ST-17 hyper-virulent strain BM110 (data not

shown). These results indicate that rGAPDH-maternal vaccination

is also effective in preventing LOD.

Figure 5. GAPDH neutralization abolishes IL-10 production observed in newborn mice early upon GBS infection. Serum IL-10
concentration in mice pups was measured 1 h and 4 h after i.p. infection with 56106 NEM316 CFU (A) born from sham- or rGAPDH-immunized dams
or (B) passively immunized with anti-rGAPDH F(ab’)2 fragments or control F(ab’)2. Data represent the mean + SEM. Results are a representative
example out of 3 independent experiments. A minimum of 8 animals per group was used in each experiment. Statistical differences (P values)
between immunized versus sham-immunized groups (A) or between pups treated with anti-rGAPDH F(ab’)2 fragments versus controls (B) are
indicated.
doi:10.1371/journal.ppat.1002363.g005
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Discussion

Newborns are highly susceptible to infectious disease and

deficiencies of key components of the complement cascade

combined with the inability to produce high amounts of antibodies

against T-independent antigens greatly impairs their ability to

respond to encapsulated bacteria [39]. Absence of previous

interactions with environmental microbes also implies that no

immunological memory exists against specific antigens, which

means that the acquired immune protection of newborns relies

mainly on antibodies passively transferred from their mothers [40].

In addition, previous reports indicate that neonatal innate immune

cells are less efficient in producing Th1-type inflammatory

cytokines, but more competent in producing the immunosuppres-

sive cytokine IL-10 upon Toll-like receptor (TLR) engagement by

microbial products [41,42,43,44]. Moreover, newborn mice

leukocytes are highly committed to produce increased amounts

of IL-10 [44,45], as also shown in human neonates [41,43,46]. As

report in this work, high levels of serum IL-10 could be detected in

the sera of GBS infected newborn mice early (1 h and 4 h) upon

infection. This result is in agreement with a previous report by

Cusumano et al. [47], showing that elevated levels of plasma IL-10

were detected in newborn mice 24 h and 48 h upon GBS

challenge. These authors suggested a host protective role for IL-10

in the outcome of neonatal GBS sepsis as pre-treatment of

newborn mice with recombinant IL-10 improved their survival

upon a lethal s.c. GBS challenge [47]. Nevertheless, they also

showed that a therapeutic administration of this cytokine (24 h

after the bacterial challenge) did not improve survival. This would

limit its use in human therapies because neonatal GBS infection is

usually acquired before or during labor [3,5,6].

Our results revealed that blocking IL-10 signaling through anti-

IL-10R mAb administration was sufficient to confer protection

against a bacterial challenge using either the s.c. or i.p. routes.

Thus, they contrastingly indicate that IL-10 has a deleterious effect

in the newborn host resistance to GBS infection. The increased

resistance of IL-10-deficient neonates to GBS infection reported

here constitutes further support for a deleterious effect of IL-10 in

host resistance to GBS. As shown here, the GBS GAPDH induced

host IL-10 production detected early after bacterial infection.

IL-10 is produced by multiple cell types and inhibits leukocyte

activation, pro-inflammatory cytokine production and down-

regulates the expression of anti-microbial molecules on activated

phagocytes [48,49,50,51]. IL-10 also inhibits production of CC

and CXC chemokines by activated monocytes [52,53,54]. Since

these chemokines are implicated in the recruitment of leukocytes

during inflammation, IL-10 production indirectly inhibits leuko-

cyte trafficking to inflamed tissues [50,55,56].

IL-10 production was already associated with host susceptibility

against different pathogens [24,45,57,58,59,60,61]. We show here

that treatment of pups with either anti-IL10R mAb or anti-

rGAPDH IgG prior to the GBS challenge increased the neutrophil

recruitment in liver and lungs that is triggered upon infection.

Neutrophil recruitment is a crucial event in the host effector

immune response to GBS [21,62,63] and, consequently, lack of

neutrophil infiltration in infected sites has been reported in cases of

severe early-onset GBS sepsis [21,22,23,38]. Thus, neutralization

of GAPDH, and hence blockade of the induced IL-10 production,

allowed an effective immune response at an early stage of infection

that prevented death of pups. Moreover, pups protected by

maternal immunization with rGAPDH presented no GBS CFU in

the brain, lungs, and liver 3 weeks upon the infectious challenge.

This indicates that protection achieved by this vaccination strategy

might prevent LOD.

The recruitment of neutrophils into infected tissues is very

important to restrain bacterial replication. Thus, qualitative and

quantitative deficiencies in the neutrophils of newborns may

explain the observed susceptibility to GBS infections. Indeed,

newborn neutrophils have reduced adhesion capabilities due to

reduced expression of adhesion molecules [24,25] and they

produced a limited number of microbicidal molecules. Moreover,

the number of these cells is also reduced when compared to adults

Figure 7. Simultaneous injection of anti-rGAPDH IgG’s and anti-IL10R mAb does not increase survival of newborn mice infected
with GBS BM110. Newborn mice were treated i.p. with 100 mg of anti-IL10R mAb, anti-rGAPDH IgG’s, or simultaneous with anti-IL10R mAb and
anti-rGAPDH IgG’s (anti-rGAPDH + anti-IL10R) 12 h before s.c. injection of 2.56104 CFU of GBS BM110. Control pups received 100 mg of control IgG’s.
P,0.0001 between anti-IL10R-, anti-rGAPDH- and anti-rGAPDH+antiIL-10R-treated pups and controls.
doi:10.1371/journal.ppat.1002363.g007

Figure 6. Impairment of IL-10 signaling confers protection to newborn mice against GBS infection. (A) IL102/2 and WT pups were
infected i.p. with 56106 NEM316 CFU (results represent data pooled from two independent experiments). (B) Newborn mice were injected i.p. with
anti-IL10R mAb (anti-IL10R) or isotype control IgG (100 mg) and 12 h later were challenged i.p. with 56106 NEM316 CFU (results represent data
pooled from three independent experiments). (C) Newborn mice were injected i.p. with anti-IL10R mAb (anti-IL10R) or isotype control IgG (100 mg)
and 12 h later were challenged s.c. with 2.56104 BM110 CFU (results represent data pooled from four independent experiments). Statistical
differences (P values) between IL-102/2 and WT pups (A) or between immunized versus sham-immunized groups (B and C) are indicated.
doi:10.1371/journal.ppat.1002363.g006
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due to insufficiencies on neonatal granulocyte lineage development

[26]. As a consequence, the intra-cellular and extracellular killing

of pathogens is greatly impaired in neonates [64]. However, our

results indicate that, despite these serious functional defects, the

neutrophils of neonates can control the GBS infections as long as

the inhibitory effect of IL-10 is blocked. Importantly, IL-10

blockade with a specific mAb did not significantly decreased the

elevated serum TNF-a levels detected upon GBS infection in

neonate mice [47]. This further suggests that impairment of

neutrophil recruitment rather than inhibition of pro-inflammatory

cytokines could be the prominent effect of IL-10 produced in the

course of neonatal GBS infection.

Neonatal sepsis is a pathological condition associated with

elevated levels of pro-inflammatory cytokines, including IL-1b,

TNF-a, and IL-6. However, it has been previously described that

cord blood or plasma IL-10 concentration is significantly increased

in neonatal sepsis, constituting an early indicator of prognosis

[27,28]. Of interest, it was also reported that high IL-10 levels are

found in children at initial phases of fulminant septic shock

[65,66]. This indicates that early IL-10 production, instead of

being a physiological attempt to counterbalance the elevated levels

of pro-inflammatory cytokines, could be a predisposing factor for

disease. Our results are in accordance with this hypothesis and

they provide the first evidence that the lack of neutrophil

recruitment in infected organs combined with elevated cord blood

IL-10 concentration may account for neonatal susceptibility to

GBS infection. Hence, the discovery of GAPDH as an

extracellular virulence factor of GBS that induces an early IL-10

production by the infected host could be a significant contribution

to our understanding of the pathology of neonatal infections.

GAPDH is a promising candidate for a human GBS vaccine

because it is an essential metabolic enzyme that also plays a critical

role in virulence. Our results show that maternal vaccination with

rGAPDH protects the offspring against GBS lethal infection,

including those caused by the hyper virulent ST-17 clone, which is

responsible for most cases of neonatal meningitis [31,32,38]. As a

consequence, maternal rGAPDH vaccination might efficiently

protect against both EOD and LOD [5,67,68]. We demonstrated

that passive immunization of neonates with GAPDH-specific IgG

antibodies is sufficient to confer protection against GBS infection.

Importantly, rGAPDH maternal vaccination prevents the early

production of IL-10 in GBS infected pups and similar protective

effect was obtained when GAPDH-specific antibody F(ab’)2
fragments were used instead of whole IgG. These results indicate

that neutralization of GAPDH-mediated IL-10 production, rather

than complement activation or bacterial opsonophagocytosis,

accounts for the observed protection. The extracellular GAPDH

was detected at the bacterial surface and in culture supernatants of

GBS isolates, which suggests that neutralization of its biological

activity by antibody binding should not be sterically impaired by

surface capsular polysaccharides. Recently, Margarit et al. showed

that pili proteins could be used as a human vaccine to prevent

GBS infections but, due to sequence variability, a combination of 3

antigens was required to confer protection against 94% of

contemporary GBS strains [19]. It is likely that under selective

pressure this vaccine will select GBS variants expressing new pili

antigens, as shown for Neisseria gonorrhoeae [69,70,71,72,73]. In

contrast, since it is an essential and highly conserved metabolic

enzyme, GAPDH is unlikely to accumulate rapidly escape

mutations or rearrangements under such a selective immune

pressure.

Taken together, our results demonstrate that extracellular

GAPDH confers a selective advantage to GBS for survival in the

infected host. In particular, GBS GAPDH acts on the host

immune system to elicit IL-10 production thereby favoring

bacterial colonization and survival. As we demonstrated that

GBS GAPDH was still able to induce host IL-10 production upon

exposure to an oxidative agent, this mechanism may still operate

within the highly oxidative environment resulting from the host

inflammatory response. Our data highlight the critical role played

by this immunosuppressive cytokine in determining susceptibility

to GBS infection at an early time after birth. Our results also show

that GBS-associated pathology can be counteracted either by

rGAPDH vaccination or IL-10 neutralization. In the future, it will

be essential to explore the use of either strategy to induce

protection towards other human neonatal pathogens.

Materials and Methods

Bacterial strains
Relevant characteristics of the GBS strains used in this study are

summarized in Table S1. Escherichia coli BL21 (DE3) strain

Table 1. Inhibition of GBS intracellular survival in cultured
BMM .

Intracellular bacterial counta

(log10CFU ± SEM)

NEM316 BM110

2 h 24 h 2 h 24 h

RPMI 5.2160.18 6.4960.88 5.4060.17 6.6760.58

anti-rGAPDH 4.8260.08 0.0060.00** 5.1960.13 0.0060.00**

anti-IL10R 4.9760.13 0,6661.15** 5.1460.12 0.0060.00**

aBMM were infected in vitro for 2 h with GBS NEM 316 or BM110 at MOI of
10 CFU per macrophage. After three washes in HBSS containing penicillin and
streptomycin, infected macrophages were further incubated in RPMI medium
containing 10% FCS and antibiotics. At indicated time points, the cells were
washed with antibiotic-free HBSS, lysed with saponin, and the CFU estimated
by plating serial dilutions of the lysate onto agar plates. ** P,0.0001 compared
with RPMI control at the same time point.

doi:10.1371/journal.ppat.1002363.t001

Figure 8. Neutrophils are essential for neonatal protection
against GBS infection. Neutropenic mice pups were injected i.p. with
100 mg of anti-rGAPDH antibodies (n = 11), anti-IL-10R mAb (n = 14) or
control antibodies (n = 16) 12 h before i.p. infection with 56106 CFU of
NEM316. Results represent data pooled from three independent
experiments.
doi:10.1371/journal.ppat.1002363.g008
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(Novagen) and the pET28a plasmid (Novagen) were used for

production of recombinant GAPDH (rGAPDH) as described

previously [29]. GBS was grown in Todd-Hewitt broth or agar

(Difco Laboratories) containing 0.001 mg/mL of colistin sulphate

and 0.5 mg/mL of oxalinic acid (Streptococcus Selective Supple-

ment, Oxoid) and E. coli was cultured on Luria-Bertani medium.

Bacteria were grown at 37uC.

Animals
Male and female BALB/c mice (6-8 weeks old) were purchased

from Charles River. IL-10-deficient BALB/c (IL-102/2) mice

were kindly provided by Dr. A. O’Garra (National Institute for

Medical Research, London, U.K.). New Zealand White rabbits

were purchased from Charles River. Animals were kept at the

animal facilities of the Institute Abel Salazar during the time of the

experiments.

Ethics statement
This study was carried out in strict accordance with the

recommendations of the European Convention for the Protection

of Vertebrate Animals used for Experimental and Other Scientific

Purposes (ETS 123) and 86/609/EEC Directive and Portuguese

rules (DL 129/92). The animal experimental protocol was

approved by the competent national authority Direcção Geral

de Veterinária (DGV) (Protocol Permit Number: 0420/000/000/

2008). All animal experiments were planned in order to minimize

mice suffering.

Preparation of active and inactive recombinant GAPDH
Recombinant GAPDH (rGAPDH) was purified as described in

detail previously [29]. Enzymatically inactive rGAPDH (inact-

rGAPDH) was obtained by pretreatment of the enzyme with

500 mM H2O2. The lack of enzymatic activity upon inactivation

was confirmed using a previously described enzymatic assay for

GAPDH [29].

Maternal immunizations with rGAPDH
Recombinant GAPDH was used for maternal immunization

assays. Female mice were injected intraperitoneally (i.p.) twice,

with a 3-week intervening period, with 200 mL of a preparation

containing 25 mg of rGAPDH in a 1:20 PBS/alum suspension

(Aluminium hydroxide Gel; a kind gift of Dr Erik Lindblad,

Figure 9. GAPDH-induced IL-10 blocks neutrophil recruitment in injured organs. (A) Flow cytometric analysis of Ly6G expression on total
lung or liver leukocyte cells from newborn mice treated i.p. with 100 mg of purified anti-rGAPDH IgG antibodies (anti-rGAPDH), of anti-IL10R mAb
(anti-IL10R), or control antibodies (IgG and isotype control) and infected with 56106 NEM316 CFU 12 h after antibody treatment. Pups were sacrificed
18 h after the bacterial challenge. The percentage of Ly6G+ cells is indicated. Results are representative of three independent experiments. (B) Total
number of Ly6G+ cells (neutrophils) per organ observed in the different used groups. Data are the mean + SEM. Results are representative of 4
independent experiments and a minimal of 5 animals per group was used. Statistical differences (P values) between groups are indicated. (C) GBS
CFU in the liver, lungs and brain of infected pups treated with control IgG (n = 11), isotype control IgG (n = 11), anti-IL10R (n = 8), or anti-rGAPDH
(n = 8). Statistical differences (P values) between groups are indicated.
doi:10.1371/journal.ppat.1002363.g009
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Biosector, Frederickssund, Denmark). The sham-immunized

control animals received 200 mL of a 1:20 PBS/alum suspension.

Immediately after the second injection, female and male mice

were paired. Females were monitored closely during gestation and

the day of delivery was recorded. Serum anti-rGAPDH antibody

titers were determined by ELISA as previously described [29].

Antibody treatments
Antibody treatments were performed in newborn BALB/c mice

12 h prior to GBS infection. For passive immunizations, pups were

injected i.p. with 100 mg of anti-rGAPDH IgG antibodies or anti-

rGAPDH F(ab’)2 fragments. Control animals received the same

amount of control IgG’s or F(ab’)2 fragments issued from control

IgG’s. For IL-10 signaling blocking, 100 mg of anti-IL10R

antibodies (1B1.3a, Schering-Plough Corporation) were adminis-

tered i.p. and control animals received the same amount of

matched isotype control antibody.

Challenging infections of newborn mice
Newborn mice were infected i.p. with 56106 cells of GBS

NEM316 or 106 cells of GBS BM110 (ST-17), 48 h after birth in a

maximum volume of 40 mL. Subcutaneous (s.c.) infections were

performed 48 h with 2.56104 cells of GBS BM110 after birth in a

total volume of 20 mL. Survival curves were determined in a 12-

day experiment period and newborns were kept with their mothers

during the entire time of the experiment. The liver, lungs, and

brain of infected pups were aseptically removed at indicated time

points and homogenized in PBS and serial dilutions of

homogenized organs were plated on Todd-Hewitt agar to

enumerate bacterial CFU.

Purification of anti-rGAPDH IgG antibodies
Adult mice or rabbit were immunized twice with 25 mg of

rGAPDH in a PBS/alum suspension as described above and sera

were collected 10 days after the second immunization. Pooled

serum samples were applied to a Protein G HP affinity column

(HiTrap, GE Healthcare Bio-Sciences AB) and purified IgG

antibodies were then passed through an affinity column with

immobilized rGAPDH (Hi-trap NHS-activated HP, GE Health-

care Bio-Sciences AB). Control IgGs were obtained from sera of

mice or rabbits sham-immunized with a PBS/alum suspension

and purified on a Protein G HP affinity column. Purified IgG

antibody fractions were further equilibrated in PBS and stored at -

80uC in frozen aliquots.

Preparation of anti-GBS serum
GBS-specific antiserum was obtained from mice immunized i.p.

twice (with a 3-week interval) with isopropanol-fixed 105 GBS cells

plus alum (total volume). Serum from immunized animals (Anti-

GBS serum) was obtained from retro-orbital bleeding 10 days after

the second immunization.

Preparation of F(ab’)2 fragments
F(ab’)2 fragments from anti-rGAPDH or control IgGs were

obtained using IgG1 F(ab) and F(ab’)2 Preparation Kit (Pierce)

used according to manufacturer’s instructions.

Opsonophagocytic assays
Bone marrow-derived macrophages (BMM ) purified as

described previously [74] were plated in 96-well plates

(105 BMM / well) and stimulated for 30 min at 37uC 5%CO2

with 106 CFU of GBS BM110 (or NEM316) in the medium alone

(RPMI), the medium containing 25 mg/mL of anti-rGAPDH

IgG’s, or medium with 10% of serum containing anti-GBS IgG

antibodies. After this incubation period, the plates were washed

three times with HBSS to remove extracellular bacteria. To

enumerate intracellular GBS CFU, 10% saponin (1:100 dilution)

was added to wells and serial dilutions of supernatant were plated

onto agar plates.

Complement-mediated killing assay
Blood from adult mice was collected in heparinated tubes and

diluted 1:1 in HBSS. 106 GBS NEM316 (or BM110) CFU with

25 mg/mL of anti-rGAPDH IgG’s or 10% of serum containing

anti-GBS IgG antibodies were then added. Rabbit serum (5%) was

added to the mixture as a source of complement. After 2 h of

incubation at 37uC, serial dilutions of the mixture were plated onto

agar plates to evaluate complement-mediated GBS killing.

Intracellular survival of GBS in macrophages
The BMMı̂, obtained as described previously [74], were

infected with GBS strains NEM316 and BM110 at a macro-

phage:bacteria ratio of 1:10 in RPMI containing 10% FCS.

Microplates were incubated for 2 h at 37uC in 5% CO2 for GBS

phagocytosis. After this period, culture supernatants of infected

macrophages were removed by aspiration and cells were washed

three times (10 min for each wash) with HBSS containing

penicillin (100 IU/mL) and streptomycin (50 mg/mL) to kill

extracellular bacteria. Infected macrophages were further incu-

bated in RPMI medium containing 10% FCS and the same

concentrations of antibiotics. To quantify intracellular GBS, the

supernatants containing antibiotics were removed, the cells were

washed with antibiotic-free HBSS, lysed with saponin (0,1% final

concentration), and the CFU were estimated by plating serial

dilutions of the lysate onto agar plates.

Neutrophil recruitment
Neutrophil recruitment in liver and lungs of infected pups was

evaluated by flow cytometry analysis. Briefly, 18 h after GBS

infection, the organs were collected, gently homogenized in HBSS

(Sigma), and passed through glass wool to remove cellular

aggregates. PerCP/Cy5.5 anti-mouse Ly-6G antibody (clone

1A8; Biolegend) was used for neutrophil detection. Cells were

analyzed by an Epics XL cytometer (Beckman Coulter).

Neutrophil depletion
Newborn mice were depleted of neutrophils by treatment with

anti-Ly6G antibodies (clone 1A8, Biolegend). Antibody treatment

was performed twice, 12 h before and immediately after GBS

challenge. Each pup was injected with a total of 80 mg of anti-Ly-

6G antibodies.

Interleukin-10 quantification
IL-10 was quantitated in the serum of newborn mice with an

ELISA kit (eBioscience) used according to the manufacturer’s

instruction.

Detection of GAPDH
The presence of GAPDH in the culture supernatants of GBS

strains was visualized by Western-blot analysis. Extracellular

proteins were isolated as described previously [29]. The reactivity

of purified anti-rGAPDH IgG antibodies obtained from the serum

of rGAPDH immunized mice or rabbits against self or human

GAPDH, was determined by Western-blot analysis or ELISA.

Human, rabbit, and mouse GAPDH were purified from human

rGAPDH Vaccination Against Neonatal GBS Disease
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erythrocytes, rabbit erythrocytes or mouse muscle as previously

described [75,76].

Statistical analysis
Student’s T test was used to analyze the differences between

groups. Survival studies were analyzed with the log-rank test. A P

value,0.05 was considered statistically significant.

Supporting Information

Figure S1 Increased anti-rGAPDH IgG serum titers in
mice pups born from rGAPDH-vaccinated mothers.
Newborn mice from rGAPDH-immunized mothers present higher

serum anti-rGAPDH IgG antibody titers than controls born from

sham-immunized mothers. Anti-rGAPDH antibody titers were

determined by ELISA. Results are pooled data from three

independent experiments (n = 13 or 17 for pups born from

sham-immunized or rGAPDH-immunized mothers, respectively).

(TIF)

Figure S2 GAPDH is present at GBS cell surface.
Fluorescence microscopy analysis of GBS cells using anti-

rGAPDH polyclonal antibodies purified from rGAPDH-immu-

nized rabbits and revealed with FITC-conjugated anti-rabbit IgG

(Green). Bacterial DNA was stained with DAPI (blue). GBS cells

incubated with (A) secondary antibody only, (B) with anti-

rGAPDH plus secondary antibody, or (C) with anti-rGAPDH

plus rGAPDH to inhibit antibody binding to surface-localized

antigen.

(TIF)

Figure S3 Active or enzymatically inactive rGAPDH
induces IL-10 production. IL-10 concentration in the sera of

newborn mice 1 h after i.p. injection with 50 mg of rGAPDH or

rGAPDH pre-treated with 500 mM H2O2 (inact_rGAPDH).

Control mice were injected with PBS. Results are pooled data

from two independent experiments (n = 9 for controls, 8 for

rGAPDH and 7 for pups treated with inact_rGAPDH). Statistical

differences (P values) between groups are indicated.

(TIF)

Figure S4 Treatment of newborn mice with anti-Ly6G
antibodies induces neutropenia. Pups were treated i.p. 36 h

and 48 h after birth with 40 mg of anti-Ly6G (clone 1A8) mAb or

with the same amount of an isotype matched control antibody.

The frequency of blood neutrophils was determined 4 h after the

last injection by FACS analysis using anti-Gr-1 mAb (clone RB6-

8C5).

(TIF)

Table S1 Phenotypic and genotypic characteristics of
the GBS human isolates used in this study.
(DOC)
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