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Abstract

Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes
chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to
immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are
also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S.
epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus,
prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the
capacity to produce PSMd, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that
pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency.
Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the
adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the
capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial
peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS).
These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S.
epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows
that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense
approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S.
aureus.
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Introduction

Staphylococcus epidermidis colonizes the epithelial surfaces of every

human being. Furthermore, it is one of the most frequent causes of

nosocomial infections. In addition to the abundant prevalence of S.

epidermidis on the human skin, this high incidence is mainly due to

the exceptional capacity of S. epidermidis to stick to the surfaces of

indwelling medical devices during device insertion and form

multilayered agglomerations called biofilms [1,2].

During infection, S. epidermidis is exposed to human innate host

defenses, most notably professional phagocytes, among which

neutrophils or polymorphonuclear leukocytes (PMNs) play a

preeminent role [3]. While the biofilm mode of growth is believed

to be broadly protective against host defenses [1,4], we lack

information on specific molecules of S. epidermidis that provide

resistance to host defense mechanisms. The only S. epidermidis

molecules known to facilitate evasion of killing by neutrophils are

the extracellular polymers poly-N-acetylglucosamine (PNAG, or

PIA, polysaccharide intercellular adhesin) and poly-c-glutamic

acid (PGA), which inhibit uptake by neutrophils (phagocytosis)

[5,6]. This is in contrast to S. aureus, a more pathogenic relative of

S. epidermidis, which produces a series of proteins and enzymes

dedicated to evade innate and adaptive host defense [7,8].

Immune evasion of S. aureus is due in part to cytolytic toxins,

such as a-toxin, c-toxin, or Panton-Valentine leukocidin, which

are proinflammatory and have potential to lyse neutrophils and

other leukocytes [9]. In addition, we recently identified a new class

of S. aureus cytolytic toxins, the phenol-soluble modulins (PSMs).

Several PSM peptides have high capacity to attract, stimulate and

lyse human neutrophils, and are significant contributors to

pathogenesis of S. aureus bacteremia and skin infection [10].

PSMa3, in particular, is the most cytolytic S. aureus PSM and

encoded together with three other PSMs in the psma operon of S.

aureus. High expression of peptides encoded in the psma operon is

mainly responsible for the pronounced potential of hyper-virulent

community-associated methicillin-resistant S. aureus (CA-MRSA)
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strains to lyse human neutrophils [10], underpinning the

importance of PSMs for neutrophil lysis. In contrast to S. aureus,

toxins that lyse human leukocytes or other cell types have not been

described in S. epidermidis.

PSMs are characterized by common physico-chemical proper-

ties rather than similarity at the amino acid sequence level (Fig. 1).

Identification of PSMs thus requires isolation and characterization

by means such as mass spectrometry and Edman degradation.

Using these methods, six members of the PSM family have been

identified in S. epidermidis (Fig. 1) [11,12,13,14], but their biological

significance is largely undefined. This is in part due to the fact that

in earlier studies, a partially purified extract from S. epidermidis

containing PSMs was used to measure PSM activities

[12,15,16,17]. Therefore, it is possible that proinflammatory

activities previously attributed to S. epidermidis PSMs were caused

by contaminants such as lipopeptides, particularly as similar

impurities have frequently led to the misinterpretation of

stimulatory effects on innate immune system mechanisms in the

past [18]. This emphasizes the need to analyze pure peptides, but

pure S. epidermidis PSMs and especially cytolytic potencies of S.

epidermidis PSMs have never been investigated.

After phagocytosis, neutrophils kill bacteria with reactive

oxygen species and non-oxygen-dependent processes [19]. Among

the latter, antimicrobial peptides (AMPs) such as defensins and

cathelicidins are believed to play a crucial role [20]. We have

previously found that the secreted S. epidermidis protease SepA has

considerable capacity to eliminate AMPs by proteolysis [21].

Furthermore, we identified the first Gram-positive AMP sensing

system in S. epidermidis, apsRSX [22]. This system, which has also

been named graRSX in S. aureus [23,24], regulates a series of AMP

resistance mechanisms, including Dlt-dependent D-alanylation of

teichoic acids [25], MprF-dependent lysinylation of phospholipids

[26], and an AMP exporter called VraFG [24]. However, it is not

known whether Aps or SepA confer resistance to killing by

neutrophils.

In the present study, we examined the role of S. epidermidis PSMs

in immune evasion, in particular by determining whether S.

epidermidis PSMs are cytolytic toward human neutrophils. Further-

more, we analyzed whether the sepA and apsRSX loci facilitate

survival during phagocytic interaction with neutrophils. Our study

provides a better understanding of how S. epidermidis evades killing

by human leukocytes in the susceptible host. Notably, we identified

the first potent S. epidermidis cytolysin, PSMd, a member of the a-

type PSM family. However, despite the capacity to produce a

potent cytolysin, S. epidermidis culture supernatants had little or no

capacity to lyse neutrophils. In contrast, we show that the SepA

protease and the Aps AMP sensor significantly promote resistance

of S. epidermidis to killing by neutrophils. These findings provide

molecular evidence to support the notion that S. epidermidis, in

strong contrast to virulent S. aureus, has a defensive rather than

aggressive approach to infection and immune evasion.

Results

Cytolytic activity of S. epidermidis culture filtrates
To evaluate the relative potency of S. epidermidis to kill human

neutrophils, we compared culture filtrates of different S. epidermidis

strains with those of S. aureus LAC, a CA-MRSA strain with

demonstrated high capacity to lyse neutrophils [10,27]. We

investigated four S. epidermidis strains that have been most

frequently used in S. epidermidis pathogenesis studies: 1457, O47,

ATCC12228, and RP62A. ATCC12228 and RP62A represent

the two S. epidermidis strains for which genome sequence data are

Figure 1. S. epidermidis and S. aureus PSMs. All known S. aureus (S. a.) and S. epidermidis (S. e.) PSMs were aligned by a sequence comparison
program (Vector NTI). Similarity on the amino acid level is depicted as a tree on the left. Aligned amino acid sequences are shown at the right, with
conserved amino acids shown in blue. All PSMs contain a region with pronounced amphipathy and a-helicity, boxed in yellow.
doi:10.1371/journal.ppat.1001133.g001

Author Summary

Staphylococcus epidermidis frequently causes chronic
infections, indicating pronounced capacity to evade host
defenses. However, S. epidermidis is in general much less
aggressive than its close relative, S. aureus. Here we
identify molecular underpinnings of that discrepancy by
showing that S. epidermidis immune evasion mechanisms
are limited to those involving molecules that protect
against or eliminate antimicrobial agents secreted by
white blood cells, while immune evasion mechanisms of
virulent S. aureus include the production of destructive
toxins. This is especially noteworthy, because we demon-
strate here for the first time that S. epidermidis has the
capacity to produce a toxin with great potential to destroy
white blood cells, but keeps its production at a very
limited level. Thus, our study shows that two closely
related human pathogens have adapted specific molecular
mechanisms to evade host defenses, reflecting the unique
approach used by each to cause human disease.

Staphylococcus epidermidis and Neutrophils
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available [14,28]. Furthermore, we included an agr mutant of

strain 1457, as the agr regulatory system is known to strictly

regulate PSM production [10,29,30].

Culture filtrates of all four S. epidermidis strains showed

significantly reduced lysis of human neutrophils compared to S.

aureus LAC (Fig. 2), indicating that as a species S. epidermidis has low

capacity to lyse neutrophils. Some low-level cytolysis was detected

in culture filtrates from strain 1457, but not strains RP62A and

ATCC12228. Furthermore, cytolytic capacity of culture filtrates

was completely abolished in an agr deletion mutant of strain 1457

and in the natural agr mutant strain O47 (Fig. 2), in accordance

with a potential function of the agr-regulated PSMs of S. epidermidis

in neutrophil lysis.

Analysis of PSM secondary structure
In vitro studies using S. aureus and S. epidermidis c-toxins and S.

epidermidis PSMd indicated that PSMs lead to perturbation of

synthetic membrane vesicles and likely work by pore formation in

the absence of a specific receptor [31,32,33]. Presumably, the

capacity of PSMs to lyse cells is thus dependent on their physico-

chemical features, namely the ability to form amphipathic a-

helices, a characteristic property of pore-forming peptides.

To evaluate whether S. epidermidis PSMs form amphipathic a-

helices, we determined secondary structures of PSM peptides using

circular dichroism (Fig. 3A, B). These experiments demonstrated

that all S. epidermidis PSMs are predominantly a-helical. When

PSM sequences were arranged in a-helical wheels, all predicted a-

helices showed a distinct hydrophilic opposed to a hydrophobic

side, which is characteristic for amphipathic a-helices (shown as an

example for PSMb1 in Fig. 3C). These findings indicate that S.

epidermidis PSMs have the basic structural requirements for

membrane perturbation and pore formation.

Capacity of S. epidermidis PSMs to lyse neutrophils
To analyze whether S. epidermidis PSMs lyse neutrophils, we

incubated human neutrophils with pure, synthetic S. epidermidis

PSMs. Remarkably, one S. epidermidis PSM, PSMd, caused high

levels of neutrophil lysis, to an extent comparable to that of the

potent S. aureus PSMa3 (Fig. 4A). In contrast, S. epidermidis d-toxin,

PSMa, and PSMe showed only very limited cytolytic capacity.

The b-type PSMs were non-cytolytic toward neutrophils, in

keeping with findings achieved for the b-type PSMs of S. aureus

[10]. These differences indicate that while the formation of

amphipathic a-helices is a likely prerequisite for membrane

perturbation, further yet unknown structural features determine

the degree of cytolytic activity in PSMs. This notion is also

supported by our observation that the degree of a-helicity (Fig. 3A)

did not correlate with the cytolytic potential of PSMs (Fig. 4A). Of

note, PSMd to our knowledge represents the first potent cytolysin

of S. epidermidis to be identified. Remarkably, PSMd is less closely

related to S. aureus PSMa3 by amino acid sequence comparison

than are PSMa1, PSMa2, and S. epidermidis PSMe (Fig. 1),

underlining the notion that cytolytic properties of PSMs are

determined by secondary rather than primary structure.

The strong potency of PSMd to lyse human neutrophils was

confirmed by expression of PSMd in an agr-negative S. epidermidis

strain that lacks production of PSMs (Fig. 4B). Induction of PSMd
production resulted in a significant increase in the capacity of

culture filtrates from the agr-negative strain to lyse human

neutrophils (p = 0.0015, agr pTXpsmd versus agr pTX16 control).

As we have observed previously [10,34], plasmid-based expression

of PSM peptides often does not result in concentrations of PSMs as

high as those found in wild-type culture filtrates, which also was

the case for PSMd. However, the degree of neutrophil lysis exerted

by culture filtrates of the PSMd expression strain (20.1% of that by

the wild-type) corresponded very well to PSMd expression (18.6%

of that in the wild-type) (Fig. 4B), highlighting the major

contribution PSMd has to the overall cytolytic capacity of S.

epidermidis.

Hemolytic activity of S. epidermidis PSMs
We showed previously that S. aureus PSMs also lyse cells other

than neutrophils, such as monocytes or erythrocytes [10]. To

analyze whether lysis of erythrocytes by synthetic PSMs and

staphylococcal culture filtrates follows the same pattern as

observed using human neutrophils, we tested hemolysis. Results

were in very good accordance with those achieved with human

neutrophils, inasmuch as only PSMd showed strong hemolytic

activity at a level comparable to that exerted by S. aureus PSMa3

(Fig. 5A). Similarly, culture filtrates of S. epidermidis strains were

much less hemolytic than those of S. aureus LAC, with that of S.

epidermidis 1457 causing slightly higher hemolysis than culture

filtrates from the other S. epidermidis strains (Fig. 5B), in keeping

with the neutrophil lysis findings.

Production characteristics of PSMs in S. epidermidis
The finding that S. epidermidis PSMd has considerable cytolytic

activity at first appeared to contradict the low cytolytic activity of

S. epidermidis culture filtrates. Indeed, it was reminiscent of the

situation in S. aureus, in which the cytolytic potential is also mostly

determined by one strongly cytolytic PSM peptide, PSMa3 [10].

However, potential differences in PSM production are not

considered in this comparison. Therefore, we next measured

PSM production patterns in S. epidermidis strains compared to those

in S. aureus. We found considerable differences in the relative PSM

production patterns between S. aureus and S. epidermidis, while

patterns among the different S. epidermidis strains were similar

Figure 2. Neutrophil lysis by S. epidermidis culture filtrates.
Neutrophil (PMN) lysis by undiluted S. epidermidis 18-h culture filtrates
was determined by measuring release of LDH (incubation time, 1 h).
Culture filtrate from S. aureus LAC (18-h culture) was used as a
comparison.
doi:10.1371/journal.ppat.1001133.g002

Staphylococcus epidermidis and Neutrophils
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Figure 3. Secondary structure of S. epidermidis PSM peptides. Secondary structure of S. epidermidis PSM peptides was analyzed by circular
dichroism (CD) measurement. (A), molar ellipticity curves; (B) analysis of secondary structure using 3 different algorithms. (C) All PSM peptides have an
amphipathic a-helix that encompasses most of the peptide for the shorter a-type and the C-terminal part of the b-type PSMs (shown as example for
PSMb1 by a-helical wheel presentation, http://heliquest.ipmc.cnrs.fr).
doi:10.1371/journal.ppat.1001133.g003

Figure 4. Neutrophil lysis by S. epidermidis PSM peptides and culture filtrates of PSMd-expression strains. (A) Neutrophil (PMN) lysis by
synthetic, N-formylated PSM peptides at 10 mg/ml was determined by measuring release of LDH (incubation time, 1 h). PSMa3 (S. aureus) was used as
a comparison at the same concentration. (B) Neutrophil lysis using supernatants (18-h cultures) of a PSMd-over-expressing agr-negative (lacking
intrinsic PSM production) and corresponding control strains (incubation time, 6 h). pTXpsmd, pTX construct expressing PSMd; pTX16, control plasmid.
Strains were grown in TSB with 0.5% xylose and 12.5 mg/ml tetracycline. **, p,0.01, paired t-tests. Blue bars, PSMd concentration in the culture
filtrates relative to that in the 1457 wild-type (set to 100%).
doi:10.1371/journal.ppat.1001133.g004

Staphylococcus epidermidis and Neutrophils
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(Fig. 6). In addition to the S. epidermidis strains that are shown, we

analyzed a large S. epidermidis strain collection. Results were similar

in all strains, except for strains that completely lacked PSM

production (data not shown). These PSM-negative strains are

likely functionally agr-negative, owing to frequently occurring

mutations in the agr system [35], which includes the agr-negative

strain O47 [36].

The most noticeable difference between S. epidermidis and S.

aureus was strongly reduced production of a-type PSMs, except d-

toxin, in S. epidermidis. In contrast, the non-cytolytic b-type PSMs

represented almost half of the total PSM peptide produced in S.

epidermidis, whereas concentrations of b-type PSMs were extremely

low in S. aureus. Furthermore, the difference between the

production levels of the most cytolytic PSMs in the two species,

PSMa3 and PSMd (,5:1), correlated with the degree of overall

neutrophil lysis (,5:1, S. aureus LAC to S. epidermidis 1457),

underlining that these most potent PSMs predominantly deter-

mine cytolytic capacity. Moreover, the notion that any cytolytic

activity of S. epidermidis is largely determined by production of

PSMd is in accordance with the observed low production of PSMd
and overall low cytolytic activity of all tested S. epidermidis strains.

Thus, although S. epidermidis has the capacity to secrete a potent

cytolytic toxin, PSMd, it limits hemolysis or lysis of neutrophils by

keeping production of PSMd at a low level.

Deformylation of N-formyl methionine in PSMs
The N-formyl methionine group present at the N-terminus of

newly synthesized bacterial proteins is recognized by immune cells

as a pathogen-associated molecular pattern (PAMP) [37].

Removal of the N-formyl group by bacterial peptide deformylase

thus serves to evade recognition by human innate host defense. N-

formylated bacterial proteins commonly are not exported with N-

formyl-methionine, as their signal peptides are removed during

export. In contrast, PSMs are secreted as the unaltered translation

product by a yet unidentified mechanism and thus always carry N-

formyl methionine, likely representing a very considerable portion

of N-formylated peptides released by staphylococci [10]. In S.

aureus LAC culture filtrates, about one-half of the total PSM

peptide was N-deformylated, which is in good accordance with a

previous report on d-toxin deformylation in another S. aureus strain

[38]. In remarkable contrast, no significant deformylation was

detected in S. epidermidis PSMs (Fig. 6). Thus, despite the presence

Figure 5. Hemolysis by S. epidermidis culture filtrates and PSM peptides. Hemolysis was determined by assays using sheep blood. (A)
Hemolysis by synthetic, N-formylated PSMs of S. epidermidis. Negative control, DPBS. (B) Hemolysis by S. epidermidis culture filtrates (undiluted) and S.
aureus LAC culture filtrate as comparison. All culture filtrates were from cultures grown for 18 h. Negative control, DPBS; positive control, 1% (v/v)
Triton-X100 in DPBS.
doi:10.1371/journal.ppat.1001133.g005
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PLoS Pathogens | www.plospathogens.org 5 October 2010 | Volume 6 | Issue 10 | e1001133



of a peptide deformylase in S. epidermidis that is highly homologous

to the S. aureus enzyme (80% identity on the amino acid level),

proteins are not N-deformylated in S. epidermidis as efficiently as in

S. aureus.

Proinflammatory capacity of S. epidermidis culture
filtrates and PSMs

In addition to causing cytolysis, PSMs of S. aureus are known to

stimulate neutrophil and monocyte chemotaxis, activate neutro-

phils, and elicit release of the chemokine IL-8 [10]. These

proinflammatory capacities of PSMs indicate that the innate

immune system recognizes PSMs as PAMPs, which as we recently

discovered is achieved by recognition of PSMs by the FPR2/ALX

receptor [39]. To determine S. epidermidis proinflammatory

capacities, we analyzed stimulation of IL-8 release (Fig. 7A). IL-

8 is an important chemokine that causes recruitment of

neutrophils to the site of infection [40]. PSMd had very strong

capacity to stimulate release of IL-8; but overall, stimulation of IL-

8 release did not correlate with the cytolytic capacities of PSMs.

Notably, all S. epidermidis PSMs to some degree stimulated release

of IL-8 despite the lack of cytolytic capacity in several of them.

Accordingly, capacities of S. epidermidis culture filtrates to stimulate

IL-8 release were in the same range as those of S. aureus LAC

(Fig. 7B). Finally, stimulation of IL-8 release was significantly lower

for the S. epidermidis agr mutant of strain 1457 compared to the

corresponding isogenic wild-type strain, and very low for the

natural agr mutant strain O47, in keeping with strict regulation of

PSMs by agr [30]. Thus, while the different PSM production

pattern in S. epidermidis correlates with considerably reduced

neutrophil lysis compared to S. aureus, S. epidermidis PSMs still

appear to be recognized efficiently as PAMPs. These results

suggest that PSM cytolytic and proinflammatory capacities are

dependent on distinct interactions with host cells.

SepA protease and Aps AMP sensor/resistance regulator
of S. epidermidis promote resistance to killing by
neutrophils

Our results suggest that S. epidermidis does not use PSM cytolytic

activity to a significant extent to evade killing by human

neutrophils. However, the capacity of S. epidermidis to cause

chronic infections indicates that S. epidermidis has means to inhibit

elimination by human professional phagocytes. As an alternative

strategy to evade killing by human neutrophils, bacteria may

secrete enzymes to destroy – or use mechanisms to decrease – the

antimicrobial efficiency of neutrophil bactericidal agents [3].

Among those agents, antimicrobial proteins and peptides likely

play an important role in the killing of ingested bacteria [41]. We

previously showed that the secreted S. epidermidis protease SepA has

strong capacity to destroy human AMPs [21]. In addition, we

identified a system that we named Aps (for antimicrobial peptide

sensor) that senses the presence of human AMPs and coordinates a

series of AMP resistance mechanisms in S. epidermidis [22] and S.

aureus [24]. While the mechanistic function of these loci is thus well

understood, evidence for a significant role of Aps and SepA in

Figure 6. PSM concentrations in S. epidermidis culture filtrates. PSM concentrations in 18-h S. epidermidis and S. aureus LAC culture filtrates
were determined by HPLC/MS. Peaks corresponding to N-formylated and deformylated PSM versions were measured separately and the percentage
of deformylated peptides is shown as checkered bars. No PSMs were detected in the natural and constructed agr mutants (O47, 1457 agr). Relative
PSM composition (a-type, d-toxin, b-type) is shown at the right for S. aureus LAC and S. epidermidis 1457. Relative compositions were similar to that of
1457 in the other S. epidermidis strains (except in agr-negative O47 and 1457 agr).
doi:10.1371/journal.ppat.1001133.g006
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immune evasion using human cells is lacking. Therefore, we

investigated whether S. epidermidis SepA and S. epidermidis and S.

aureus Aps contribute to survival after uptake by human

neutrophils. Isogenic sepA and aps mutants of S. epidermidis 1457

had significantly reduced ability to survive after phagocytic

interaction with human neutrophils compared to the wild-type

strain (Fig. 8), providing evidence for an important function of the

aps and sepA loci in S. epidermidis immune evasion. Similarly, the

Aps system had a significant impact on the survival of the S. aureus

CA-MRSA strain MW2 after phagocytosis. Of note, this effect was

comparable to that of the psma locus, which encodes the most

important cytolytic PSM peptides of S. aureus (Fig. 8B,C). These

findings indicate that the Aps AMP-sensing system has an

important immune evasion task in both species, while only S.

aureus makes additional use of cytolytic toxins, such as PSMs, to

evade killing by human neutrophils. This discrepancy is reflected

by the higher capacity of S. aureus to survive interaction with

human neutrophils compared to S. epidermidis (Fig. 8).

Discussion

As a commensal organism living on the human skin, S.

epidermidis commonly has a benign relationship with its host and

may even contribute to reducing inflammatory responses [2,42].

However, S. epidermidis may cause infection after breach of the

epithelial barrier and entry into the bloodstream, such as through

contamination of indwelling medical devices during surgery.

Although most S. epidermidis infections are only moderately severe

and usually chronic, their sheer frequency poses a considerable

problem, predominantly in the hospital setting [2,43]. Despite the

immense importance of S. epidermidis infections for public health,

the interaction of S. epidermidis with host defenses is poorly

understood. In particular, it has not been investigated in detail if

and how S. epidermidis resists killing by human neutrophils, which

are largely responsible for elimination of invading bacteria.

Therefore, we here investigated the interaction of S. epidermidis

with neutrophils. As direct lysis of neutrophils by bacterial

cytolysins is an efficient means to evade killing, we focused our

investigation on PSMs as the only S. epidermidis gene products with

potential cytolytic activity [14,28].

A major finding of our study was the identification of PSMd as

the first S. epidermidis toxin with significant cytolytic capacity.

However, despite the cytolytic potential of PSMd, culture filtrates

of S. epidermidis strains had very low capacity to lyse human

neutrophils. Importantly, according to our findings this phenotypic

difference between virulent S. aureus and S. epidermidis is caused at

least in part by a pattern of PSM production in S. epidermidis that is

shifted, compared to S. aureus, to PSMs with lower cytolytic

potential. Thus, PSMs in S. epidermidis do not contribute

significantly to neutrophil lysis, in contrast to many virulent

strains of S. aureus. Likely, PSMs fulfill other roles in S. epidermidis

that are yet poorly understood, such as in biofilm development

[44] or bacterial interference [33]. The production of PSMs that

are not potent cytotoxins would thus ascertain that S. epidermidis

may cause chronic, biofilm-associated infection without promoting

acute, purulent inflammation. This is in keeping with a general

strategy of S. epidermidis to reside inside the human host in a state of

‘‘hiding’’ from the immune system. Potentially, a similar strategy is

Figure 7. IL-8 release by neutrophils stimulated by S. epidermi-
dis PSMs and culture filtrates. PMNs were incubated with synthetic,
N-formylated PSMs (10 mg/ml) (A) or 18-h culture filtrates (diluted 1:100)
(B) and release of the cytokine IL-8 was measured by ELISA (for culture
filtrates with further 1:2 dilution). LPS, lipopolysaccharide, 10 ng/ml;
LTA, S. aureus lipoteichoic acid, 1 mg/ml.
doi:10.1371/journal.ppat.1001133.g007

Figure 8. Survival of aps and sepA deletion mutants in human
neutrophils. Survival of S. epidermidis 1457 and S. aureus MW2 wild-
type (wt) and isogenic gene deletion mutants was determined after
phagocytic uptake by counting of colony forming units after 60 min
incubation. Bacterial cells used for the experiment were harvested at
similar points in growth at an OD600 nm of ,1.5. ***, p,0.001;
**, p,0.01 versus the corresponding wild-type sample (1-way ANOVA,
Dunnett’s post test). Error bars represent SEM.
doi:10.1371/journal.ppat.1001133.g008
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pursued by strains of S. aureus, such as functionally Agr-negative

strains, which are less virulent, cause chronic rather than acute

infection, and produce less cytolytic toxins, such as PSMs.

In addition, our study revealed significant contributions of the

SepA protease and the Aps AMP sensor/regulator to promoting S.

epidermidis survival in human neutrophils. Thus, S. epidermidis is able

to combat important mechanisms that neutrophils use to kill

bacteria after phagocytosis. However, together with previous

findings on S. aureus survival in human neutrophils [27], our data

indicate that these mechanisms are not as efficient as leukocyte

toxins, underlining the notion that S. epidermidis is in general less

virulent than S. aureus as a result of lower capacity to survive after

neutrophil phagocytosis. This is in accordance with a very early

study that showed increased survival of ‘‘pathogenic’’ (i.e.

coagulase-positive) versus ‘‘non-pathogenic’’ (i.e. coagulase-nega-

tive) staphylococci in human leukocytes [45]. Nevertheless, our

study shows that - combined with mechanisms preventing

neutrophil phagocytosis, such as surface exopolymers and biofilm

formation - S. epidermidis has a multi-faceted program providing

resistance to neutrophil killing, explaining at least in part the

capacity of S. epidermidis to cause long-lasting infection in the

susceptible host. Moreover, as we have shown previously that

SepA production is under control of Agr and SarA [21], our

findings confirm the notion that global regulatory systems play key

roles in S. epidermidis immune evasion [46], and are reminiscent of

similar functions of Agr and SarA in S. aureus [47,48]. Finally, the

observed significant effects of AMP resistance mechanisms on

survival in neutrophils underline the importance of non-oxygen-

dependent antimicrobial processes of the host.

Collectively, our findings indicate that the molecular mecha-

nisms that S. epidermidis uses to evade elimination by innate host

defense reflect a passive defense strategy rather than use of

aggressive toxins and point to a different major role of PSM

production in S. epidermidis compared to S. aureus.

Materials and Methods

Ethics statement
Human neutrophils were obtained from healthy volunteers in

accordance with a protocol approved by the Institutional Review

Board for Human Subjects, NIAID. Informed written consent was

received from human volunteers.

Bacterial strains and growth conditions
Bacterial strains used in this study were S. epidermidis strains 1457

[49], RP62A [14,50], ATCC12228 [28], O47 [51], isogenic agr,

sepA, and apsS deletion mutants of strain 1457 [21,22,52], S. aureus

strains LAC (pulsed-field type USA300) [53] and MW2 (pulsed-

field type USA400) [54] and the isogenic aps and psma mutants of

strain MW2 [24]. LAC and MW2 are virulent community-

associated MRSA strains. Strains were grown in tryptic soy broth

(TSB). The psmd over-expression plasmid pTXpsmd [34] was

transformed in S. epidermidis agr. Expression of PSMd by this

construct is achieved by adding xylose, which acts on a xylose-

inducible promoter in front of the cloned psmd gene [55].

Peptide synthesis
PSM peptides were synthesized by commercial vendors with an

N-terminal formyl methionine residue in each peptide. Peptide

sequence fidelity was determined by the Peptide Synthesis Unit of

the NIAID. Peptide stock solutions were prepared at 10 mg/ml

in DMSO (dimethylsulfoxide); further dilutions were made in

water.

Neutrophil preparation and lysis assays
PMNs were isolated from venous blood of healthy volunteers as

described [56]. Lysis of PMNs by synthetic PSMs or clarified S.

aureus or S. epidermidis culture media was determined essentially as

described [27,56]. Synthetic PSMs were added to wells of a 96-

well tissue culture plate containing 106 PMNs and plates were

incubated at 37uC. After 1 h, PMN lysis was determined by

release of lactate dehydrogenase (LDH) (Cytotoxicity Detection

Kit, Roche Applied Sciences). Alternatively, S. aureus and S.

epidermidis strains were cultured for 18 h at 37uC in 50 ml TSB (+/

2 0.5% xylose) with shaking using a 100 ml flask. Bacteria were

removed by centrifugation and culture media were sterilized by

filtration and stored at 280uC in aliquots until used. Culture

medium was mixed with human PMNs (106) and tested for its

ability to cause PMN lysis using incubation times of up to 6 h, as

indicated.

Resistance of S. epidermidis and S. aureus to killing by
human neutrophils

For measurement of S. epidermidis/S. aureus survival after

phagocytic interaction with neutrophils, PMNs (106) in RPMI

were combined with ,107 RPMI-washed bacteria from mid-

logarithmic growth phase in 96-well flat-bottom microtiter plates.

Plates were centrifuged at 3806g for 8 min to synchronize

phagocytosis and incubated at 37uC for up to 1 h. At the desired

time points, 22 ml of 1% saponin was added, well contents were

mixed, and the plates were incubated on ice for 15 min. Surviving

bacteria were enumerated. % survival was calculated by

comparing the numbers of surviving bacteria to those at t = 0.

Cytokine production assay
After isolation and washing, neutrophils were resuspended in

RPMI 1640 medium (Sigma) supplemented with 10% human

serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml

streptomycin, 2 mM sodium pyruvate, and 10 mM HEPES. Cells

were distributed to a 96-well culture plate at 200 ml and 56105

cells per well. Synthetic PSMs or filtered bacterial culture

supernatants were diluted in fresh culture medium (1:100) and

added to the plate at 100 ml/well. Plates were incubated at 37uC in

a 5.5% CO2 incubator for 5 h. Then, the plate was centrifuged at

1500 rpm for 10 min, and supernatant was harvested from each

well. IL-8 was measured in the culture supernatants with

commercial ELISA assay kits (R&D systems) according to the

manufacturer’s instructions. Diluted culture filtrates were further

diluted 1:2 for the ELISA.

Hemolysis assay
Hemolytic activities of culture filtrates from 18-h cultures of S.

epidermidis strains or synthetic PSM peptides at different concen-

trations were determined by incubating samples with sheep red

blood cells (2% v/v in Dulbecco’s phosphate-buffered saline,

DPBS) for 1 h at 37uC as previously described [10]. Assays were

performed in triplicate.

Analysis of PSM production
RP-HPLC/ESI-MS was performed on an Agilent 1100

chromatography system coupled to a Trap SL mass spectrometer

using a Zorbax SB-C8 2.3630 mm column as described [30].

Quantification was based on extracted ion chromatograms using

the most abundant peaks of the electrospray ion mass spectra of

the respective PSM peptides, with calibration using synthetic

peptides, as described [30].
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Circular dichroism spectroscopy
The structures of synthetic PSM peptides were analyzed by CD

spectroscopy on a Jasco spectropolarimeter model J-720 instrument.

Solutions of PSM peptides, each at 1.0 mg/ml, were prepared in

50% trifluoroethanol. Measurements were performed in triplicate

and the resulting scans were averaged, smoothed, and the buffer

signal was subtracted. Computation of relative fraction of helix,

sheet, turn, and unordered structure, using 3 different algorithms,

was performed according to Sreerama and Woody [57].

Statistical analyses
Statistical analyses were performed with Graph Pad Prism 5

software using t-tests or 1-way ANOVA with Bonferroni or

Dunnett post tests, as appropriate.
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