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Abstract

Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and
expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these
opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-
promoting factor B (RpfB), a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA), an
endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is
coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin
binding protein 1 (PBP1), as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells.
Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped
cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of
peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall
hydrolysis and synthesis through protein–protein interactions between enzymes with antagonistic functions.
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Introduction

Mycobacterium tuberculosis, the causative agent of tuberculosis, kills

approximately two million people each year and remains dormant

within an estimated one-third of the world’s population [1]. M.

tuberculosis has the remarkable ability to survive extended periods of

time under stressful conditions within the host, only to reactivate,

grow, and cause a relapse into active disease [2]. Reactivation

likely relies upon the ability of mycobacteria to regulate the

expansion and remodeling of cell wall material, an essential yet

poorly understood bacterial process. Because cell wall biology is a

rich area for antibiotic development, elucidating the mechanisms

of essential cell wall processes in mycobacteria offers new avenues

for chemotherapy targeted to actively growing or reactivating

bacteria. Mycobacteria possess basic cell wall remodeling require-

ments similar to other bacteria, such that understanding

mycobacterial cell wall homeostasis may provide new insights into

universal paradigms of cell wall regulation.

One such highly conserved area of cell wall remodeling is the

need for regulation of peptidoglycan synthesis and degradation.

Peptidoglycan (PG) is found in nearly all bacteria and is responsible

for giving bacteria their shape and structural integrity [3,4].

Escherichia coli PG is composed of polysaccharides containing

repeating disaccharide subunits of N-acetyl glucosamine and N-

acetyl muramic acid, while mycobacterial PG contains N-acetyl

glucosamine and a mixture of N-glycolyl muramic acid and N-

acetyl muramic acid [5]. These polymers are cross-linked by peptide

bridges into a rigid three-dimensional lattice known as a sacculus.

PG elongation requires a suite of enzymes with both synthetic and

hydrolytic activities. Bifunctional penicillin binding proteins (PBPs)

possess both transglycosylase and transpeptidase domains that

covalently incorporate newly synthesized PG polymers into the

existing sacculus. To accomplish this in E. coli, hydrolytic enzymes

with lytic transglycosylase and endopeptidase specificity are thought

to first remove old PG monomers from the cell wall before

incorporation of a new three-unit PG polymer [6]. Little is known

about how mycobacteria expand and degrade their septal and polar

PG. While it is useful to consider how other bacteria metabolize PG,

it has yet to be shown if these models hold true for mycobacteria.

The coordination of PG synthases and hydrolases (also known

as autolysins) is critical for growth and division, as well as

maintenance of cellular structural integrity. Thus, a mechanism

for controlling cell wall hydrolases must exist, yet the molecular

details of this process are not well defined. Protein-protein

interactions are potentially a central element of autolysin

homeostasis, since binding partners can inhibit, sequester, or

activate other proteins. Multiple interactions have been found

between PG synthetic and hydrolytic enzymes in Haemophilus

influenzae and E. coli, leading to the hypothesis that these

remodeling enzymes may exist as holoenzyme complexes in vivo

[7,8,9]. Despite these biochemical characterizations, the functional

consequence of these interactions remains largely unknown.
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In mycobacteria, as in other bacteria, the regulation of PG

remodeling is poorly understood. Recent work in mycobacteria

proposes a PBP3-FtsW-FtsZ complex that regulates the initiation

of septation, but little is known how PG synthesis and hydrolysis

are coordinated during this event [10]. We have previously shown

that the Mycobacterium tuberculosis endopeptidase RipA (Rv1477)

interacts with a lytic transglycosylase, RpfB, at the septum of

dividing cells [11]. This interaction positively regulates PG

hydrolysis since the RipA-RpfB complex synergistically degrades

PG in vitro [12]. Since RipA is essential for division in M. smegmatis

and M. tuberculosis [12,13], this endopeptidase is an attractive target

for studying regulation of cell wall homeostasis. While the

interaction of RipA and RpfB appears to be functionally

important, it is unclear how two enzymes that both degrade PG

could, by themselves, regulate PG metabolism. To this end, we

investigated how additional protein-protein interactions may

modulate RipA function.

Here, we identify the mycobacterial bifunctional PG synthesiz-

ing enzyme, penicillin-binding protein 1 (PBP1), as a regulator of

RipA-RpfB PG hydrolase activity. We report that PBP1 interacts

with RipA in a yeast two-hybrid assay and co-precipitates with

RipA. PBP1 localizes to the poles and septa, the sites of PG

synthesis in mycobacteria and depletion of the PBP1 gene, ponA1,

from mycobacteria results in the cessation of growth and

formation of abnormally shaped, structurally compromised cells.

Finally, PBP1 inhibits the synergistic hydrolysis of PG by the

RipA-RpfB complex. Together, these data support a model where

PBP1 restrains RipA-RpfB cell wall degradation in mycobacteria

through a novel protein-protein interaction between antagonistic

proteins.

Results

Yeast two-hybrid screen using M. tuberculosis RipA
identifies PBP1

RipA was previously identified through a screen for mycobac-

terial proteins that interact with RpfB, and was shown to be a PG

hydrolase necessary for cell division [11,12]. We hypothesized that

additional factors may interact with and regulate the activity of

RipA during coordinated cell division and growth. Therefore, we

conducted a yeast two-hybrid screen to identify novel RipA

interacting proteins.

A translational fusion was made between the C-terminal 123

amino acids of M. tuberculosis RipA (Figure 1A) and the GAL4

DNA binding domain (BD-RipA), and screened against a random

library of M. tuberculosis genomic fragments translationally fused to

the GAL4 activation domain (AD). Approximately 16106

independent clones were screened for interaction with RipA by

histidine prototrophy and b-galactosidase activity. Potential

interactors were counterscreened for non-specific interactions

and evaluated by quantitative b-galactosidase assays. From this

screen, we identified a region encoding the C-terminal 259 amino

acids of penicillin-binding protein 1 (PBP1) that interacts with

RipA (Figure 1B).

Mycobacterial PBP1 and RipA interact at their C-terminal
domains

Mycobacterial PBP1 is a high molecular weight, class A,

penicillin-binding protein [14]. The N-terminus of PBP1 contains

a noncleavable signal sequence by which PBP1 is translocated

across and anchored to the plasma membrane [14]. The N-

terminus also contains a transglycosylase domain homologous to

the E. coli PBP1 [15] and is responsible for ligating N-glycolyl

muramic acid from existing PG sacculus to N-acetyl glucosamine

from lipid II PG precursor monomers (Figure 1B). The C-terminus

of mycobacterial PBP1 contains a penicillin binding transpeptidase

domain homologous to the E. coli PBP1 [15] that crosslinks D-

alanine to the dibasic amino acid D-meso-diaminopimelic acid

(DAP) between two parallel strands of PG.

To determine the interaction domains of mycobacterial PBP1

and RipA, we mapped the interacting regions of each protein

using the yeast two-hybrid system. Four overlapping regions of 200

amino acids each of PBP1 were assayed for interaction with the C-

terminal 123 amino acids of RipA. Of the constructs tested, only

the construct containing the C-terminal 259 amino acids of PBP1

was sufficient for interaction with RipA, while constructs lacking

the C-terminal 150 amino acids failed to interact (Figure 2A). This

interacting region contains two-thirds of the transpeptidase

domain of PBP1.

In concert, we created and tested several RipA deletion

constructs for interaction with the C-terminal 259 amino acids

of PBP1 in the yeast two-hybrid assay. Deletion of the extreme C-

terminus of RipA abrogated the interaction (Figure 2B, lanes 2&3),

while the C-terminal 25 amino acids of RipA were sufficient for

binding PBP1 (Figure 2B, lane 5). This region is adjacent to the

predicted endopeptidase domain of RipA and, interestingly, has

been shown to bind RpfB [11]. These results demonstrate that

RipA and PBP1 interact at the domains that are responsible for

cleaving and forming, respectively, the crosslinks between PG

strands. Since the RipA interaction domain also binds the PG

hydrolase domain of RpfB, PBP1 and RpfB may participate in

concert to regulate septal PG remodeling.

Mycobacterial PBP1 and RipA coprecipitate
To confirm the specific interaction of RipA and PBP1, we

performed an in vitro co-precipitation assay. Translational fusions

of the C-terminal 259 amino acids of M. tuberculosis PBP1 with

glutathione-S-transferase (GST), as well as the C-terminal 283

amino acids of M. tuberculosis RipA with maltose-binding protein

(MBP) were constructed. E. coli co-expressing either GST and

MBP-RipA or GST-PBP1 and MBP-RipA were lysed, and GST

Author Summary

Bacteria have a complex problem to solve. On one hand,
they need to hydrolyze existing and synthesize new cell
wall to allow for cell expansion during growth. On the
other hand, they need to maintain a continuous layer of
cell wall to preserve shape and protect from osmotic lysis.
To do this, bacteria must tightly coordinate the processes
of cell wall hydrolysis and synthesis. How these opposing
activities are simultaneously regulated is poorly under-
stood. We previously demonstrated the interaction be-
tween two cell wall hydrolytic proteins, RpfB and RipA, in
mycobacteria. This RpfB-RipA complex resulted in en-
hanced hydrolysis of cell wall, suggesting protein–protein
interactions as one mechanism for regulating hydrolysis.
However, what regulates interactions of these potentially
lethal enzymes and what coordinates hydrolysis with
synthesis remains unknown. To investigate this question,
we screened for mycobacterial proteins that interact with,
and thus potentially regulate, RipA. Here, we report the
interaction of RipA with PBP1, a cell-wall-synthesizing
enzyme. Depletion of PBP1 from mycobacteria results in
misshapen cells and impaired growth. Moreover, we find
that PBP1 inhibits the synergistic activity of the RipA-RpfB
interaction. These data reveal a mechanism for coordinat-
ing cell wall hydrolysis and synthesis through interactions
between antagonistic enzymes.

Regulation of Cell Wall Remodeling
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fusion proteins were purified using glutathione sepharose resin.

Co-purifying proteins were detected by Western blotting with an

anti-MBP antibody (top panel). Coomassie Blue-staining demon-

strated that the amounts of GST (middle panel) and MBP

available were similar (bottom panel). We observed that MBP-

RipA is only detected when GST-PBP1 was present. These results

demonstrate that RipA co-purifies specifically with PBP1, and has

no detectable interaction with GST (Figure 3A) despite precipi-

tating the same amount of recombinant GST. To control for the

amount of protein available for interaction and precipitation,

GST-PBP1, GST, and MBP-RipA were expressed separately and

purified. GST and MBP-RipA or GST-PBP1 and MBP-RipA

were mixed in equimolar amounts, incubated, and MBP tagged

proteins precipitated with amylose resin. Co-purifying proteins

were detected by Western blotting with an anti-GST antibody.

Again we observed that similar amounts of GST (middle panel)

and MBP (bottom panel) were purified using Coomassie Blue

staining. We found that GST-PBP1 co-purified with MBP-RipA,

but GST alone did not (Figure 3B). Taken together, this work

demonstrates that RipA and PBP1 specifically interact in vivo in

bacteria, in vitro, and in a yeast two-hybrid system.

PBP1 localizes to the poles and septa of mycobacteria
In most other bacteria, PG synthesizing proteins, including

PBPs, localize to the septum and/or lateral cell walls, indicating a

role in septal and/or lateral wall PG synthesis, respectively

[16,17,18]. To determine where PBP1 regulates PG remodeling,

we assessed its localization in vivo. M. tuberculosis PBP1 was fused at

its C-terminus to monomeric red fluorescent protein (RFP) and

expressed under the control of a tetracycline-inducible promoter.

We found that M. tuberculosis PBP1-RFP predominantly localized

to the poles of M. smegmatis (the site of cell growth in mycobacteria)

and occasionally at the septa of dividing cells (Figure 4). PBP1-

RFP was not toxic, as cells expressing the protein exhibited normal

morphology and growth (data not shown). Uninduced PBP1-RFP

yielded no detectable fluorescence and RFP alone remained

diffuse and cytosolic, with no observable bands of localization

(data not shown), demonstrating that the PBP1-RFP signal is

specific. Thus, PBP1 localizes to the poles and septa of

mycobacteria, in contrast to the septal-only localization described

for B. subtilis [18,19]. This finding is consistent with evidence

indicating that mycobacteria grow from their tips [20,21].

Depletion of mycobacterial PBP1 blocks normal cell
division

Given its localization in vivo, it is likely that PBP1 is involved in

both elongation and septation. Strains of E. coli with both ponA1

homologues deleted are nonviable [22] and null strains of ponA1

homologues in the actinobacterium C. glutamicum are defective for

elongation and septation [23]. To determine the functional role of

PBP1 in mycobacteria, we constructed a conditional depletion

strain in M. smegmatis, where transcription of the genes encoding

PBP1 (MSMEG6900) and its operon (Figure S1) are activated by

an inducible tetracycline promoter (Figure 5A). Since we

hypothesized that PBP1 is involved in PG synthesis and cell

division, we expected that depletion of PBP1 should yield changes

in morphology and/or viability.

When the conditional PBP1 depletion strain was grown in the

absence of inducer, we observed a dramatic growth defect

(Figure 5B). The PBP1 conditional strain grew normally in the

presence of inducer and was impaired for growth in the absence of

inducer in a dose-dependent manner. Due to the high selective

Figure 1. M. tuberculosis RipA identifies bifunctional synthase PBP1. (A) RipA, a 472 residue protein, contains a domain of unknown function
(COG3883) as well as a predicted endopeptidase domain. The region used to screen for interacting proteins in a yeast two-hybrid screen is shown,
consisting of amino acids 350–472. (B) PBP1, a 678 residue protein encoded by ponA1, is a bifunctional peptidoglycan synthase. PBP1 contains a
transglycosylase domain at the N-terminus and a penicillin-sensitive transpeptidase domain at the C-terminus.
doi:10.1371/journal.ppat.1001020.g001
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pressure against depletion of PBP1, cultures without inducer

appeared to recover and grow at late time points (Figure 5B).

However, this was due to escape from repression, as cells from

these late time points were no longer depleted for ponA1

transcription (Figure S2). The observed growth defect correlated

with gross morphological changes. PBP1-operon depletion led to

single, short, unseptated cells, suggesting that PBP1 functions in

both elongation and septation. Furthermore, these cells possessed

bulbous regions, commonly at their ends (Figure 5C, arrows),

which is indicative of increased cell wall hydrolysis and loss of

structural and morphological integrity. This is consistent with a

model of cell wall regulation by PG synthase-hydrolase complexes.

To confirm that the growth defect and morphological

abnormalities observed under conditions lacking inducer were

specifically due to PBP1 depletion (as opposed to polar effects on

the downstream genes in the operon), we complemented the PBP1

Figure 2. C-terminal regions are required for interaction. (A) Data from quantitative LacZ assays of four overlapping regions of 200 amino
acids each of PBP1 tested for interaction with the C-terminal 123 amino acids of RipA. The C-terminal 259 amino acids of PBP1 were found to be
sufficient for interaction with RipA, while regions lacking the C-terminal 150 amino acids failed to interact. Data shown are from a representative
experiment done in triplicate. Data are represented as mean +/2 SEM. (B) Data from quantitative LacZ assays of several different deletion constructs
for interaction with the C-terminal 259 amino acids of PBP1 in the yeast two-hybrid assay. Deletion of the C-terminal of RipA decreased the intensity
of interaction and the C-terminal 25 amino acids of RipA were sufficient for interaction with PBP1. Data shown are from a representative experiment
done in triplicate. Data are represented as mean +/2 SEM.
doi:10.1371/journal.ppat.1001020.g002

Regulation of Cell Wall Remodeling
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Figure 3. Recombinant PBP1 coprecipitates with RipA in vitro. (A) Fusion proteins were co-expressed in E. coli and GST fusion proteins were
purified directly from the lysate. Co-purifying MBP fusion proteins were detected by Western blotting using anti-MBP antibody (top panel). Unfused
GST was used to test the specificity of the interaction. A Coomassie-stained PAGE gel containing lysates obtained prior to GST purification (bottom
panel) and after GST purification (middle panel) is shown to demonstrate that similar amounts of proteins were available for pulldown. (B) Proteins
were separately purified from E. coli, combined as indicated in equimolar amounts, incubated, then purified on amylose resin. Samples were taken
before (middle and bottom panels) and after (top panel) MBP purification. A Coomassie-stained PAGE gel containing protein mixtures prior to MBP
purification is shown to demonstrate that similar amounts of proteins were available for pulldown. Co-purifying GST fusion proteins were detected by
Western blotting using anti-GST antibody. Unfused GST was used to test the specificity of the interaction.
doi:10.1371/journal.ppat.1001020.g003
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conditional strain with either a vector containing a constitutive

promoter expressing M. smegmatis PBP1 or an empty vector. Both

constructs contain the gene encoding red fluorescent protein (RFP)

as a control for expression from the complementation plasmid. As

shown in Figure 6A & B, the PBP1 depletion strain does not grow

in the absence of inducer unless a plasmid producing PBP1 is

provided in trans. This complementation also applies to the

observed morphological defect. When the conditional mutant is

complemented with PBP1 and grown in the absence of inducer,

the cells are morphologically identical to cells of the conditional

mutant without the complementing plasmid grown in the presence

of inducer (Figure 6C). Both strains produced RFP, demonstrating

that PBP1 is expressed off the complementation vector.

PBP1 inhibits the synergistic hydrolysis of cell wall by
RipA and RpfB

RipA can hydrolyze peptidoglycan as shown in studies using

a variety of FITC-labeled, cell wall-derived substrates [12].

RipA hydrolytic activity is augmented in the presence of RpfB.

Given that RipA binds PBP1 with the same domain sufficient

Figure 4. PBP1 localizes to the poles and septa of M. smegmatis. Fluorescence microscopy of M. smegmatis expressing M. tuberculosis PBP1
fused to monomeric red fluorescent protein (RFP). PBP1-RFP fusion protein is under the control of a tetracycline-inducible promoter. PBP1 localized
to the poles and also to septa. Arrows indicate narrow septa where PBP1 does not localize and arrowheads indicate larger septa where PBP1 localizes.
doi:10.1371/journal.ppat.1001020.g004
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for RpfB interaction, we sought to determine whether PBP1

affects the PG hydrolytic activity of RipA alone or in complex

with RpfB.

We expressed and purified PBP1, RipA, and RpfB as GST

fusion proteins in E. coli, and incubated various combinations of

these enzymes with several FITC-labeled cell wall-derived

substrates. Confirming our previous results, RipA, but not GST

alone, was able to hydrolyze peptidoglycan purified from

Streptomyces, a substrate that structurally resembles PG derived

from mycobacteria. Furthermore, synergistic hydrolysis was

observed when RpfB was combined with RipA, as previously

shown [12]. However, addition of PBP1 to a reaction containing

both RipA and RpfB inhibited this synergy, resulting in activity

levels at or below that of RipA alone (Figure 7A, B). The activity of

RipA combined with PBP1 was similar to that of RipA alone,

suggesting that the PBP1 interaction does not affect the

endogenous activity of RipA, but rather modulates the hydrolytic

potential of the RipA-RpfB complex. As expected, PBP1 alone did

Figure 5. Depletion of PBP1 blocks cell division. (A) Diagram showing the strategy used to replace the native promoter of the ponA1 operon
(PponA1) in M. smegmatis with a tetracycline-inducible promoter (Ptet) through homologous recombination (strategy and diagram adapted from
[12]). OriE: E. coli origin of replication. (B) PBP1 (ponA1) depletion strain of M. smegmatis was grown with inducer (ATC = anhydrotetracycline), then
inoculated into media with decreasing amounts of inducer and followed by OD600 over time. Data are represented as mean +/2 standard deviation.
(C) Micrographs of M. smegmatis PBP1 (ponA1) depletion strain with membranes imaged by staining with TMA-DPH. Bacteria were grown with no
anhydrotetracycline inducer (No ATC), 10, or 100 ng/ml ATC. Bacteria grown with 100 ng/ml ATC grew as wildtype, while No ATC and 10 ng/ml ATC
grew slowly, with bulbous poles and round-shaped regions (indicated by white arrows). Bacteria were visualized with a 1006 objective.
doi:10.1371/journal.ppat.1001020.g005
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not show appreciable activity above background, nor did addition

of PBP1 to RpfB. These results demonstrate that PBP1 is able to

modulate cell wall hydrolytic activity by inhibiting the synergistic

interaction between RpfB and RipA.

Discussion

How new peptidoglycan is coordinately synthesized and

hydrolyzed during bacterial growth and division is not well

Figure 6. M. smegmatis ponA1 complements ponA1 operon depletion. (A) The M. smegmatis ponA1 depletion strain was complemented with
either a vector expressing an operon of M. smegmatis ponA1 and red fluorescent protein (RFP) or RFP alone. Complemented strains were grown in the
presence (50 ng/ml ATC) or absence of inducer and growth was determined by OD600. While the RFP complemented strain only grew in the presence
of inducer, the PBP1 complemented strain grew normally in both the absence and presence of inducer. (B) At 36 hours post-induction, cultures from
RFP and ponA1 complemented strains were photographed. Data is representative of several biological replicates for both strains. (C) Microscopic
analysis of complemented strains—either the RFP complemented strain grown with inducer or the ponA1 complemented strain without inducer—
showed that both strains expressed RFP from the complementation vector and appear morphologically normal.
doi:10.1371/journal.ppat.1001020.g006
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understood. Both growth and division are dependent upon PG

hydrolases and synthases working in a spatially and temporally

coordinated manner. During cell division in mycobacteria, a thick

layer of septal PG is initially synthesized between the two daughter

cells before being digested by hydrolases. This results in two new

poles on separate daughter cells [24,25]. Likewise during cell

elongation, existing PG is thought to be hydrolyzed to allow new

PG subunits to be incorporated. While little is known about how

mycobacteria regulate these events, some general concepts can be

gleaned from other bacteria. In E. coli and H. influenzae, evidence

suggests that there are PG-synthesizing and degrading complexes

assembled for PG elongation and midcell septation in bacteria

[7,8,26]. For instance, PBP1B interacts with MltA, a lytic

transglycosylase, and MipA, a structural protein [8], comprising

part of a theorized larger complex. These data and other studies

identifying complexes containing PG-synthesis enzymes [7,8,26]

strengthen the concept that PG-remodeling holoenzymes exist and

may consist of as much as four enzymatic domains including

Figure 7. PBP1 inhibits the synergistic hydrolysis of cell wall by RipA-RpfB complex. N-terminal GST fusion proteins were expressed and
purified from E. coli. Equal amounts of individual or combinations of proteins were incubated with insoluble FITC-labeled substrate: M. luteus cell wall
material (A) or Streptomyces peptidoglycan (B). The extent of hydrolysis was determined by measuring the amount of soluble FITC remaining after
centrifugation, and thus released during hydrolysis of the insoluble substrate. GST and buffer alone were used to determine background release of
FITC and were subtracted from final values. Data are from representative experiments, each done in triplicate. Data are represented as mean +/2
SEM. p-values for one-tailed, unpaired t-tests: (A) 1 vs. 2: 0.027 significant, 2 vs. 4: 0.016 significant, 1 vs. 3: 0.074 not significant, 1 vs. 4: 0.188 not
significant, (B): 1 vs. 2: 0.009 significant, 2 vs. 4: 0.018 significant, 1 vs. 3: 0.279 not significant, 1 vs. 4: 0.240 not significant (significant to p,0.05). (C)
Schematic diagram of the basic structure of mycobacterial peptidoglycan, indicating where RpfB and RipA are predicted to have hydrolytic activity
and where PBP1 is predicted to have synthetic activity. Lines connecting NAG to NGM represent b-1,4-glycosidic bonds, while lines connecting NGM
to NGM represent peptide cross-linkages. NAG: N-acetyl glucosamine, NGM: N-glycolyl muramic acid, NAM: N-acetyl muramic acid (note that
mycobacteria have a mixture of NGM and NAM, with the NGM structure shown here).
doi:10.1371/journal.ppat.1001020.g007
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opposing transpeptidase and endopeptidase, and transglycosylase

and lytic transglycosylase, activities. A complex of these four

functions should be sufficient to insert and remove PG monomers

during elongation or septation in E. coli [27,28]; however, no

report to date has identified this theoretical complex in any

bacteria. Here we demonstrate the interaction of three mycobac-

terial proteins – RpfB, RipA and PBP1 – containing a

combination of domains that fulfills the four theoretically

necessary reactions for PG remodeling.

Recently, functional data has emerged to show that protein-

protein interactions between PG modifying enzymes can modulate

PG hydrolytic or synthetic activity. We have previously shown that

the interaction between the lytic transglycosylase RpfB and the

endopeptidase RipA of mycobacteria leads to synergistic PG

hydrolytic activity in vitro [12]. Similarly, increased PG synthesis is

observed in vitro by the interaction of the E. coli PG synthase

PBP1B and the structural cell division protein FtsN [29]. Despite

these advances in understanding how individual interactions affect

PG remodeling, a mechanism for the regulated coordination

between PG hydrolytic and synthetic processes, which must occur

in vivo, has only been theorized. In support of this theory,

inactivation of PBPs with penicillin treatment in pneumococcus

rapidly leads to unchecked murein hydrolase activity and bacterial

lysis [30]. Furthermore, overexpression of a catalytically inactive

PBP1B in E. coli leads to lysis of the bacterium [31], suggesting the

presence of a PBP1 protein complex capable of controlling

autolysin activity. Here we report the novel interaction between

the M. tuberculosis PG hydrolase RipA and the PG synthase PBP1.

This RipA-PBP1 interaction not only provides three of the four

necessary PG remodeling activities, but also regulates PG

remodeling by antagonizing the synergistic hydrolytic activity of

the RipA-RpfB interaction. Molecularly, this is consistent with the

predicted sites of action of the two hydrolases and the bonds

catalyzed by PBP1 (Figure 7C).

There are several possibilities for how PBP1 could inhibit RipA-

RpfB synergy. Given that both PBP1 and RpfB bind RipA, the

most likely scenario is competition between PBP1 and RpfB for

binding to RipA. Because we find that RipA interacts with PBP1

at the same C terminal 25 amino acids of RipA required for RpfB

binding, PBP1 could displace RpfB. This would explain the in vitro

antagonism between RpfB and PBP1 for activating hydrolytic

activity. Furthermore, these interactions might help coordinate

septal PG synthesis and division in vivo as shown in Figure 8. In this

model, PBP1 might complex with RipA and inhibit PG hydrolysis

sufficiently to allow septal PG synthesis. When septal PG is fully

synthesized, RpfB may compete with PBP1 for binding to RipA,

leading to the formation of a highly effective PG hydrolysis

complex and the coordinated degradation of septal PG during

separation of daughter cells.

PG hydrolysis experiments reported here were conducted with

M. luteus and Streptococcus PG, demonstrating a general ability for

the enzymes to regulate degradation of several types of PG.

However, the regulation of mycobacterial PG degradation in vivo is

likely to be more complex. Our assays for PG hydrolysis are

admittedly imperfect. Events that must occur in minutes or hours

in the cell require days to detect. In part, this is due to the non-

physiological conditions in the assay systems. Activity might be

affected by modifications to either the enzymes or the structure of

peptidoglycan. In fact, the functional interactions we observe likely

represent only a small portion of the regulatory interactions in the

cell wall, which probably include other proteins as well as

modifications of enzymes and their substrates.

Because of its localization at the septum and poles in the

actinobacterium C. glutamicum, PBP1 is thought to be responsible

for synthesis of both septal and polar PG [17,18,19,23,32]. To

evaluate whether PBP1 functions similarly in mycobacteria, we

sought to determine the localization of PBP1 in vivo. We find that

PBP1-RFP localizes to the poles and septa in mycobacteria, the

two primary sites of PG synthesis in mycobacteria, suggesting that

PBP1 functions in both elongation and septation. It is possible that

the C-terminal RFP fusion affects localization of PBP1. However,

RipA also localizes to both the poles and septum of mycobacteria

[11] and C-terminally tagged RipA remains functional (not

shown).

PBP1 plays a critical role in PG synthesis and viability across

divergent bacterial species. Depletion of the PBP1 paralogues in C.

glutamicum results in defects in PG elongation and division [23].

Likewise, in E. coli, the similar PBP1A and PBP1B proteins are

each dispensable for growth, but deletion of both genes is lethal,

with defects in both cell elongation and septation [33]. Disruption

of ponA1 in M. smegmatis was previously shown to result in

decreased growth and hypersensitivity to b-lactams antibiotics

[34]. Clearly, in this published work, PBP1 could be disrupted and

cells continued to grow. Methodological differences could account

for the phenotype we see. Isolated mutants are under strong

selective pressure and might easily develop compensatory

mutations that permit growth. In the case of PBP1, for example,

this might be due to overexpression of another PBP with partially

overlapping function. In our system, cells are not under selective

pressure until inducer is removed and cannot rapidly adapt to the

loss of the enzyme. However, selective pressure is strong enough to

rapidly select for strains that produce PBP1 even in the absence of

inducer (Figure 2SA), again suggesting that loss of PBP1 is highly

deleterious.

When PBP1 was provided in trans, the depletion strain grew like

wildtype, implicating the importance of PBP1 in the depleted

operon. Cells that express decreased amounts of PBP1 are small

and abnormally shaped, consistent with the notion that PBP1 is

involved in both elongation and septation. The bulging seen in

these cells phenocopies the morphology of penicillin-treated

bacteria prior to autolysin-dependent lysis [35]. This abnormal

morphology is characteristic of increased and/or dysregulated PG

hydrolytic activity, leading to a loss of structural integrity. This

phenotype is predicted by our model, in which PBP1 is necessary

for regulating PG hydrolysis, in part by restraining RipA from

synergizing with RpfB (and possibly with other autolysins).

Finally, it is plausible that protein-protein interactions between

different PG remodeling enzymes within cell wall complexes are

universal molecular mechanisms for coordinating the different

growth states of bacteria. While this work has begun to define the

role of these interactions during cell division, this mechanism of

action may extend beyond exponential growth. Could mycobac-

teria use similar regulatory systems for other growth conditions

such as reactivation of dormant cells from dormancy? In B. subtilis,

regrowth from a spore, or germination, involves several division

machinery genes, including DivIVA (a MinCD regulator and

chromosome partitioner protein) [36] and PrkC (a Ser/Thr

protein kinase) [37]. Interestingly, mycobacterial homologues of

these genes, wag31 and pknB, respectively, are key regulators of

division and morphology during vegetative growth [38,39], and

may serve a dual function during resuscitation of mycobacteria. Of

note, the Rpf PG hydrolase family of proteins appears necessary

for mycobacterial resuscitation from dormancy in vitro

[40,41,42,43,44] and survival in vivo [45,46,47]. Given the

interaction between RipA and RpfB and their synergistic function

in septal PG remodeling, the Rpf proteins may represent another

example of enzymes that play different biological roles during

different growth states. Understanding the molecular mechanism
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by which vegetative PG modifying enzymes achieve cell wall

homeostasis may inform us on how cells can transition between

physiological states.

Materials and Methods

Strains and culture conditions
E. coli XL-1 (Stratagene) strains were used for cloning and were

grown at 37uC in Luria-Bertani (LB) broth or agar and

supplemented with kanamycin (50 mg/ml), ampicillin (100 mg/

ml), hygromycin (100 mg/ml) or zeocin (25 mg/mL) when

appropriate. E. coli BL21 (DE3) (Stratagene) was used for

production of recombinant proteins from the pET41a (Novagen)

or pMal (New England Biolabs) vectors for GST or MBP fusions,

respectively. Mycobacterium smegmatis (mc2155) was grown at 37uC
in Middlebrook 7H9 broth supplemented with ADC (albumin-

dextrose-catalase) and 0.05% Tween80 and kanamycin (25 mg/

ml) or hygromycin (50 mg/ml) when appropriate. Saccharomyces

cerevisiae strains PJ69–4A (MATA trp1–901 leu2–3,112 ura3–52his3–

200 gal4 gal80 LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ) was

grown at 30uC in appropriate selective media and transformed

according to the Clontech Matchmaker manual or using the Zymo

EZ Kit (Zymo Research).

Yeast two-hybrid screen
We fused DNA encoding the C-terminal 123 amino acids of the

M. tuberculosis allele of RipA to DNA encoding the yeast GAL4

DNA binding domain (BD-RipA) in the pAS4 vector (similar to

pAS2, but with a uracil marker rather than tryptophan) and

screened against a random library of M. tuberculosis gene fragments

fused to DNA encoding the GAL4 activation domain (AD) using

the Matchmaker System (Clontech) as previously published [48].

Interactions were required to grow on plates lacking histidine or

adenine and produce b-galactosidase. Potential candidates were

tested for nonspecific interaction with the human Lamin protein.

Further mapping of interacting regions was conducted similarly,

but with known gene fragments. Growth was determined by

visualizing the density of growth on selective plates and was

categorized as ‘+++’ (strong), ‘++’ (moderate), ‘+’ (minimal, but

evident), and ‘–’ (lacking).

Figure 8. Model of RipA regulation by PBP1 during septation. A RipA-PBP1 complex that exists at the initiation of septation may synthesize a
thick layer of peptidoglycan (PG) between daughter cells during the process of cytokinesis. After PG synthesis and fission are finished, RipA may
exchange PBP1 for autolysin binding partners like RpfB. These new complexes are highly efficient at PG hydrolysis and will separate the cell walls of
the two mature daughter cells.
doi:10.1371/journal.ppat.1001020.g008
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b-galactosidase liquid assay
Three independent cultures of each yeast strain were assayed for

b-galactosidase activity using ONPG (o-Nitrophenyl-beta-D-Ga-

lactopyranoside) as substrate, according to the Clontech Match-

maker manual.

Recombinant protein production
DNA encoding the C-terminal 283 amino acids of RipA was

cloned into the pMal-C2X MBP expression vector (New England

Biolabs) as well as the pET41a GST expression vector, while DNA

encoding the 259 amino acids of the C-terminal of PBP1 or DNA

encoding the 70 amino acid conserved region of RpfB was cloned

into the pET41a GST expression vector (Novagen). The E. coli

expression strain, BL21(DE3) was used to synthesize each protein

following the Novagen manual protocol. Protein concentrations

were measured using the Bradford assay, normalized, and

confirmed by Coomassie Blue-stained polyacrylamide gels.

Co-precipitation assay
DNA encoding the C terminal 259 amino acid portion of M.

tuberculosis PBP1 was cloned into pET41a to create a GST fusion.

DNA encoding the C terminal 283 amino acids of M. tuberculosis

RipA were cloned into the pMalC2x vector to create a MBP

fusion. Bl21 E. coli were co-transformed with both PBP1 and RipA

fusion plasmids. As a control, the RipA-MBP plasmid was also co-

transformed with an empty pET41a GST plasmid. Cells were

grown to an OD of 0.5, induced with 1mM IPTG at 30uC for

3 hours and lysed by sonication for 10 seconds, 15 cycles in

HEPES lysis buffer (25 mM HEPES, 50 mM KCl, 5mM MgCl2,

pH 7.5). Recombinant GST fusion proteins were precipitated with

Glutathione Sepharose 4B resin (Amersham Biosciences) for

1 hour at 4uC, rotating. The resin was then washed 3 times

with cold 16 PBS +1% Triton X-100. Recombinant +and co-

precipitating proteins were eluted with glutathione elution buffer

(10mM reduced glutathione, 50mM Tris-HCl, pH 8.0) at 25uC,

15 minutes. Also, equimolar amounts of purified and normalized

GST or GST-PBP1 proteins were combined with equimolar

amounts of normalized MBP or MBP-RipA proteins in 1.5 ml

tubes containing 500 ml PBS. The protein mixture was gently

rocked at 4uC for 4 to 15 hours. Before further purification, 60 ml

of mixture was removed and saved as a loading control. From the

remaining mixture, MBP proteins were purified using amylose

resin or GST proteins were purified using sepharose (New

England Biolabs) as per directions. Co-purifying proteins and

loading controls were detected using immunoblotting with a GST

or MBP polyclonal antibody at 1:10,000 dilution.

Immunoblotting
Protein samples were combined with 46Laemmli’s SDS PAGE

buffer and boiled at 100uC for 5 minutes. Proteins were separated

on 8% Tris-tricine polyacrylamide gels by electrophoresis,

transferred to nitrocellulose, and probed with anti-sera against

MBP (New England Biolabs) or GST using standard techniques.

Preparation and FITC-labeling of cell wall material
Streptomyces peptidoglycan and lyophilized M. luteus cell wall were

both obtained from Sigma. The fluorescein isothiocyanate (FITC)-

labeled bacterial cell wall was prepared by covalently linking FITC

to amine groups in the cell wall. 10 mg FITC (Molecular Probes)

was used to label 10 mg of insoluble peptidoglycan or cell wall

material following the protocol from Protocols in Protein Science

(adapted from Molecular Probe notes).

Enzyme assay
Recombinant M. tuberculosis proteins were incubated with

several FITC-labeled cell wall substrates and assayed for activity

by measuring FITC release. 25mg of Rpf, PBP1 or RipA alone or

in various combinations, was added to 25 ml of 2 mg/ml substrate

and 25 ml 46 reaction buffer (50 mM Tris, 10mM MgCl, 50 mM

KCl, 2mM MnCl, 0.01% Chaps, 100 mM KH2PO4, pH 5.75).

The final volume was brought to 100 ml with H2O. Similar

combinations with GST were also tested. GST alone, as well as

buffer alone, was used to determine background release of FITC.

After incubating at 30uC with enzyme and buffer for 3–5 days, the

insoluble substrate was centrifuged (5 minutes at 18,0006g) and

soluble FITC remaining in the supernatant was measured with

filters for excitation 485 nm and emission 538 nm. Significance

was determined using one-tailed, unpaired t-tests using Prism

software.

Generation of depletion strains
The depletion strain was generated as previously described

[12,49]. Briefly, M. smegmatis, with the tetracycline repressor gene

integrated into the attB site, was transformed in the presence of

anhydrotetracylcine with a suicide vector containing the first 600

nucleotides of M. smegmatis ponA1 gene under control of the

tetracycline operator/promoter system (Ptet). Transformants were

selected for hygromycin resistance. Appropriate recombination

was confirmed using forward primers to Ptet and PponA1 (native

ponA1 promoter) paired with a reverse primer to the 39 end of

ponA1. The presence of a product of appropriate size for the

former and lacking in the latter, confirmed the desired strain.

Depletion strain growth
The ponA1 (PBP1) depletion strain was initially grown in 7H9

media containing kanamycin (selecting for TetR) and hygromycin

(selecting for inserted pTet) as well as anhydrotetracycline (ATC).

Once cultures reached late log-phase or stationary phase, they

were centrifuged (25006g for 5 minutes), washed once with PBS,

and resuspended in media with varying amounts of ATC.

Complementation analysis
M. smegmatis ponA1 was synthesized by Genscript (Piscataway,

NJ) and cloned under the control of the M. tuberculosis GroEL2

promoter. Monomeric RFP was cloned into the complementation

vector alone or downstream of ponA1, as a control to confirm

expression from this promoter. Complementation vectors express-

ing RFP alone or PBP1 with RFP were electroporated into the

ponA1 depletion strain and transformants selected on hygromycin,

kanamycin and zeocin supplemented with 100ng/mL ATC.

Complemented strains were grown in 7H9 with 100 ng/mL

ATC until log phase, and then diluted to an OD of approximately

0.0002 and grown in media containing various concentrations of

ATC.

Real time PCR
M. smegmatis strains were grown with either 50 ng/mL or no

anhydrotetracycline and all samples were collected at mid log

phase. ponA1 expression was measured using the following primers:

59 GGAGGCATCAAGGCGTACTA; 59 AACACCTTGA-

ACGACGAACC.

ponA1 levels were normalized to sigA expression, which was

measured using the following primers:

59 AAGACACCGACCTGGAACTC; 59 AGCTTCTTCT-

TCCTCGTCCTC.
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Samples were prepared according to the mechanical disruption

protocol in the RNA Protect Bacteria Reagent handbook (Qiagen,

Valencia, CA) and cell pellets stored at 280C. Disruption was

achieved with three, 1 minute beadbeating cycles. RNA was

isolated using the RNeasy Mini Kit (Qiagen), but with an

additional DNAse treatment on the column before elution and a

second DNAse digestion with Turbo DNase according to

manufacturer’s instructions (Ambion, Foster City, CA). Reverse

transcription of the RNA was carried out using the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA). Quantitative PCR utilized Power SyBr green PCR

master mix (Applied Biosystems) and reactions were run and

analyzed on a Step One Plus real time system (Applied

Biosystems).

Microscopy and imaging
M. smegmatis strains were centrifuged at 25006g for 2 minutes,

washed with 1ml PBS, and resuspended in 20 ml of PBS containing

50mM TMA-DPH for staining membranes. Samples were imaged

using a Nikon TE-200E microscope with a 1006 (NA 1.4)

objective and captured with an Orca-II ER cooled CCD camera

(Hamamatsu, Japan). Shutter and image acquisition were

controlled using Metamorph Software (Molecular Devices). Final

images were prepared using Adobe Photoshop 7.0.

Supporting Information

Figure S1 Diagram of ponA1 and ponA2 operons. ponA1 (rv0050

of M. tuberculosis and MSMEG6900 of M. smegmatis), is the first

gene in an operon with two other genes of unknown function.

rv0051 (MSMEG6899) encodes a conserved transmembrane

protein with 24% identity to GPI mannosyl-transferase with a

DXD motif common in glycosyltransferases that utilize nucleotide

sugars and rv0052 (MSMEG6898) encodes a conserved hypothet-

ical protein. There are two paralogues of ponA in both M.

tuberculosis and M. smegmatis, ponA1 and ponA2, similar to other

bacteria. ponA2 (rv3682) of M. tuberculosis encodes the first gene in a

predicted operon with two other genes. rv3863 encodes a

conserved secreted phosphohydrolase, possibly involved in histi-

dine biosynthesis. rv3684 encodes a protein with homology to

cysteine synthases. Arrows in black represent encoding genes of

the ponA predicted operon, while grey arrows represent the next

encoding gene on either side of the operon.

Found at: doi:10.1371/journal.ppat.1001020.s001 (0.49 MB TIF)

Figure S2 PBP1 depletion strain escape from regulation (A)

Growth of the PBP1 depletion strain was analyzed by optical

density in the presence and absence of the inducer, anhydrote-

tracycline (ATC). (B) ponA1 expression was analyzed by RT-PCR

in PBP1 depletion strains grown in the presence of inducer (50 ng/

ml ATC) and in three independent cultures grown without inducer

(no ATC). The no ATC cultures began to grow at late time points

(,50 hours). All four strains were taken at mid exponential phase

for PBP1 transcript analysis and normalized by sigA levels.

Found at: doi:10.1371/journal.ppat.1001020.s002 (0.27 MB TIF)
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