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Abstract

Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and
astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16
Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the
presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C
(GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not
associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus
reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades.
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Introduction

Bats (order Chiroptera), after rodents, comprise the most diverse

group of mammals with more than 1,100 species. They are present

on six continents, often have substantial habitat overlap with

humans [1] and harbor several zoonotic viruses causing significant

human morbidity and mortality, including Ebola- and Marburg-

virus, Nipah virus (NiV), and SARS-like coronaviruses [2–5].

Proximity of bats to human populations may facilitate the zoonotic

transmission of viruses either through direct contact, via amplifying

domestic animal hosts, or through food-borne routes [6–8].

The current study was set up as part of a viral discovery effort to

target key wildlife reservoirs in emerging disease hotspots. Bangladesh

is a ‘hotspot’ for emerging zoonotic diseases [9], with a relatively high

diversity of wildlife that likely harbors new zoonotic pathogens, one of

the densest human populations on the planet, and a high level of

connectivity between people, domestic animals and wildlife. In

Bangladesh and India, frugivorous Pteropus giganteus bats have been

identified as a reservoir for NiV [10,11], which has been recognized

as the cause of several outbreaks of encephalitis [12–14]. Pteropus

giganteus bats are common throughout the Indian subcontinent, living

in close association with humans and feeding on cultivated fruit [14].

NiV transmission from bats to humans has been linked with the

harvest and consumption of raw date palm sap, which becomes

contaminated with bat feces, urine or saliva overnight when bats such

as P. giganteus come to feed from the collecting pots [14,15]. Date palm

sap or other foods eaten by both bats and people, may also serve as a

vehicle for transmission of other bat-borne agents.

Several zoonotic flaviviruses, including Japanese encephalitis

virus, West Nile virus, and Kyasanur forest virus have been

identified in bats; however, to date, GB viruses have not [1]. GB

viruses A and C (GBV-A and -C) represent two recently identified

species that are currently unassigned members of the family

Flaviviridae [16]. GBV-A viruses have been described in New World

primates and are not known to infect humans [17–19], while GBV-

C (also known as Hepatitis G virus (HGV)) have frequently been

isolated from humans in many regions of the World, including India

and Bangladesh [19–23], and from wild chimpanzees (Pan troglodytes)

in Africa [24,25]. Here we describe discovery of a virus in the serum

of healthy bats in Bangladesh, tentatively named GB virus D (GBV-

D), that is distantly related to GBV-A and -C and represents a new

member of the family Flaviviridae.

Materials and Methods

Ethics statement
Every effort was made to minimize bat stress and avoid injury

during capture, restraint, and sampling procedures. This study was
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conducted following Wildlife Trust institutional guidelines under

IACUC approval G2907 issued by Tufts New England Medical

Center, Boston, Massachusetts.

Bat sample collection
As part of a longitudinal surveillance study of Nipah virus in

bats, 98 free-ranging P. giganteus bats were caught from a colony of

approximately 1800 individuals in the Faridpur district of

Bangladesh in December 2007 (Figure 1). Each bat was

anesthetized using isoflurane gas; morphometric measurements

(weight, forearm length, head length, and body condition) were

taken and bats were aged [10]. Each bat was marked for future

identification using an RFID microchip (AVID corp, www.avidid.

com) implanted subcutaneously between the scapulae. Three mL

of blood were collected and placed into serum separator tubes

(vacutainer; Becton Dickinson, Franklin Lakes, NJ, USA). Serum

was allowed to separate overnight at 4uC then drawn off without

centrifugation and immediately frozen using a liquid nitrogen dry

shipper. To inactivate potentially infectious agents, serum samples

were heat-treated at 56uC for 30 min and then stored at 270uC.

For RNA extraction, 250 mL of serum was added to 750 mL Tri-

Reagent LS (Molecular Research Center, Cincinnati, OH, USA).

Saliva was collected from the bat’s throat using a sterile cotton

swab. Urine was collected either by catching urine in a 1.0 mL

sterile cryovial while the bat was urinating, or by urethral swab.

Urine and saliva swabs were immediately placed into 1 mL Tri-

Reagent LS and frozen in liquid nitrogen.

Unbiased high-throughput pyrosequencing (UHTS)
Total RNA from serum was extracted for UHTS analysis to

screen for the presence of microorganisms. Five microliters of

total RNA from each bat were combined into 4 pools: 4 pregnant

bats; 4 non-pregnant female bats, and 2 pools of 4 adult male

bats, respectively. Reverse transcription (RT) was performed on

DNase I-treated (DNA-free, Ambion Inc., Austin, TX, USA)

RNA pools to generate cDNA using Superscript II RT

(Invitrogen, Carlsbad, CA, USA) and random octamers linked

to a defined arbitrary, 17-mer primer sequence tail (MWG,

Huntsville, AL, USA) [26]. After RNase H treatment cDNA was

amplified by the polymerase chain reaction (PCR), applying a 9:1

mixture of the defined 17-mer primer sequence and the random

octamer-linked 17-mer primer sequence, respectively [27].

Products of .70 base pairs (bp) were selected by column puri-

fication (MinElute, Qiagen, Hilden, Germany) and ligated to

specific linkers for sequencing on the 454 Genome Sequencer

FLX (454 Life Sciences, Branford, CT, USA) without DNA

fragmentation [28,29]. Sequences were analyzed using software

applications implemented at the GreenePortal website (http://

tako.cpmc.columbia.edu/Tools/).

Genome sequencing
Multiple forward and reverse primers for RT-PCR (available

upon request) were designed using the sequences obtained by

UHTS in order to fill gaps between fragments. Amplifications

were performed with Bio-X-act (Bioline, London, UK) according

to manufacturer’s protocols. Products were size fractionated by

electrophoresis and directly sequenced in both directions with ABI

PRISM Big Dye Terminator 1.1 Cycle Sequencing kits (Perkin-

Elmer Applied Biosystems, Foster City, CA, USA) at a commercial

facility (Genewiz, South Plainfield, NJ, USA). Additional methods

applied to obtain the genome sequence included touch-down

PCR [30], 2-step walking PCR [31], and 39- and 59- RACE

(Invitrogen).

Quantitative real-time PCR
A real time Taqman PCR assay was developed to screen bat

samples for GBV-D. Reactions were performed in a 25 mL volume

by using commercial Taqman Universal Master Mix (Applied

Biosystems, Foster City, CA, USA). Primers and probe were

designed to target a 60 nt region in the NS4A gene region: Fadi-

forward, 59- gCAgCTgCgTgTgCCA; Fadi-reverse, 59- ACACC-

CATgATgTTACCACgAC; Fadi-probe, 59- FAM- AggACCCgg-

TCgCTCCAgCA-T-BQX (TIB Molbiol, Adelphia, NJ, USA).

Cycling conditions were: 50uC for 2 min, and 95uC for 10 min,

followed by 45 cycles at 95uC for 15 sec and 60uC for 1 min.

Thermal cycling was performed in an ABI 7300 real-time PCR

system (Applied Biosystems).

Serum chemistry
A liver function panel was conducted at the International

Center for Diarrheal Disease Research (Dhaka, Bangaldesh) using

non heat-treated bat sera (Automated Chemistry Analyzer AU

640, Olympus Corporation, Tokyo, Japan). The following

parameters were analyzed: total protein, albumin, globulin,

albumin:globulin ratio, total cholesterol, total bilirubin , alkaline

phosphatase, alanine transferase, aspartate aminotransferase,

gamma glutamyltransferase , and lactate dehydrogenase.

Phylogenetic and sequence analyses
Sequence alignments were generated with ClustalW software

[32] and phylogenetic relationships deduced using Geneious

software [33]. Statistical significance was assessed by bootstrap

re-sampling of 1000 pseudoreplicate data sets. Sequence relations

were determined from p-distance matrices calculated with pairwise

deletion for missing data and homogeneous patterns among

lineages based on ClustalW alignments as implemented in MEGA

software [34]. Sliding window similarity analysis was performed

using SimPlot [35]. Potential signalase cleavage sites, glycosylation

sites, and phosphorylation sites were analyzed using the respective

prediction servers available at the Center for Biological Sequence

Analysis (http://www.cbs.dtu.dk/services/).

Author Summary

Bats are important reservoirs for emerging zoonotic viruses
with significant impact on human health including
lyssaviruses, filoviruses, henipaviruses and coronaviruses.
Opportunities for transmission to humans are particularly
prominent in countries like Bangladesh, where people live
in close association with bats. Whereas previous studies of
bats have employed assays that test for known pathogens,
we present the first application of an unbiased molecular
approach to pathogen discovery in this reservoir for
emerging zoonotic disease. Unbiased pyrosequencing of
serum from Pteropus giganteus bats enabled identification
of a novel flavivirus related to Hepatitis C and GB viruses.
Viral nucleic acid was present in 5 of 98 (5%) sera, and in
the saliva of one animal. Sequence identification of two
strains of the virus, tentatively named GBV-D, suggests P.
giganteus as a natural reservoir. Detection of viral nucleic
acid in saliva provides a plausible route for zoonotic
transmission. Phylogenetic analysis indicates that GBV-D is
ancestral to GBV-A and -C, and separate from the recently
classified genus Hepacivirus. Our findings provide new
insight into the range of known hosts for GB-like viruses
and demonstrate the power of unbiased sequencing to
characterize the diversity of potentially zoonotic patho-
gens carried by bats and other reservoirs.

Detection of a Novel Flavivirus in Bats
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Results

Identification of a GB-like agent from bats
Total RNA from the serum of healthy bats captured at a roost

in the Faridpur district of Bangladesh was extracted for UHTS

analysis. Extracts of 16 individual bats were combined into 4 pools

consisting of 4 pregnant adult bats, 4 non-pregnant adult female

bats, or 264 adult male bats. Each pool yielded between 1,400

and 2,000 assembled contigs or singlton reads (representing

50,000–75,000 reads ranging in size from 31–328 nt). Two reads

of 238 and 215 nucleotides (nt) derived from the pregnant bat pool

had distant homology to GBV-A sequences at the deduced amino

acid (aa) level in the E2 and NS4A gene regions respectively

(BLASTX); no homology was detected by searches at the nt level

(BLASTN; local copy of the executables with standard settings

except that the reward for a nucleotide match was set to 2 instead

of 1). No viral sequences were detected in other pools at the nt or

aa levels. Screening of the individual RNA preparations from the

pregnant bat pool using primers derived from the UHTS reads

confirmed the presence of the GBV-like sequence in the serum of

bat 93. A quantitative real time PCR assay indicated a load of

approximately 30 000 RNA copies in bat-93 serum extract, and

identified an additional 4 positive bat sera from the original 98

samples (5/98; 5%), indicating serum loads ranging from 350 to

70,000 RNA copies per assay. These positive samples came from

male bats that were not included in the initial UHTS pools.

Extracts of saliva from the five positive bats indicated a load of

approximately 200 RNA copies in bat 93; no signal was obtained

with urine extracts from the five positive bats.

Genomic characterization of GBV-D
Near full-length genome sequence was generated from bat-93

and a second positive serum (bat 68), applying primers crossing

Figure 1. Map showing the location of the bat colony in Faridpur district, Bangladesh from which GBV-D was identified.
doi:10.1371/journal.ppat.1000972.g001

Table 1. Percent sequence similarity between GBV-D (bat-68),
-A, -C, and hepaciviruses.

nt*
aa GBV-D GBV-C GBV-A GBV-B HCV-1

GBV-D 48 46 39 41

GBV-C 41 55 41 44

GBV-A 39 47 37 38

GBV-B 25 24 24 41

HVC-1 22 22 22 27

*Sequence similarity at nt level in upper right, and at aa level in lower left
portion of the table.
doi:10.1371/journal.ppat.1000972.t001

Detection of a Novel Flavivirus in Bats
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gaps between UHTS reads as well as touch-down PCR [30],

2-step walking PCR [31], and 39- and 59-RACE (Invitrogen)

protocols. The two genome sequences were 96% identical at the nt

level (GenBank Accession nos. GU566734 and GU566735),

indicating two strains of the same virus. Comparison of deduced

polyprotein sequence to other GBV and hepaciviruses indicated

highest nt and aa sequence identities to GBV-A and -C (Table 1,

Figure 2). The genomic sequence of the GBV-like virus identified

in P. giganteus bats, tentatively named GBV-D, comprises 9,633 nt

with 52 nt of potentially 59-untranslated region (UTR), one

continuous open reading frame (ORF) of 9318 nt (3106 aa) and

265 nt of 39-UTR (Figure 3).

Mature structural proteins in GB viruses, as well as other

flaviviruses, are the product of cleavage by host signal peptidase

[36]. In GBV-D the first potential signal sequence cleavage site is

present after a stretch of 57, largely basic aa (6 kDa, pI = 12),

followed by sequence homologous to E1 (pfam 01539, http://

pfam.sanger.ac.uk/) (Figure 3). The single glycosylation site

N177IT present in that sequence is located in a position

comparable to GBV-C, -A, -B and HCV glycosylation sites.

Identification of the downstream E2 termini is less apparent as the

next 580 aa contain multiple potential signal sequences and 10

potential glycosylation sites that indicate no homology to

hepaciviral E2/NS1 (pfam 01560), until the sequence aligns with

N-terminal NS2 motifs (pfam 01538) (Figure 2, Figure 3).

However, despite similarity to pfam 01538 no signal sequence

compatible with cleavage at A759/A was found; cleavage may

occur at G826/R, which combined with potential signalase

cleavage at A584/F may indicate the existence of a heavily

glycosylated potential 26 kDa product instead of the p7 trans-

membrane protein identified in HCV [37–39] or the 13 kDa

variant described in GBV-B [40,41]. Conserved C-terminal motifs

of the autocatalytic NS2/NS3 endoprotease domain are compat-

ible with NS2/NS3 cleavage at S1067/A and comparable to other

GBV and HCV [42]. Figure 3 indicates potential cleavage sites

for NS3 (peptidase S29, pfam 02907; DEAD box helicase, pfam

07652; helicase C, pfam 00271), NS4A (pfam 01006), NS4B (pfam

01001), NS5A (domain-1a zinc finger, pfam 08300; domain-1b,

pfam 08301), and NS5B (pfam 00998).

Conserved aa motifs were recognized in NS proteins. RNA-

dependent RNA polymerase (RdRp) motifs in RdRp block III that

are conserved with respect to other GBV and hepaciviruses were

identified in NS5B (Figure 3) [43–46]. Potential phosphorylation

sites are present at multiple serine (9), threonine (14) and tyrosine (4)

residues in NS5A, compatible with its possible function as a

phosphorylation-regulated mediator of viral replication [47]. How-

ever, significant conservation of primary sequence is not obvious

for phosphorylation sites, proline-rich, or interferon-sensitivity

Figure 2. Sliding window similarity analysis between GBV-D and other GBV and hepaciviruses (amino acid sequence; window, 160;
step, 20).
doi:10.1371/journal.ppat.1000972.g002

Figure 3. Genomic organization of GBV-D, a novel flavivirus identified in the sera of frugivorous bats in Bangladesh. Arrows,
glycosylation sites; solid diamond, active center sites H921, E1011, and C1032 in the autocatalytic NS2/NS3 endoprotease domain; triangle, catalytic triad
H1123, D1147, S1204 of NS3 serine protease; rectangle, NS3 helicase and DEAD-like helicase motifs; open diamond, zinc finger motif; and NS5
polymarase motifs A (T2744VDAICFDSCIT), B (R2802ASGVLTTSSSNCISSFLKVSAAC), C (F2835LIHGDDVMII), D (L2876DTAQSCSA),and E (H2900YFLSTDFR)
motifs.
doi:10.1371/journal.ppat.1000972.g003

Detection of a Novel Flavivirus in Bats
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Figure 4. Phylogenetic relationship of GBV-D to other GBV and hepaciviruses. GBV-D amino acid sequences for A: NS5B, B: NS3, and C: the
polyprotein (PPT) were analyzed in comparison to representative sequences of GBV-A, -B, -C and hepatitis C viruses. GenBank accession numbers for

Detection of a Novel Flavivirus in Bats
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determining region motifs [48–50]. The C-terminal portion of NS3

has homology to conserved NTPase/helicase motifs [51]; the N-

terminal portion includes conserved active triad residues H1123,

D1147, S1204 of serine protease [52], the viral protease responsible for

cleavage of mature non-structural proteins [53]. Likewise, the active

triad H991, E1011, C1032 of the cis-acting protease activity in the C-

terminal portion of NS2 is conserved with respect to other GBV and

HCV [42]. The only other discernable motif identified was a well-

conserved N75 C/D C motif at the N-terminus of E1 (Figure 3) [54].

Phylogenetic analysis
Phylogenetic analysis of GBV-D was performed in comparison

to selected representatives of GBV-A, GBV-B, GBV-C and HCV.

Analysis of NS5B aa sequence (Figure 4A) confirmed a closer

relationship of GBV-D to GBV-A and -C than to GBV-B or HCV

as also indicated by pairwise sequence comparisons (Table 1).

The same relationships were also apparent when NS3, or the

complete polyprotein sequence were analyzed (Figure 4B and C,

respectively). All three trees show GBV-D consistently at the root

of the GBV-A/-C viruses, indicating an independent phylogenetic

clade compatible with a separate species distinct from the recently

created genus Hepacivirus [16].

Serum chemistries
A liver serum chemistry panel was conducted on sera from 15

bats, the five GBV-D infected and 10 non-infected animals.

Standard assays to detect hepatitis and/or impaired liver function

were performed [55]. Levels of total protein, alanine transferase,

aspartate aminotransferase and total cholesterol were within

published ranges reported for P. giganteus, except for bat 33

(infected) and bat 73 (uninfected), which had modest elevation in

aspartate aminotransferase. Reference values for albumin, globu-

lin, albumin:globulin ratio, total bilirubin, alkaline phosphatase,

gamma glutamyltransferase and lactate dehydrogenase are not

available for P. giganteus, however, values were comparable to those

reported for other Pteropus species [56]. Mean values did not

significantly differ between infected and uninfected bats (Table 2).

Discussion

Molecular analyses of sera from Pteropus giganteus bats from

Faridpur, Bangladesh led to the identification of a 9,633 nt sequence

consistent in genomic organization with known GBV and other

species within the family Flaviviridae [16]. Whereas previous studies of

bats have employed assays that test for known pathogens, ours is the

the respective sequences are indicated. Entebbe bat virus was used as an outgroup; distance in substitutions per site is indicated by scale bars;
percent bootstrap support for values greater than 85% is indicated at respective nodes.
doi:10.1371/journal.ppat.1000972.g004

Table 2. Liver function values from Pteropus giganteus bats.

T.Prot
(g/dL)

Alb
(g/dL) Glob A:G

T. Chol
(mg/dL)

T. Bili
(mg/dL)

Alk
Phos

ALT
(U/L) AST (U/L)

GGT
(U/L)

LDH
(mg/dL)

Ref Range (human) 64.0–82.0 34–50 23–35 1.1–1.8 3.6–6.3 .01–19 30–120 .01–41 .01–38 9–40 135–225

Ref Range (P. giganteus) 65–84 30–41 0–2.3 1.2–84.6 30.2–141.0

Bat ID

1 86 50.7 35.3 1.44 1.65 1.8 1572..4 13.9 67.6 87.90 53.4

3 79.7 49.4 30.3 1.63 2.74 2.1 605.7 20.2 67.4 49.20 95

4 70.4 42.9 27.5 1.56 0.5 2.3 532.1 12.3 66.1 75.40 76.7

21 76 48 28 1.71 1.06 1.2 794.9 23.8 83.7 35.70 244.5

23 71.5 46.2 25.3 1.83 1.49 1.7 1650 12 115.1 102.00 96

33 80.5 43.8 36.7 1.19 1.09 2.1 891.6 22.2 146 32.10 752.4

36 89.9 51 38.9 1.31 1.22 2.5 580.4 11.1 109.4 69.00 114.4

37 76.6 47 29.6 1.59 0.85 1.3 205.8 12.6 50.3 72.50 133.9

39 70.4 43.3 27.1 1.6 0.5 1.8 328.7 20.5 77.8 31.00 82.6

68 78.9 44.9 34 1.32 2.54 1.2 813.3 7.9 65.6 46.10 111.8

73 82.4 46.1 36.3 1.27 1.17 1.8 958.8 19.7 185.4 37.00 859.4

82 72.3 43.8 28.5 1.54 0.5 1.4 458.4 22.1 82.1 48.50 350.3

84 82.6 46.2 36.4 1.27 1.43 2.7 923.6 22.9 107.6 46.40 176

93 82.1 47.5 34.6 1.37 1.46 2.6 262 8.6 59.9 47.10 105.2

96 76.5 46.8 29.7 1.58 0.5 1.1 574.6 20.9 79.4 101.80 203.7

Mean uninfected 78.73 47.15 31.58 1.518 1.226 1.81 763.9 18.71 97.55 60.85 227.53

Mean infected 77.7 45.22 32.48 1.406 1.288 1.9 540.96 12.72 77.58 54.64 236

STdv uninfected 6.52 2.63 4.71 0.19 0.68 0.52 391.61 4.62 35.31 27.40 239.64

STdv infected 4.56 1.99 3.80 0.17 0.78 0.62 311.19 5.71 38.77 18.63 289.40

No indication of hepatitis or impaired liver function was observed; no significant differences between mean values for infected (bold) or non-infected bats were
apparent.
The following parameters were analyzed: Total Protein (T. Prot); Albumin (Alb), Globulin (Glob), Alb:Glob ratio, Total Cholesterol (T. Chol); Total Bilirubin (T. Bili); Akaline
Phosphatase (Alk. Phos); Alanine Transferase (ALT); Aspartate Aminotransferase (AST); Gamma Glutamyltransferase (GGT) and Lactate Dehydrogenase (LDH).
doi:10.1371/journal.ppat.1000972.t002

Detection of a Novel Flavivirus in Bats
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first report of an unbiased molecular approach to pathogen discovery

in this important reservoir of emerging infectious diseases. The

modest yield of novel microbial sequences may reflect the choice of

sample (e.g., serum vs feces, tissue or another specimen), competition

between host and microbial template during unbiased amplification,

or both. Efforts to address template competition are under way that

include subtraction of host nucleic acids or the use of semi-random

primers that do not amplify host sequences. Such efforts will likely

enhance the sensitivity and throughput of unbiased sequencing

technologies for pathogen discovery.

The discovery of this chiropteran flavivirus broadens both the

taxonomical and geographical distribution of GB-like viruses. Three

types of GB viruses have been described: GBV-A, -B and -C

[18,19,24,25,54,57]. GBV-B, which has never been found in

humans and was only reported in captive tamarins after serial

passage of the original human GB serum [58], is most closely related

to HCV and was recently classified together with HCV into a new

genus, Hepacivirus, within the family Flaviviridae [16]. GBV-A and -C

remain unclassified members of the family. GBV-A have been

isolated from several New World monkeys. Different genotypes

appear to be associated with specific monkey species of the genera

Saguinus, Callithrix (Callitrichidae family) and Aotus (Aotidae family),

without any clinical signs associated with infection [24,54,57].

GBV-C have been isolated from humans with non-A-E hepatitis;

however, its pathogenicity is unknown and the virus is widespread in

the human population [21,59–61]. Population studies showed that

GB viruses are enzoonotic and species-specific within both Old and

New World nonhuman primates as well as humans, and have likely

co-evolved with their hosts over long periods of time [62].

Previously, the only GBV found in the Old world was GBV-C

from chimpanzees (in Africa) and humans. Although GBV-C were

found in humans, GB viruses have not been previously reported in

primates or other animals on the Indian subcontinent.

GBV-C and -A are remarkable for a truncated or missing capsid

(C) protein [18,19]. Due to exhaustion of our samples we were

unable to complete assessment of the 59-terminal sequence;

nonetheless, RACE experiments suggest that GBV-D likely codes

for a short basic peptide, instead of a full-length C protein. The first

methionine (M1) predicts a peptide of 57 aa (pI = 12); however, the

more favorable Kozak context [63] of M3 indicates a 55 aa peptide.

After signalase cleavage from the polyprotein precursor, this peptide

may be functional, possibly influencing maturation of, or directly

binding to, the E1 and/or E2 glycoproteins.

Phylogenetic analyses of NS5B, NS3 and complete polyprotein

sequence place GBV-D at the root of the GBV-A and -C clades and

are consistent with a model wherein GBV-D is ancestral to GBV-A

and -C clades. Mixed relationships indicative of recombination

events [64] were not evident (Figure 2, Figure 4). Both pteropid

bats and chimpanzees are restricted to the Old World. While the

range of chimpanzees (Africa) and P. giganteus (the Indian

subcontinent) do not overlap, it is possible that other primate

species in Bangladesh or India, such as macaques, or other fruit bats

in Africa such as Eidelon spp., whose range overlaps that of

chimpanzees, may carry related viruses. While GBV-A is only

known from primates of the New World, an African origin has been

suggested for GBV-C based on a 12-aa indel sequence in NS5A

[65]. Although the NS5A sequence of GBV-D, similar to that of

GBV-A, appears elongated in the indel region, compatible with

their respective earlier phylogenetic branching compared to GBV-

C, little sequence conservation is observed in that region.

The bats in this study, like primates infected with their associated

GBV [66], all appeared to be healthy. The lack of chemical evidence

of hepatic inflammation or dysfunction suggests that this virus may

not target hepatic cells in bats. This is consistent with the behavior of

GBV-A in its natural primate hosts [54]. In contrast, elevated

alanine transferase levels and mild hepatitis are observed in

experimental infections of macaques with GBV-C isolates from

humans [67]. Five percent of the bats we studied were infected with

one of at least two different strains of GBV-D, which suggests

widespread viral circulation within this species. The observation that

bats are asymptomatically infected with diverse strains that constitute

a distinct phylogenetic clade is compatible with a co-evolutionary

relationship between GBV and their hosts [57,62], and supports the

hypothesis that P. giganteus bats may be a natural reservoir for GBV-

D. In one case we were able to detect GBV-D nucleic acid in saliva.

This suggests a potential route for viral transmission via fighting or

grooming behavior, or via food shared by bats.

Pteropus giganteus is a frugivorous bat species that carries NiV, a

zoonotic paramyxovirus [10,11]. This species lives in close

association with humans in Bangladesh and bats have been

observed drinking from (and urinating into) date palm sap

collecting pots [14]. Human consumption of contaminated palm

juice is proposed to be a major route of NiV transmission [68].

Although it is unclear whether infectious virus was present in bat

saliva, the observation that saliva can contain GBV-D nucleic

acids provides a biologically plausible mechanism for transmission

from infected bats to other hosts. While it is currently unknown

whether GBV-D virus occurs in humans, up to 20% of non-A-E

hepatitis cases remain unexplained [19].
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