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Abstract

The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated
and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like
receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of
adaptive immunity against pathogenic WNV. IPS-12/2 mice exhibited increased susceptibility to WNV infection marked by
enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM)
derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR
signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection.
Intriguingly, infected IPS-12/2 mice displayed uncontrolled inflammation that included elevated systemic type I IFN,
proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral
responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and
non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was
associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced
inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define
an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality,
and balance of the immune response to WNV infection.
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Introduction

West Nile virus (WNV) is a neurotropic flavivirus and is an

emerging public health threat. Infection with WNV now constitutes

the leading cause of mosquito-borne and epidemic encephalitis in

humans in the United States [1]. WNV is enveloped and contains a

single strand positive sense RNA genome of approximately 11 kb in

length that encodes three structural (C, prM/M, and E) and seven

non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B,

and NS5). It cycles enzootically between birds and Culex

mosquitoes, with humans infected as dead-end hosts. WNV

infection has been modeled in inbred mice wherein infection and

pathogenesis recapitulate many of the features of human infection

(reviewed in [2]). Following subcutaneous inoculation, WNV

replicates in dendritic cells (DCs) at the portal of entry and in the

draining lymph node. A primary viremia develops and virus

spreads to visceral organs including the spleen, where further

amplification occurs, leading to central nervous system (CNS)

dissemination and encephalitis. In humans, WNV causes an acute

febrile illness that can progress to severe and sometimes lethal

neuroinvasive disease, especially in the elderly and immunocom-

promised [3]. However, healthy young adults are also afflicted with

severe neurological disease [4,5,6], indicating that virulence can

occur independently of immune deficiencies or aging.

Intracellular innate immune defenses and the actions of type I

interferon (IFN) provide a first-line of defense against virus infection

and are essential for the control of WNV replication, dissemination,

and neurovirulence [7]. Innate antiviral immune defenses are

triggered through the recognition of conserved pathogen associated

molecular pattern (PAMP) motifs within viral products by

intracellular pathogen recognition receptor (PRR) proteins in

infected cells. PRR signaling directs downstream activation of latent
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transcription factors, including NF-kB, interferon regulatory factor

(IRF)-3 and IRF-7, in a cell type-specific manner to induce antiviral

response programs that include expression of proinflammatory

cytokines, chemokines, type I IFN, and interferon stimulated genes

(ISGs) [7,8,9,10]. The ISG products induced through autocrine and

paracrine actions of IFN confer antiviral activity by limiting virus

replication and cell-to-cell virus spread. Modulation of IFN signaling

has been identified as a virulence feature of pathogenic strains of

WNV [11,12].

The RLRs, retinoic acid inducible gene-I (RIG-I) and

melanoma differentiation antigen 5 (MDA5) [13,14,15,16], are

PRRs that play critical roles in triggering immune defenses against

RNA virus infection, including WNV. RIG-I and MDA5 are

cytosolic RNA helicases that contain an amino terminal tandem

caspase activation and recruitment domain (CARD). Upon

engaging RNA substrates, the RLRs undergo a conformational

change and bind to the mitochondrial associated protein,

interferon promoter stimulator-1 (IPS-1) through a CARD-CARD

interaction, leading to IPS-1-dependent signaling of IFN produc-

tion and expression of immune response genes [17,18]. RLR

signaling and IPS-1 function have an essential role in triggering

IFN defenses during WNV infection of mouse embryo fibroblasts

(MEFs) and human cell lines in vitro. Cells lacking either RIG-I or

MDA5 were attenuated in their ability to generate an effective

innate immune response to infection, whereas cells lacking both

RIG-I and MDA5 or those deficient in IPS-1 alone were unable to

respond to infection with WNV and related flaviviruses

[19,20,21,22]. Recent studies examined the role of another class

of pattern recognition receptors, Toll like receptor (TLR)3 and

TLR7, and show that these receptors are also important PRRs of

WNV infection, as they play a role in signaling IFN production

and an inflammatory response upon viral ligand recognition

[23,24,25]. TLR3 has been shown to contribute to both

enhancement and protection of CNS inflammation and neurovir-

ulence of WNV in vivo [23,24], while TLR7-dependent signaling

was shown to be essential for directing proper immune cell homing

to sites of WNV infection during the adaptive immune response in

vivo [25].

Type I IFN, a major product of PRR signaling, has been shown

to link innate and adaptive immune responses. However, the

specific PRR pathways that mediate this during acute WNV

infection have not been delineated nor has the RLR pathway been

evaluated in this context. The quantity and quality of the innate

and adaptive immune responses after infection must be carefully

regulated to avoid aberrant inflammation and immunopathogen-

esis. Regulatory T (Treg) cells and inflammatory dendritic cell (DC)

subsets regulate inflammation during acute virus infection through

T cell suppression and by modulating the trafficking and

inflammatory cytokine production of immune cells into infected

tissues [26,27,28]. Thus, the level of local and peripheral Treg cells,

and the composition of local DC subsets that develop during

WNV infection may determine immune control and WNV

disease.

Here, we assessed the role of RLR signaling and IPS-1 in WNV

infection and immunity. Our studies define IPS-1 as an essential

modulator of immunity in vivo and demonstrate that IPS-1-dependent

signaling orchestrates an innate/adaptive immune interface that

regulates immune responses to effectively control WNV infection.

Results

RIG-I and IPS-1 are essential for protection against WNV
infection

WNV infection of primary embryonic fibroblasts recovered

from RIG-I2/2 mice revealed that RIG-I was important in

eliciting innate antiviral immune defenses early during infection,

whereas MDA5 was important for enhancing and sustaining this

response [21]. We further evaluated WNV infection of RIG-I2/2

or MDA52/2 mice and confirmed that RIG-I serves a dominant

role among the RLRs for the acute induction of innate immune

defenses and protection against WNV infection in vivo (data not

shown). Since the RLRs signal innate defenses through the IPS-1

adaptor protein [29], we also examined the role of IPS-1 in

protection against WNV infection upon a sub-lethal virus

challenge of wild type and IPS-12/2 mice. IPS-12/2 mice were

highly susceptible to WNV infection and exhibited 100% mortality

with an average survival time (AST) of 7.3 days as compared to

wild type mice (38.5% mortality with an AST of 13.2 days;

p,0.0001; Fig 1A). Thus, RIG-I and IPS-1-dependent signaling

are essential for protection against WNV infection.

IPS-1-dependent signaling controls WNV replication,
tissue tropism, and CNS invasion

To define the role of IPS-1 in controlling WNV in vivo, wild type

and IPS-12/2 mice were infected subcutaneously (s.c.) with 100

PFU of WN-TX and viral burden within peripheral tissues and the

CNS was measured over time post-infection (pi). IPS-12/2 mice

exhibited increased viremia compared to wild type mice (45.7 fold

enhancement at day 1 pi, P,0.05) throughout the course of

infection (Fig 1B). Similarly, viral loads in the spleen were

elevated in the infected IPS-12/2 mice (Fig 1C). WNV infection

of IPS-12/2 mice displayed an expanded tissue tropism as

infectious virus was found in the kidneys, a tissue that is not

normally permissive to infection in wild type mice (Fig 1D). WNV

is typically detected in the CNS of wild type mice after s.c.

challenge between 4 and 8 days pi [2]. Consistent with this time

course, infected wild type mice exhibited detectable viral loads

(average viral titer of 101.8 pfu/gram of tissue) in the brain by day

6 p.i., although virus was not detected in the spinal cord (Fig 1E
and F). In contrast, WNV spread to the brain (Fig 1E) and spinal

cord of IPS-12/2 mice (Fig 1F) by day 2 pi, with viral loads rising

through day 6 pi. Together these results indicate that IPS-1, likely

Author Summary

West Nile virus (WNV) is a mosquito-transmitted RNA virus
that has emerged in the Western hemisphere and is now
the leading cause of arboviral encephalitis in the United
States. However, the virus/host interface that controls
WNV pathogenesis is not well understood. Previous
studies have established that the innate immune response
and interferon (IFN) defenses are essential for controlling
virus replication and dissemination. In this study, we
assessed the importance of the RIG-I like receptor (RLR)
signaling pathway in WNV pathogenesis through analysis
of mice lacking IPS-1, the central adaptor molecule of RLR
signaling. Our studies revealed that IPS-1 is essential for
protection against WNV infection and that it regulates
processes that control virus replication and triggering of
innate immune defenses. We found that IPS-1 plays an
important role in establishing adaptive immunity through
an innate/adaptive interface that elicits effective antibody
responses and controls the expansion of regulatory T cells.
Thus, RLRs are essential for pathogen recognition of WNV
infection and their signaling programs help orchestrate
immune response maturation, regulation of inflammation,
and immune homeostasis that define the outcome of WNV
infection.

IPS-1 Is Essential for Immunity to WNV Infection
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through RLR signaling of innate immune defenses, limits WNV

replication, viremia, and peripheral spread, and is essential for the

control of viral invasion of the CNS.

IPS-1 regulates the innate immune response to WNV
infection in myeloid cells

Myeloid cells, including tissue and lymphoid DC and

macrophages (Mw), are among the first cells to encounter

WNV during infection and thus function to restrict the spread

of virus to distant tissues and the CNS [2]. To define the role of

IPS-1 in controlling virus replication and innate immunity in

myeloid cells, we analyzed WNV infection and host responses in

primary bone marrow-derived DC and Mw recovered from wild

type and IPS-12/2 mice. DC and Mw were infected at an MOI

of 1.0 (relative to viral plaque assay quantification of BHK-21

cells; see Methods) and evaluated for virus replication, IFN

induction, and innate immune triggering of ISG expression

(Fig 2). IPS-12/2 DCs sustained significantly higher WNV

replication at 36 and 48 hours pi compared to wild type infected

cells (Fig 2A). WNV infection of wild type DCs induced IFN-b
secretion but this response was completely abolished in IPS-12/2

DCs (Fig 2B). The lack of IFN-b induction in IPS-12/2 DCs

correlated with a lack of ISG expression including RIG-I, MDA5,

and STAT-1 (Fig 2C). In addition, expression of ISG54 and

Figure 1. Virologic analysis in wild type and IPS-12/2 mice. Adult wild type and IPS-12/2 mice were infected s.c. with 100 PFU of WN-TX. (A)
Differential lethality from WNV infection (WT n = 13; IPS-12/2 n = 23; p,0.0001). B–F. Viral burden analysis of peripheral and CNS tissues from wild
type and IPS-12/2 mice infected s.c. with 100 PFU of WN-TX. (B) WNV RNA in serum and infectious virus in the (C) spleen, (D) kidney, (E) brain, and (F)
spinal cord were determined by RT-qPCR assay (B) or viral plaque assay (C–F) of samples harvested on day 1, 2, 4, and 6 pi. Data are shown as copies
of WNV genome RNA per ml of serum or PFU per gram of tissue for 3 to 6 mice per timepoint. Graphs show the mean +/2 standard deviation for
each measurement. Asterisk denotes p,0.05. The horizontal line indicates the lower limit of assay sensitivity.
doi:10.1371/journal.ppat.1000757.g001

IPS-1 Is Essential for Immunity to WNV Infection
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ISG49, which are direct IRF-3 target genes [30,31], were not

induced during WNV infection of IPS-12/2 DCs (Fig 2C).

Moreover, ISG56, another IRF-3 target gene [31], was induced

late during infection and to lower levels as compared to

ISG54 and ISG49 in wild type, infected DCs. WNV infection

of IPS-12/2 Mw resulted in significantly higher virus replication

between 24 and 48 hours pi as compared to infected wild type

cells (Fig 2D). Whereas wild type infected Mw expressed IFN-b,

this response was completely abolished in IPS-12/2 Mw (Fig 2F).

We also observed a differential expression of ISGs and IRF-3-

target genes within WNV-infected Mw. RIG-I, MDA5, and

STAT-1 were not induced in IPS-12/2 Mw, whereas, ISG56,

ISG49, and PKR were expressed at reduced levels and with

delayed kinetics. These data establish that IPS-1-dependent RLR

signaling is the major innate immune signaling pathway that

controls virus replication in conventional DCs and Mw.

The RLR signaling pathway triggers the innate immune
response to WNV infection in primary cortical neurons

Neurons represent the target cell of WNV infection in the CNS

and their death after infection is a key factor in pathogenesis and

neurological sequelae [32,33]. To define the role of RLR signaling

in restricting virus replication in neurons, primary cortical neurons

were generated from wild type and IPS-12/2 mice. Cells were

infected at an MOI of 1.0 with WN-TX and virus yield, IFN-b
induction, and ISG expression were evaluated. In the absence of

IPS-1, WNV replicated faster and to higher levels resulting in a 2.2

and 4.2-fold (p,0.05) increase in viral production at 24 hrs and 48

Figure 2. IPS-1 is essential for triggering the innate immune response to WNV infection and controlling virus replication in myeloid
cells. Primary bone-marrow derived dendritic cells (A–C) and macrophages (D–F) recovered from wild type mice and IPS-12/2 mice were mock-
infected (M) or infected with WN-TX at an MOI of 1.0. Cells and culture media were harvested at the times indicated pi for determination of virus load
(A, D) and IFN-b production (B, E), respectively. n.d. = not detected. Graphs show the mean +/2 standard deviation from three independent
experiments. Asterisk denotes p,0.05. (C,F) Immunoblot analysis of protein abundance in lysates from mock-infected (M) and WN-TX infected cells.
For panel C, STAT-1 expression in dendritic cells was normalized at each timepoint to loading control and compared to mock (relative fold induction
WT, KO at 12 hours 1.72, 0.7; 24 hours 2.6, 0.8; 36 hours 4.6, 1.1; 48 hours 9.9, 0.6).
doi:10.1371/journal.ppat.1000757.g002

IPS-1 Is Essential for Immunity to WNV Infection
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pi, respectively as compared to infected wild type neuronal cells

(Fig 3A). This relatively modest virologic effect in neurons

compared to that observed in IPS-12/2 DC and Mw was

expected, as IFN-a or -b pre-treatment only inhibits WNV

infection in cortical neurons to a maximum of 5 to 8-fold [12],

suggesting that the IFN response is comparably less potent in

neurons. IFN-b expression was induced to lower levels in

IPS-12/2 neurons compared to wild type infected neurons at 24

(10-fold, p,0.05) and 36 hours pi (5-fold, p,0.05) despite the

higher levels of virus replication (Fig 3A and 3B). Expression of

ISGs, (including RIG-I and MDA5) and IRF-3 target genes

(including ISG56 and ISG49) followed this pattern and were

dependent on IPS-1 for rapid and high level expression (Fig 3C).

The presence of IFN-b and ISG transcripts in IPS-12/2 cells at

48 hrs pi is consistent with the finding that TLR3 has an

independent and subordinate role in triggering innate immune

responses in cortical neurons at later time points after WNV

infection [23]. These results demonstrate that the RLR signaling

pathway controls virus replication and induces innate immune

responses against WNV infection in cortical neurons.

Neuronal destruction and CNS inflammation are
enhanced in WNV infected IPS-12/2 mice

To determine the role of the RLR pathway in protection of

neurons against WNV pathogenesis in vivo, we conducted

histological analysis of brain tissue from wild type and IPS-12/2

mice infected with WN-TX (Fig 4A). Analysis of brain sections

from infected wild type mice revealed little or no inflammation or

Figure 3. IPS-1 is essential for triggering innate immune defenses and controlling virus replication during WNV infection of primary
cortical neurons. Primary cortical neurons (CN) from WT and IPS-12/2 mice were infected at an MOI of 1.0. (A) Viral titers in the culture supernatants
were determined by plaque assay. (B, C) mRNA expression was determined by RT-qPCR assay using primers-specific for (B) IFN-b or (C) ISG56, ISG49,
RIG-I, and MDA5. Graphs show the mean +/2 standard deviation from triplicate independent analyses. Asterisks denote p,0.05.
doi:10.1371/journal.ppat.1000757.g003

IPS-1 Is Essential for Immunity to WNV Infection
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Figure 4. Increased CNS inflammation in WNV-infected IPS-12/2 mice. (A) H&E stained saggital brain tissue sections. The arrows denote
areas of interest. (B–E) Brain leukocytes were recovered from wild type and IPS-12/2 mice six days pi. (B) The total number of brain lymphocytes was
determined by cell counting. (C) Total CD4+ (left) and CD8+ T cells (right), (D) Total WNV-specific CD8+ T cells (left) with a representative analysis of
the frequency of TNF-a and IFN-c expression within brain CD8+ cells (right left), and (E) Total number of microglia/infiltrating macrophages (left) were
determined by flow cytometry (right; representative analysis). M = Mock; W = WN-TX. Data are representative of two or more independent
experiments, and each analysis represents a pool of 5 mouse brains.
doi:10.1371/journal.ppat.1000757.g004

IPS-1 Is Essential for Immunity to WNV Infection
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neuronal damage, with sparse and focal cell infiltrates restricted to

the hippocampus and cerebral cortex on day 6 pi. By day 10 pi (a

timepoint in wild type mice in which peak virus replication in the

CNS occurs [34]) cellular infiltrates were present in the

parenchyma and neuronal destruction was observed throughout

the cortex and hippocampus. In contrast, brain sections from

infected IPS-12/2 mice recovered on day 6 pi displayed extensive

injury to neurons in the cortex and granular neurons of the

hippocampus. Damaged neurons appeared pyknotic with vacuo-

lation, degeneration and cell dropout. Somewhat surprisingly, we

observed extensive inflammation in the brains from infected IPS-

12/2 mice within the cortex, hippocampus, and cerebellum (data

not shown) displaying prominent perivascular and parenchymal

immune cell infiltrates.

To evaluate the composition and antigen-specificity of the

inflammatory cells within the brains of WNV-infected mice,

lymphocytes were isolated from infected brains on day 6 pi and

were characterized from pools (n = 5) of wild type and IPS-12/2

infected mice. Brains from IPS-12/2 infected mice showed an 2.9-

fold increase in the total number of immune cells as compared to

wild type infected mice (Fig 4B), and this was associated with an

increase in absolute numbers of infiltrating CD4+ and CD8+ T

cells (Fig 4C). Among the brain CD8+ T cells isolated from IPS-

12/2 mice, there was a remarkable 27-fold increase in the number

of antigen-specific cells that expressed IFN-c after treatment with

an immundominant NS4B peptide (Fig 4D) [35,36]. Analysis of

microglia/Mw cells, based on relative surface expression of CD45

and CD11b [37], revealed increased numbers of microglial cells

(CD45+lo/CD11b+) and infiltrating macrophages (CD45+hi/

CD11b+) within the brains of infected IPS-12/2 mice when

compared to wild type mice (Fig 4E). Similar findings were

observed in the spinal cords from infected IPS-12/2 mice (data

not shown). Combined with the histological analysis, these results

demonstrate that in the absence of IPS-1, WNV infection induces

a strong inflammatory response in the CNS. While this response is

likely associated with increased viral loads, the failure of this

increased inflammatory response to elicit protection or control

CNS pathology, in the absence of IPS-1, suggests a role for the

RLR signaling pathway as a regulatory program that controls the

quality of the inflammatory response to WNV infection.

Serum cytokine levels
To further characterize how IPS-1 modulates the inflammatory

response to WNV infection, we measured levels of systemic type I

IFN, proinflammatory cytokines, and chemokines present in the

serum of WNV-infected mice at 1 and 4 days pi. Paradoxically, a

trend towards more rapid induction and increased levels of type I

IFN were observed in the serum of IPS-12/2 mice compared to

wild type mice (Fig 5A). We note that in this case type I IFN was

detected and quantified through a mouse-specific type I IFN

bioassay, which does not differentiate between the IFN-a or -b
species. This result is consistent with our recent studies showing

that serum type I IFN levels accumulate during WNV infection in

an IRF-7-dependent but IRF-3-independent manner [8,9]. In this

case IFN-a species are likely accumulating through a TLR7-

dependent signaling pathway involving plasmacytoid DCs, which

do not require the RLR pathway for IFN production [38]. More

recently, Town et al. assessed the role of TLR7 and MyD882/2

during WNV infection and found that mice lacking MyD88

produced elevated levels of systemic IFN during WNV infection

[25]. Thus, during WNV infection systemic IFN is regulated

through RLR-dependent and independent processes. Correspond-

ingly, when compared to wild type mice, IPS-12/2 infected

animals, which show higher viremia (Fig 1B) produced increased

serum levels of proinflammatory cytokines and chemokines in

response to WNV infection. Elevated levels of systemic IL-6, TNF-

a, CXCL10, and IFN-c were observed at 1 and/or 4 days pi in

IPS-12/2 mice (Fig 5B). Serum cytokine levels were also

compared between uninfected wild type and IPS-12/2 mice and

showed no differences in basal cytokine expression (data not

shown). These results demonstrate that in the absence of IPS-1,

greater proinflammatory cytokine and chemokine responses are

induced during WNV infection.

Altered WNV-specific antibody profiles in IPS-12/2 mice
WNV-specific antibody responses are essential for suppressing

viremia and virus dissemination and limiting lethal WNV infection

[39,40]. To determine if a deficiency in IPS-1 modulated the

quality and quantity of the humoral immune response, we

characterized the antibody profile in sera during WNV infection.

In wild type mice, neutralizing virus-specific IgM antibodies are

typically detectable by day 4 pi with WNV and production of

neutralizing virus-specific IgG antibodies follow between days 6

and 8 pi [40]. A time course analysis in wild type and IPS-12/2

infected mice showed that between 4 and 6 days pi, WNV-infected

IPS-12/2 mice exhibited significantly higher levels of virus-specific

IgM, IgG, and IgG subclasses as compared to infected wild type

mice (Table 1). WNV-specific IgG1 antibodies were detected at

low levels on day 6 pi in sera from wild type and IPS-12/2 mice.

Additionally, we observed a ,72.9-fold increase in WNV-specific

IgG2a levels in infected IPS-12/2 as compared to wild type mice

on day 6 pi and ,2.2-fold increase on day 8 pi. Assessment of

the virus-specific antibody responses through a PRNT assay

revealed that neutralization titers in sera from wild type mice

increased dramatically between 6 and 8 days pi. Sera from

IPS-12/2 infected mice exhibited a modest increase in neutral-

ization titer to 1:1280, despite having much higher levels of virus-

specific antibodies. This difference translated into a serum

neutralization index that was ,39-fold lower on day 6 pi in the

infected IPS-12/2 mice compared to wild type mice. These results

demonstrate that the humoral responses in WNV-infected

IPS-12/2 mice are distinct from responses in wild type infected

mice. Thus, RLR signaling and IPS-1 actions likely contribute to

regulatory processes that govern the levels, IgG class switching,

and neutralizing capacity of antibodies generated in response to

WNV infection.

Enhanced inflammation in lymphoid organs associates
with altered DC subsets and reduced numbers of
regulatory T (Treg) cells in WNV infected IPS-12/2 mice

To characterize the immune parameters associating with the

dysregulated inflammatory and humoral responses in WNV

infected IPS-12/2 mice, we analyzed the immune cell composition

in draining lymph node and spleen tissues. Wild type and

IPS-12/2 mice were challenged with diluent alone or with WN-

TX, and draining popliteal lymph node (DLN) and the spleen

were harvested at 1 and 6 days pi, respectively. Analysis of the

popliteal DLN provides insight into how IPS-1 modulates the

inflammatory response immediately after infection whereas

assessment of the spleen elucidates characteristics of the adaptive

immune response prior to the infection endpoint. Immune cells

were isolated from the popliteal DLN and were characterized by

flow cytometry (Fig 6). Analysis of CD8a DC subsets, which are

phenotypically the major antigen presenting cells within lymphoid

tissues and are implicated in eliciting virus-specific CD8 T cell in

response to acute WNV infection [41], showed that infected wild

type and IPS-12/2 mice exhibited similar increases in the

IPS-1 Is Essential for Immunity to WNV Infection
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numbers of CD8a+ and CD8a2 DCs compared to mock-infected

mice (Fig 6A, B). However, a significant increase (,3-fold;

p,0.05) of a proinflammatory DC subset, characterized as

CD11c+CD11bhiLy6C+, was observed within the popliteal DLNs

of IPS-12/2 infected mice (Fig 6C). This DC subset is monocyte-

derived and typically recruited to sites of acute inflammation

where they propagate the inflammatory response [42]. We found

that these DC subsets were not significantly expanded and showed

no differences in their recruitment to the DLN in either wild type

or IPS-12/2 infected mice at 12 hours pi (data now shown). Thus,

as early as 24 hours pi, an elevated cellular inflammatory response

is initiated in the IPS-12/2 mice. In contrast, similar increases in

plasmacytoid DCs were observed within infected wild type and

IPS-12/2 infected mice (Fig 6D), demonstrating that an absence

of IPS-1 did not directly affect expansion and/or recruitment of

this DC subset. Within the popliteal DLNs, mock-infected

IPS-12/2 mice compared to wild type mice generally showed

elevated numbers of B cells, CD4+ T cells (p,0.05), and CD8+ T

cells (Fig 6E, F, and G). These results suggest that IPS-1

contributes to the homeostasis of lymphocyte populations within

LNs. WNV infection of wild type mice increased the number of B

cells (3.4 fold), CD4+ T cells (3.1 fold), and CD8+ T cells (2.3 fold;

p,0.05) in the DLN within 24 hours pi. Similar increases in B

cells were observed upon infection of IPS-12/2 mice. However,

the number of CD4+ and CD8+ T cells was reduced in the DLN

after WNV infection of IPS-12/2 mice. Thus, in the absence of

Figure 5. Enhanced levels of IFN, proinflammatory cytokines, and chemokines in serum from WNV-infected IPS-12/2 mice. Serum
was collected from wild type and IPS-12/2 mice. (A) Type I IFN levels at 1, 2, and 4 days pi. (B) Proinflammatory cytokines and chemokines were
measured on days 1 and 4 pi. Graphs show the mean +/2 standard deviation from triplicate measurements of duplicate experiments. Asterisks
denote p,0.001.
doi:10.1371/journal.ppat.1000757.g005
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IPS-1, WNV infection specifically increases the number of

inflammatory Ly6c+ DCs but suppresses the overall expansion

and/or recruitment of T cells in the DLN.

We further analyzed the lymphocyte composition of the

spleen on day 6 after WNV infection (Fig 7). Gross pathologic

analysis revealed that WNV infection of IPS-12/2 mice results

in massive splenomegaly whereas infection of wild type mice

induces only a slight increase in spleen size (Fig 7A). Cell

analysis revealed increased numbers of total lymphocytes in the

spleens of infected IPS-12/2 mice as compared to wild type

mice (Fig 7B).

Regulatory T (Treg) cells have recently been shown to contribute

to the dampening of inflammation and adaptive immune

responses during acute virus infections [26,43,44]. Moreover, a

reduction in the number of circulating Treg in mice leads to

enhanced lethality after WNV infection [45]. A time course

analysis of Tregs in wild type mice revealed that WNV infection

results in a significant increase in the numbers of FoxP3+ T cells as

compared to mock-infected mice beginning on day 4 and peaking

by day 6 pi (Fig 7C), indicating the expansion of Tregs during

acute WNV infection. Despite their marked increase in viral load,

the infected IPS-12/2 mice did not display an increase in the

numbers of FoxP3+ T cells at any timepoint analyzed. Thus, IPS-1

signaling directly or indirectly impacts Treg proliferation and does

so independently of viral load.

We also observed that spleens from infected IPS-12/2 mice

exhibited significantly increased numbers of CD8+ T cells in

comparison to those from infected wild type mice, whereas the

expansion of splenic CD4+ T cells in wild type and IPS-12/2 mice

were not different (Fig 7D). The spleens from WNV-infected IPS-

12/2 mice showed significantly higher numbers (3.9-fold; p,0.05)

of WNV-specific CD8+ T cells producing IFNc.

To further define the phenotype associated with WNV-induced

splenomegaly in IPS-12/2 mice, we also assessed the numbers

of NK cells and neutrophils. Spleens from infected IPS-12/2

mice contained greater numbers of NK cells (CD42

CD82NK1.1+cells), NKT cells (CD4+/CD8+/NK1.1+ cells)

and neutrophils (CD11b+Gr1+ cells) (Fig 7E). Although WNV-

infected wild type mice infected displayed slight increases in the

absolute numbers of these specific cell types, a deficiency of IPS-1

resulted in a more marked enhancement of these immune cell

populations.

Discussion

In this study, we establish a major role for RLR signaling in

protection from WNV pathogenesis, and demonstrate that IPS-1 is

critical for the control of WNV infection in vivo. Our studies

indicate that IPS-1-dependent RLR signaling functions to establish

balanced, effective, and protective innate and adaptive immune

responses, and that IPS-1 links adaptive immune regulation with

the innate immunity triggered by RLR signaling during WNV

infection. In the absence of IPS-1 in vitro, innate immune defense

programs of myeloid DCs and macrophages were ablated or

severely attenuated. Moreover, in vivo analysis of infected IPS-12/

2 mice showed altered IgG and IgM antibody responses with

diminished virus neutralization activity. The inflammatory

response to WNV infection is regulated by IPS-1-dependent

processes such that a deficiency of IPS-1 resulted in elevated

proinflammatory cytokine and chemokines and increased numbers

of inflammatory DCs, antigen-specific T cells, natural killer cells,

and neutrophils in lymphoid organs, and activated macrophage/

microglial cells within the CNS. The dysregulated inflammatory

response to WNV infection in IPS-12/2 mice was associated with

a reduction in the numbers of Treg cells and their failure to expand

during acute infection. These observations demonstrate the critical

role of IPS-1 in mediating RLR signaling of innate antiviral

immunity against WNV infection, and reveal novel features of

IPS-1 function in regulating immune homeostasis, inflammation,

and adaptive immunity to infection.

Although infection of primary DCs, macrophages, and neuronal

cells failed to induce type I IFN upon WNV infection, WNV-

infected IPS-12/2 mice showed enhanced systemic type I IFN

responses. This finding agrees with previous studies that indicate

both IPS-1-dependent and -independent pathways contribute to

the systemic type I IFN production in vivo [8,9,23,25]. Most

importantly, the enhanced tissue tropism and rapid viral entry into

the CNS observed in the IPS-12/2 mice is not affected by the

elevated systemic IFN responses. This suggests that local tissue-

specific and intracellular responses triggered by RLR-dependent

signaling are more essential for reducing viral burden and

dissemination. One possible explanation is that a distinct set of

RLR-responsive genes function to control virus replication at the

site of infection. This could explain, in part, the elevated levels of

virus replication, enhanced tissue tropism and cell-to-cell spread in

mice or cells deficient in IRF3 or IRF-7, each of which are

downstream transcription factors of RLR signaling [8,9,10].

Additionally, it is likely that pDCs, which are specialized dendritic

cells for producing systemic type I IFN during a viral infection

[46], are likely contributing to the IFN responses observed during

WNV infection. Studies by Silva et al. have shown that WNV

triggers IFN induction in pDCs through a replication-independent

manner [47]. Interestingly, within the DLN, we observed similar

expansion of pDCs between wild type and IPS-12/2 infected

mice, yet at the same timepoint (24 hours pi), elevated systemic

type I IFN responses were observed in IPS-12/2 mice. This

suggests two possibilities: 1) splenic pDCs or circulating pDCs are

likely responding to the high levels virus in the serum from the

IPS-12/2 infected mice to produce IFN at 24 hours pi and/or 2)

various other cell types that express TLR3 and/or TLR7 are

responding to WNV infection and contributing to systemic IFN

responses. Taken together, these studies indicate that RLR

signaling and the actions of IRF-3/7 are important in triggering

IFN production and ISG expression to limit WNV replication and

spread, and that TLR signaling may impart additional, RLR-

independent defenses that regulate immunity against WNV

infection.

Table 1. WNV-specific antibody titers.

Wild type IPS-12/2

Day 4 Day 6 Day 8 Day 4 Day 6

IgMa ,20 160649 162060 47620 162060

IgGb 6060 5206575 1215064860 40622 102060645174

IgG1b ,20 2060 ,20 ,20 2060

IgG2ab ,20 1266203 405061620 ,20 918066033

PRNT50 ,20 32060 704063840 ,20 128060

Neutralization
Indexc

,0.25 0.471 0.511 ,0.23 .012

aIgM titers were determined by an arbitrary cutoff at an OD of 0.2 minus the
value from mock infected mice.

bIgG, IgG1, and IgG2a titers determined by OD values that were greater than 3
standard deviations above background signal.

cNeutralization index was calculated by dividing PRNT50 titers by the total IgMa

plus IgGb titer for each point.
doi:10.1371/journal.ppat.1000757.t001
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Figure 6. Immune cell subsets within the popliteal draining lymph node during acute WNV infection. Wild type and IPS-12/2 mice were
mock-infected (M) or infected with WN-TX (W), and popliteal draining lymph nodes were harvested 24 hr later. Lymphoid cells were isolated and cells
were analyzed by flow cytometry. (A–C) total numbers of cells expressing various dendritic cell surface markers, (D) plasmacytoid cell surface markers
(CD11cint/lo/B220+/siglec H+). (E and F) T cells (G) B cells. A representative flow cytometric analysis of the CD11c+/CD11bhi/Ly6C+ DC subset is shown
in C (left panel set). Data show the mean +/2 standard deviation from triplicate samples of duplicate experiments. Asterisks denote p,0.05.
doi:10.1371/journal.ppat.1000757.g006

IPS-1 Is Essential for Immunity to WNV Infection

PLoS Pathogens | www.plospathogens.org 10 February 2010 | Volume 6 | Issue 2 | e1000757



The production of and response to type-I IFN is a major linkage

point between innate and adaptive immunity, as IFN-a and IFN-b
sustain B cell activation and differentiation [48,49,50], expand

antigen-specific CD8+ T cells [51,52], CD4+ T cells [53], and

activation of NK cells [54]. One of the most intriguing aspects of

this study was the global alteration of the immune response elicited

in the IPS-12/2 mice, indicating that RLR signaling couples

innate immunity with regulation of the adaptive immune response.

Infection of IPS-12/2 mice exhibited increased IgM and IgG

WNV-specific antibodies, enhanced WNV-specific CD8+T cell

Figure 7. Enhanced inflammation in IPS-12/2 infected mice associates with a lack of Treg expansion during WNV infection. Wild type
and IPS-12/2 mice were mock-infected (M) or infected with WN-TX (W). Spleens were harvested and immune cells were isolated, counted, and
characterized by flow cytometry. (A) Spleen morphology. (B) Absolute cell counts. (C) Total CD4+/FoxP3+ regulatory T cells (left; M = mock) and
representative flow cytometric analysis of cell frequency from samples on day 6 pi (right). (D) CD4+ and CD8+ T cells. (E) NS4B antigen-specific CD8+ T
cells. (F) CD42/CD82/NK1.1+ NK cells, CD4+/CD8+/NK1.1+ NKT cells, and CD11c+/Gr1+ neutrophils. Graphs show the mean +/2 standard deviation
from triplicate samples of duplicate experiments. Asterisks denote p,0.05.
doi:10.1371/journal.ppat.1000757.g007
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response, and increased expansion of neutrophils, NK cells and

NK-T cells. One trivial explanation for these differences is that

there is an increased antigen load in the absence of IPS-1 and, as a

result, enhanced virus-specific (e.g. CD8+ T cells, IgG and IgM

antibodies) and nonspecific (e.g. Neutrophils, NK cells) responses.

However, there are several key findings from this study that argue

against these responses simply being attributed to higher antigen

load: (1) In the absence of IPS-1, the CD4 and CD8 T cells, which

are protective against WNV infection [34,35,36,55,56,57,58],

were significantly enhanced in the peripheral and CNS compart-

ments but failed protect against infection. One explanation for this

observation is that the expansion and migration of CD4 and CD8

T cells to different tissues was itself uncontrolled, resulting in T

cell-mediated pathology rather than T cell-mediated protection.

(2) While the quantity of virus-specific IgM and IgG antibody

responses were greatly enhanced in the absence of IPS-1, there

was a marked reduction in antibody quality in terms of

neutralization capacity. In contrast deficiencies in TLR3 or

MyD88 (data not shown) did not alter virus-specific antibody

responses and neutralization capacities. Collectively, these findings

suggest that RLR-dependent signaling coordinates effective

antibody responses during WNV infection through as yet

undefined pathway. (3) While systemic IFN responses provide a

link between innate and adaptive immune responses, our studies

suggest that the PRR signaling pathways (RLR-dependent vs –

independent) and levels of IFN production in combination with

production other proinflammatory cytokines or chemokines

regulate the quantity and quality of the immune response during

virus infection. Thus, in the absence of IPS-1 signaling, infected

conventional DCs or Mw, two integral cell types in establishing

adaptive immunity, likely do not produce IFN or the normal array

and level of proinflammatory cytokines/ chemokines. Instead, IFN

and other mediators may be strictly produced by infected or

bystander cells during WNV infection, occurring with altered

kinetics and magnitude, through TLR-dependent pathways, such

as TLR3 and/or TLR7 [23,25]. (4) In the absence of IPS-1, the

enhanced expansion of Ly6C+ ‘‘inflammatory’’ DCs failed to limit

early WNV replication and dissemination. This inflammatory DC

subset migrates to sites of infection, secretes pro-inflammatory

cytokines, and promotes CD8+ T cell expansion during a

secondary virus infection, suggesting it sustains the effector T cell

response [59]. Our data indicate that Ly6C+ DC recruitment

and/or expansion is governed by IPS-1-dependent events of RLR

signaling. Thus, the aberrant recruitment/expansion of these

inflammatory DCs may contribute to immunopathogenesis and

limit development of an effective immune response to control

WNV virus infection. (5) The lack of Treg expansion during WNV

infection correlated with altered IFN levels, increased proinflam-

matory cytokines and chemokine levels, and an increased number

and distribution of antigen-specific CD8+ T cells. These

observations implicate an indirect or direct role for IPS-1 in

regulating Treg levels during WNV infection, and provide evidence

that links a lack of Treg expansion to immune dysregulation.

While their importance in autoimmunity is established [60],

recent studies have implicated an integral role for Tregs in

controlling inflammation and adaptive immune responses during

acute virus infections [26,43,44]. During acute infection Tregs

function to locally contain and control the immune response with

the dual outcome of suppressing viral dissemination while

decreasing the likelihood of immune-mediated pathology. In

support of this model, infection studies with herpes simplex virus

(HSV) and mouse hepatitis virus (MHV), two well established

models of viral encephalitis, have demonstrated the importance of

Tregs in limiting proinflammatory cytokine and chemokine

responses to protect the CNS and enhance survival [26,43].

Recent work also implicates Tregs in the control of WNV

pathogenesis, wherein peripheral expansion of Tregs was associated

with asymptomatic infection among WNV-infected blood donors

but reduced Treg levels associated with WNV disease [45].

Furthermore, these studies revealed that the conditional depletion

of Treg cells in mice results in enhancement of WNV virulence and

expansion of antigen-specific CD8 T cells. Interestingly, from our

studies, type I IFN does not appear to be the major contributor to

Treg expansion during WNV infection, as Tregs failed to expand in

the IPS-12/2 infected mice despite their elevated levels of systemic

type IFN. These observations suggest that RLR signaling through

IPS-1 provides essential signals that directly or indirectly impart

the expansion of Tregs during WNV infection.

We propose that IPS-1 coordinates an innate/adaptive immune

interface wherein IPS-1- signaling after RLR engagement

regulates the quantity, quality, and balance of the subsequent

immune response. The integrity of the innate/adaptive immune

interface is central to the eliminating virus but also restricting

immunopathogenesis and inflammation during infection. RLR

signaling is essential for triggering the innate immune response to

RNA viruses that cause human disease, including the influenza

viruses, respiratory syncytial virus and other paramyxoviruses,

picornaviruses, reoviruses, flaviviruses, and hepatitis C virus

[14,19,22]. Thus, in addition to WNV, IPS-1-dependent RLR

signaling will likely have a broad impact for the control of

inflammation, immune response quality, and viral disease.

Methods

Cells and viruses
BHK21 and L929 cells were maintained in Dulbecco’s modified

Eagle medium (DMEM) supplemented with 10% fetal bovine

serum (FBS), 2mM L-glutamine, 1 mM sodium pyruvate,

antibiotic-antimycotic solution, and 16 nonessential amino acids

(complete DMEM). WNV strain TX 2002-HC (WN-TX) was

isolated by as previously described [11]. Working stocks of WN-

TX were generated by a single round of amplification on Vero-E6

(ccl-81; ATCC) cells, and supernatants were collected, aliquoted,

and stored at 280uC. Virus stocks were titered by a standard

plaque assay on BHK21 cells as previously described [40].

Mouse experiments
IPS-12/2 (C57BL/66129Sv/Ev) and their wild type littermate

control mice have been published [38,61] and were obtained as a

generous gift from Dr. S. Akira (Osaka University, Osaka, Japan).

Mice were genotyped and bred under pathogen-free conditions in

the animal facility at the University of Washington. Experiments

were performed with approval from the University of Washington

Institutional Animal Care and Use Committee. The methods for

mice use and care were performed in accordance with the

University of Washington Institutional Animal Care and Use

Committee guidelines. Age-matched six to twelve week old mice

were inoculated subcutaneously (s.c.) in the left rear footpad with

100 PFU of WN-TX in a 10 ml inoculum diluted in Hanks

balanced salt solution (HBSS) supplemented with 1% heat-

inactivated FBS. Mice were monitored daily for morbidity and

mortality.

Viral tissue burden and quantification
For in vivo virus replication studies, infected mice were

euthanized, bled, and perfused with 20 ml of phosphate-buffered

saline (PBS). Whole brain, spinal cord, kidney, and spleen were
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removed, weighed, homogenized in 500ul of PBS, and titered by

plaque assay.

Primary cell isolation and infection
Bone-marrow derived DC and Mw were generated as described

previously [9]. Briefly, bone marrow cells from wild type and

congenic deficient mice were isolated and cultured for 7 days in

either RPMI-1640 supplemented with granulocyte-macrophage-

colony stimulating factor, and interleukin-4 (Peprotech) to

generate myeloid DC or in DMEM supplemented with macro-

phage colony stimulating factor (Peprotech) to generate Mw. On

day 7, DC or Mw were infected with WN-TX at an MOI of 1.0

and at 12, 24, 36, and 48 hours post-infection (hpi), supernatants

were collected for titration of viral burden by plaque assay on

BHK21 cells and levels of IFN-b (described below). Cells were

collected in parallel for western blot analysis. Cortical neurons

were isolated from 15-day-old embryonic mice and cultured as

described previously [62]. On day 6 of culture, neurons were

infected with WN-TX at an MOI of 1.0 and at 12, 24, 36, and

48 hpi, supernatants were collected for virus titration by plaque

assay on BHK21 cells and cells were collected for RNA analysis by

RT-qPCR (described below).

Western blot analysis
Cells were lysed in modified RIPA buffer (10mM Tris [pH 7.5],

150mM NaCl, 0.5% sodium deoxycholate, and 1% Triton X-100)

supplemented with protease inhibitor cocktail (Sigma) and

phosphatase inhibitor cocktail II (Calbiochem). Protein extracts

(25 mg) were analyzed by immunoblotting as described previously

[11]. The following primary antibodies were used to probe blots:

mouse anti-WNV from the Center for Disease Control; rabbit

anti-ISG56, rabbit anti-ISG54, rabbit anti-ISG49, kindly provided

by Dr. G. Sen; mouse anti-PKR from Santa Cruz; rabbit anti-

RIG-I and rabbit anti-MDA5 from IBL; mouse anti-tubulin from

Sigma; and rabbit anti-STAT-1 from Cell signaling. Secondary

antibodies included peroxidase-conjugated goat anti-rabbit, goat

anti-mouse, donkey anti-rabbit, and donkey anti-mouse were from

Jackson Immunoresearch.

RNA extraction and analysis
For analysis of viremia, serum was separated (BD Microtainer

tube SST) and RNA was extracted as previously described [8].

WNV RNA copy number was measured by RT-quantitative PCR

(RT-qPCR) as previously described [63]. For cultured cells, total

RNA was extracted using the RNeasy kit (Qiagen), DNase treated

(Ambion) and evaluated for ISG49, ISG56, IFN-b, RIG-I, and

MDA5 RNA expression by one-step SYBR Green RT-qPCR.

Specific primer sets for ISG-49, ISG-56, RIG-I, and IFN-b have

been described previously [30,64]. Primer sets for MDA5 are: 59-

GTGGTCGAGCCAGAGCTGAT and 39- TGTCTCATG-

TTCGATAACTCCTGAA.

Interferon bioassay and ELISA
IFN-a and -b were measured in sera using a biological assay as

previously described [65]. Briefly, L929 cells were seeded at 36104

cells/well in a 96 well plate one day prior to the addition of

interferon standards or experimental samples. Mouse sera (diluted

1:10 in L929 media) were treated with UV light for 20 minutes to

eliminate residual virus. Duplicate sera samples were then added

to the 96-well plates in two-fold dilutions along with a murine IFN-

b standard. The following day, EMCV challenge virus was added

to the cells in 50 ml/well at an MOI of 5.0. Twenty-four hours

later, cytopathic effect was measured by a blinded scorer and IFN

levels in the sera was calculated based on the IFN standard. IFN-b
in cell culture supernatants was analyzed using mouse-specific

ELISA kits from PBL Biomedical Laboratories according to the

manufacturer’s protocol.

WNV-specific antibody analysis
WNV-specific IgM, total IgG, IgG1, and IgG2a levels were

determined by an ELISA using purified recombinant E protein as

previously described [55]. The neutralization titer of serum

antibody was determined by using a previously described plaque

reduction neutralization assay [40]. Briefly, sera samples from

mock or WN-TX infected mice were diluted in DMEM followed

by incubation at 56uC for 30 minutes to inactivate virus and

complement factors. Sera were further diluted in two-fold

increments and incubated with 100 PFU of WN-TX at 37uC for

1 hour. Standard plaque assays were performed on BHK21 cells

and the dilution at which 50% of plaques were neutralized was

determined by comparing the number of plaques formed from

WNV-infected sera samples to mock infected sera samples.

Cytokine/chemokine analysis
WNV infected sera were analyzed for the presence and levels of

TNF-a, IFN-c, CXCL10 (IP-10), and IL-6 by a mouse-specific

cytokine/chemokine Milliplex ELISA (Millipore).

Histological analysis
Mock-infected or WNV-infected mice were exsanguinated and

perfused with PBS, 4% paraformaldehyde, pH 7.3. Brains were

embedded in paraffin and 10-mm sections were prepared and

stained with hematoxylin and eosin (H&E) by the UW histology

pathology laboratory. Sections were analyzed using a Nikon

Eclipse E600 microscope (UW Keck microscope facility).

Flow cytometric analysis
Draining lymph nodes from mice were isolated and digested

with collagenase (Roche) and type I DNase in serum-free RPMI

media at 37uC for 40 minutes with mechanical disruption. Cells

were then incubated with RPMI media containing 10% FBS with

EDTA and HEPES for 10 minutes at room temperature, pelleted,

and resuspended in PBS containing 2% FBS and 0.1% sodium

azide (FACS Staining buffer). Splenocytes were isolated, washed,

and re-suspended in RPMI 1640 containing 10% FBS before in

vitro stimulation. Cells were washed twice before FACS staining.

For isolation of CNS immune cells, mice were euthanized and

perfused extensively with PBS to remove residual intravascular

leukocytes. Brains and spinal cords from 5 mice per experimental

group were isolated and pooled. Tissues were minced in RPMI

media, triturated, and digested with Liberase (Roche) and type I

DNase in serum-free RPMI media at 37uC for 45 min. Immune

cells were isolated after gradient centrifugation from a 37/70%

Percoll interface and washed twice with FACS staining buffer.

Immune cells were stained with antibodies specific to CD11c,

CD11b, B220, CD3, CD25, CD4, CD8, NK1.1, Gr-1, siglec H,

and CD45 (all reagents from eBiosciences). Intracellular FoxP3

staining was performed as previously described [26]. Intracellular

IFN-c staining was performed on splenocytes and CNS immune

cells as previous described [35,36]. Briefly, lymphocytes were

stimulated with 1 mg/ml of the WNV NS4B peptide (SSVWNAT-

TAI) for 4 h at 37uC. Cells were washed and stained for cell

surface markers followed by permeabilization-fixation using the

Cytofix-Cytoperm Kit (BD-PharMingen) and stained with a

Pacific-Blue conjugated IFN-c antibody (eBiosciences) at 4uC for

30 min, washed and analyzed by flow cytometry. Flow cytometry
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was performed on a BD LSRII machine using BD FACSDiva

software. Cell analysis was performed on FlowJo (v.8.7.2) software.

Statistical analysis
For in vitro studies and immune cell analysis an unpaired student

T-test was used to determine statistical differences. For in vivo viral

burden analysis, Mann-Whitney analysis was used to determine

statistical differences. Kaplan-Meier survival curves were analyzed

by the log-rank test. A p-value #0.05 was considered significant.

All data were analyzed using Prism software (GraphPad Prism5).
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