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Abstract

African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like
disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between
natural and nonnatural hosts, we used SIVagmVer90 to infect vervet AGM and pigtailed macaques (PTM). This infection results
in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We
delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20
lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to
historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a
4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due
to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-
depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during
chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in
pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends
on a number of mechanisms including non-adaptive immune mechanisms.
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Introduction

Although it is not known when SIV was first introduced into

African nonhuman primates, it is widely believed that African

monkey and ape species coevolved with SIV infection probably for

tens of thousands of years [1,2]. In contrast, Asian nonhuman

primates and humans encountered the virus much more recently

[2,3]. Despite these differences, SIV infections in nonhuman

primates and HIV in humans follow a similar pattern of viremia:

an initial burst of viremia during primary infection followed by a

partial containment and establishment of a plateau or set point

viremia [4,5,6]. Additionally, the level of viremia in African

monkeys, natural hosts of SIV, and Asian monkeys, nonnatural

hosts of SIV infection is similar [7,8,9,10]. Given the similarities in

viral load, however, the course of infection and its consequences

differ between natural and nonnatural hosts [11,12,13]. Most

natural hosts such as AGM appear to peacefully coexist with the

SIV infection while macaques generally develop overt signs of

illness, immune failure and AIDS [14]. However, recent findings

indicate that some natural hosts like chimpanzees may develop an

AIDS-like disease when infected with SIV [15].

These differences in pathogenic consequences of infection prompt

speculation about the mechanisms that enable African primate

species to cope with SIV infection without developing disease. AGM

provide a dramatic contrast to the apparently irrevocable pathway to

immune failure seen in SIV-infected macaques and HIV-infected

humans. At least two fundamental characteristics of SIV infection of

natural host species that appear to distinguish them from pathogenic

infections include the lack of chronic immune activation and the

paucity of CCR5+ CD4+ target cells [11,16,17]. These differences

suggest that natural hosts may have developed a complex arsenal of

protective mechanisms to cope with the pathogenic consequences of
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SIV-infection. Adaptive immune responses, such as SIV-specific

CD8+ T cells and humoral immune responses, have also been

observed in SIV-infected natural hosts either at comparable or lower

magnitude than in pathogenic SIV and HIV infection

[18,19,20,21,22,23,24]. However, the ultimate role of adaptive

immune responses in the protection against disease progression in

AGM and other natural hosts of SIV remain elusive.

An ideal setting to study the role of adaptive immune responses is

to utilize the same virus strain of SIV in two different host species that

would respond with similar dynamics of viremia but disparate disease

outcome. Previously, it was shown that SIVagmVer90 can induce AIDS

in pigtailed macaques (Macaca nemestrina) but not in vervet AGM

(Chlorocebus pygerythrus) [25]. In fact, SIVagmVer90 infection induces an

AIDS-like disease in PTM, similar to that observed in SIVmac251-

infection in rhesus monkeys. Critically for the present study, set point

viremia in SIVagmVer90-infection of PTM and AGM is similar. This

observation confirms a characteristic finding in natural hosts:

disparate pathogenic outcomes despite a similar magnitude of

viremia as seen in nonnatural hosts. In fact, in natural hosts the

magnitude of viremia varies widely, without any clinical consequenc-

es [7]. In contrast, the extent of viremia is an excellent predictor of

disease progression in pathogenic models such as macaques and

humans [26,27,28].

Here, we utilized the administration of antibodies to deplete both

CD8+ lymphocytes and B cells during primary SIVagmVer90 infection

in AGM and PTM to delay cellular and humoral SIV-specific

immune responses. These studies underlined the critical role of

adaptive immune responses in viral control in nonnatural hosts like

PTM. In contrast, the absence of clinical signs of disease in AGM

suggested that the maintenance of a disease-free course of infection in

natural hosts does not solely depend on adaptive immune responses.

Results

Depletion of CD8+ and CD20+ lymphocytes in vervet
AGM and PTM

To better understand the role of adaptive immune responses

during the early stages of SIV infection in pathogenic and non-

pathogenic models of SIV infection, we initiated the depletion of

CD8+ and CD20+ lymphocytes prior to infection with SIV. Six

vervet AGM and six PTM received five doses of humanized anti-

CD8a cM-T807 monoclonal antibody (mAb) on days 0, 3, 7, 10

and 14 and three doses of anti-CD20 human mAb on days 27, 14

and 35. Four lymphocyte-depleted animals of each species were

also inoculated intravenously with SIVagmVer90 [25] on day 0, and

two AGM and PTM served as uninfected controls.

The treatment with lymphocyte depleting mAb resulted in a

transient depletion of both CD8+ T cells and CD20+ B cells from

peripheral blood in the AGM (Fig. 1A and C). A comparable

period of lymphocyte depletion, 6 and 14 weeks for CD8+ T cells

and B cells, respectively, was also observed in the uninfected

control AGM (A9 and A23). The SIV-infected AGM had a

median CD8+ T cell depletion of 3.5 weeks (range: 2–6 weeks) and

a median B cell depletion of 12 weeks (range: 4–18 weeks). AGM

A7 showed the earliest resurgence of both CD8+ T and B cells (3

and 4 weeks, respectively). Vervet AGM harbor two distinct

subsets of CD8+ T cells: CD8aa homodimer and CD8ab
heterodimer expressing cells [18]. Despite a lower expression of

the CD8 molecule on CD8aa T cells, administration of the cM-

T807 mAb affected both CD8+ T cell subsets (data not shown).

The cells that first reappeared after CD8+ T cell depletion were

mainly CD8aa+ T cells. Since depletion of peripheral blood

lymphocyte subsets does not reflect depletion in tissues, we

performed flow cytometric analyses for CD8+ and CD20+
lymphocyte subsets in bronchoalveolar lavage samples (BAL)

and lymph node biopsies. A shorter duration of CD8+ T cell

depletion was observed in BAL and lymph nodes of SIV-infected

AGM where CD8+ T cells rebounded at week three (Fig. 1B and

data not shown). This was associated with a transient increase in

double negative (CD42 CD82) T cells in BAL consistent with

down-modulation or masking of the CD8 molecule on T cells

(data not shown). The SIV negative control animals were CD8+
lymphocyte-depleted in BAL and lymph nodes throughout week

four post depletion. Four of the lymphocyte-depleted AGM had a

long lasting depletion of B cells in peripheral blood for 13–16

weeks and two AGM (A7 and A13) had a shorter depletion of 4

and 10 weeks post infection (p.i.) (Fig. 1C). A similar transient

depletion of B cells was also observed in lymph node sections at

one and four weeks p.i. (data not shown and Fig. 2A–C).

Four of the six lymphocyte-depleted PTM showed an efficient and

long lasting depletion of CD8+ T cells and B cells (P31, P23, P27,

P35) (Fig. 1D, E and F). Depletion of both CD8+ T cells and B cells

was irreversible in three of the SIV-inoculated PTM (P23, P27, and

P35). Each of these PTM rapidly developed disease and had to be

euthanized by 6–7 weeks. Transient depletion was observed in one of

the SIV-infected PTM, P24, and one uninfected animal, P33. Both

PTM had a depletion of CD8+ T cells for two weeks and a partial

depletion of CD20 cells with a reappearance of B cells at week 8 post

depletion (Fig. 1D and F). The uninfected PTM P31 had a long

lasting B cell depletion of 20 weeks and a CD8+ T cell depletion of 5

weeks. Analysis of CD20 expression in peripheral lymph node

sections correlated with the flow cytometric analysis of peripheral

blood. Depletion of B cells in the long-term depleted PTM was very

efficient in lymph node sections (Fig. 2D–F). This contrasted with

incomplete depletion in lymph node biopsies collected at one and

four weeks post depletion from P24 (Fig. 2G–I), the one SIV-infected

PTM with incomplete peripheral depletion.

CD8+ T cell and CD20+ lymphocyte depletion increases
peak viremia in PTM but not AGM

CD8+ and CD20+ lymphocyte depletion had only a brief effect

on the plasma RNA viral load in AGM. The viral load followed a

Author Summary

Simian immunodeficiency virus (SIV) is a naturally occur-
ring infection in a wide range of African nonhuman
primates, including African green monkeys (AGM), which
generally results in a clinically inapparent infection. In
contrast, SIV infection of Asian nonhuman primates such
as macaques can result in an AIDS-like disease similar to
that observed in humans infected with human immuno-
deficiency virus (HIV). This different pathogenic outcome
occurs despite similar levels of viremia. In order to evaluate
the contribution of adaptive immune responses to these
different outcomes, we transiently inhibited the genera-
tion of CD8+ and CD20+ lymphocyte-mediated immune
responses in vervet AGM and pigtailed macaques (PTM)
during primary SIV infection. PTM experienced higher
viremia and accelerated progression to disease, whereas
AGM showed only a short prolongation of peak viremia
but exhibited no signs of illness. These results demonstrate
that protection against development of disease in AGM
does not solely rely on adaptive immune responses. Future
efforts should aim to determine the underlying mecha-
nisms that enable natural hosts to cope with SIV infection
and to apply these findings to develop new treatment
modalities for humans infected with HIV.

SIVagm Infection in AGM and PTM
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course comparable to that observed in SIV-infected historical

control AGM that were inoculated with the same virus (Fig. 3A).

The peak SIV viral load was similar between CD8+ and CD20+
lymphocyte-depleted AGM and control AGM (median: 0.796107

SIV RNA copies/ml in the depleted AGM versus 1.476107 SIV

RNA copies/ml in the control AGM; P = 0.200 Fig. 3B). There

was however a trend towards a prolongation of peak viremia in the

CD8+ and CD20+ lymphocyte depleted AGM. The median viral

load was higher at three weeks p.i. in the antibody-treated AGM

than in the historic controls (lymphocyte-depleted: 7.226105 SIV

RNA copies/ml versus control: 0.356105 SIV RNA copies/ml;

P = 0.057). This trend was not maintained and differences in

viremia between the two groups of AGM vanished at week six p.i.

(median: 1.146105 SIV RNA copies/ml versus 0.6456105 SIV

RNA copies/ml; P = 0.688). To confirm the plasma viral load

results, we assessed SIV expressing cells by in situ hybridization of

peripheral lymph nodes sampled from AGM at one and four

weeks p.i. (Fig. 3C and 4). As shown in Fig. 3C, the number of

SIV positive cells in lymph node biopsies from control or antibody-

treated AGM at one or four weeks p.i. did not differ significantly

(P = 0.486 and P = 0.183).

As reported previously [29], the kinetics of viremia in PTM and

vervet AGM inoculated with SIVagmVer90 is similar. As expected,

all control PTM experienced a peak of viremia at 7–10 days p.i.

followed by a decline to setpoint viremia (Fig. 3D). In contrast to

the AGM, we detected a significantly higher SIV plasma viral

RNA copy number in CD8+ and CD20+ lymphocyte-depleted

PTM than in control SIV infected PTM (median; lymphocyte-

depleted: 8.796108 versus control: 0.666108, P = 0.029; Fig. 3E).

Plasma viral load remained significantly higher throughout the

remainder of their disease course (P = 0.029 at 3 and 6 weeks p.i.).

The viral load in the inefficiently-depleted PTM (P24) decreased to

a level seen at the high end of the range of the historic control

PTM. The higher viral load in the lymphocyte-depleted PTM was

confirmed by analysis of SIV expression in lymph node sections.

As shown in Fig. 3F and 4, there was a trend to higher levels of

SIV+ cells in PTM lymph nodes collected at one week p.i.

(P = 0.057) and a significantly higher number of SIV+ cells at four

weeks p.i. (P = 0.029).

CD8+ and CD20+ lymphocyte depletion affects survival
of SIV-infected PTM but not AGM

All of the SIV-infected AGM remained healthy throughout the

original observation period of 50 weeks p.i. and beyond despite

efficient lymphocyte depletion in the mAb-treated group (Fig. 5A).

In striking contrast to the AGM, CD8+ and CD20+ lymphocyte

depletion in PTM resulted in an accelerated disease progression

compared with historical control PTM infected with the same

inoculum (Fig. 5B; log rank test; P = 0.007). Three of the four

PTMs with almost complete lymphocyte depletion developed

respiratory distress that necessitated euthanasia by six weeks p.i.

The fourth animal had only a transient CD8+ and CD20+
lymphocyte depletion and experienced similar clinical signs during

the primary stages of infection but made a partial clinical recovery.

This animal subsequently experienced episodes of vasculitis

associated with infarction of the skin, weight loss, poor appetite

and diarrhea that eventually led to euthanasia at 18 weeks p.i.

Pathologic evaluation of the three PTM euthanized early in the

infection were remarkably similar, and included severe lymphoid

depletion, severe vasculitis with pulmonary edema and cytome-

Figure 1. CD8+ T cell and CD20+ B cell depletion in AGM and PTM. Anti-CD8 antibody administration-induced depletion of CD8+
lymphocytes in peripheral blood lymphocytes (PBL) and bronchoalveolar lavage (BAL) in AGM (A, B) and PTM (D, E). Anti-CD20 antibody
administration induced depletion of B cells in PBL of vervet AGM (C) and of PTM (F). Animals that received anti-CD8 and anti-CD20 antibodies but
were not inoculated with SIV are shown with black symbols. Animals that received anti-CD8 and anti-CD20 antibodies and were inoculated with
SIVagmVer90 are shown in color symbols (red for AGM, blue for PTM). The black arrows in panels A and D indicate the injection of the anti-CD8a mAb
cM-T807. The black arrows in panels C and F indicate the injection of the anti-CD20 mAb Rituximab.
doi:10.1371/journal.ppat.1000691.g001

SIVagm Infection in AGM and PTM
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Figure 3. CD8+ and CD20+ lymphocyte depletion has a greater effect on SIV peak viremia and lymphatic tissue viral load in PTM
than in AGM. Plasma SIV RNA copies/ml are shown for vervet AGM (A, B) and for PTM (D, E). Number of SIV RNA expressing cells in lymph node
biopsies of anti-CD8 and anti-CD20 treated and historic control AGM (C) and PTM (F) at one and four weeks p.i. The median number of SIV positive
cells is given for each animal and was quantified for six high power fields (HPF). CD8+ and CD20+ lymphocyte-depleted animals are plotted in color
symbols (red symbols for vervet AGM and blue symbols for PTM) and historic control animals in black symbols.
doi:10.1371/journal.ppat.1000691.g003

Figure 2. Only partial depletion of B cells in lymphatic tissues of CD8+ and CD20+ lymphocyte-depleted AGM but not of PTM.
Immunohistochemical (IHC) detection of CD20+ B cells in sequential lymph node biopsies from a representative vervet AGM (A346) collected pre-
inoculation (A), one week p.i. (B), and four weeks p.i. (C). Representative IHC staining for CD20 is shown on two PTM with different clinical courses.
PTM P27 was representative of the pattern seen in the three PTM that showed efficient depletion of CD20+ B cells at one week p.i. that was
irreversible at four weeks p.i. (D, E, and F). PTM P24 only had a partial depletion of CD20+ B cells at one week p.i. and near normal CD20+ B cell levels
at four weeks p.i. (G, H, and I).
doi:10.1371/journal.ppat.1000691.g002

SIVagm Infection in AGM and PTM
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galic cells in the lung, pulmonary edema, and nuclear inclusions

consistent with disseminated cytomegalovirus (CMV) infection.

SIV-specific in situ hybridization showed high levels of SIV-

expression in all lymphoid tissues and in the brain or meninges

consistent with uncontrolled SIV replication (data not shown).

CD8+ and CD20+ lymphocyte depletion in the context of
SIV infection induces massive CMV reactivation in PTM

To confirm the pathologic findings and to examine the effect of

CD8+ and CD20+ lymphocyte depletion on CMV reactivation,

we assayed CMV DNA in the plasma of both the AGM and PTM

by quantitative PCR. As shown in Fig. 6B and D, SIV infection

alone did not result in significant activation of CMV either in

AGM or PTM. However, CMV activation was observed in the

majority of the animals that were CD8+ and CD20+ lymphocyte-

depleted as indicated by detectable CMV DNA in plasma (Fig. 6A
and C) regardless of whether they were also infected with SIV.

Reactivation of CMV was transient in the SIV infected and CD8+
and CD20+ lymphocyte-depleted AGM. In contrast, massive

reactivation of CMV (up to 106 copies/ml of plasma) was observed

in three of the CD8+ and CD20+ lymphocyte depleted and SIV-

inoculated PTM. The PTM with the shortest duration of CD8+ T

cell and B cell depletion transiently controlled CMV replication by

week 12 but CMV DNA in plasma was detectable again prior to

death. Reactivation of CMV in lymphocyte-depleted monkeys

shows that control of CMV is dependent on functional CD8+ and

CD20+ lymphocytes, as observed in AGM. PTM however

appeared to be too compromised either by high level SIV viremia

and/or lack of CD8+ and CD20+ lymphocytes to mount an

effective immune response against CMV.

Massive loss of CD4+ T cell in SIV-infected PTM
The majority of CD4+ T cells in vervet AGM coexpress the

CD8aa homodimer [18]. Administration of the anti-CD8a mAb

therefore had a potential depleting effect on CD4+ T cells.

Absolute CD4+ T cell counts in the blood declined with a median

of 246% (range: 259% to +6%) following administration of the

anti-CD8a mAb, regardless of inoculation with SIV (Fig. 7A).

Interestingly, CD4+ T cell levels did not return to pre-treatment

values, but remained relatively stable in the AGM with exception

of A346. This animal experienced an abrupt decline in peripheral

blood CD4+ T cell numbers after week 14 that coincided with a

slight increase in plasma viremia. Viremia subsequently decreased

and the animal remained free from clinical signs of disease

throughout one year of follow up, despite a very low frequency of

CD4+ T cells (,5 cells/ml).

In contrast to the vervet AGM, CD4+ T cells in PTM do not

express the CD8aa homodimer. Therefore, administration of the

anti-CD8a antibody did not affect CD4+ T cell counts in the non-

infected mAb treated PTM (Fig. 7C). The relatively stable

number of peripheral blood CD4+ T cells in AGM was not

observed for the lymphocyte-depleted PTM where SIV infection

resulted in an abrupt decline in peripheral blood CD4+ T cells in

the first 2 weeks of infection (Fig. 7C). CD4+ T cell levels

continued to decline in three of the animals (P24, P27, and P35).

PTM P23 showed a less dramatic loss of CD4+ T cells than the

other three lymphocyte-depleted PTM (Fig. 7C). Similar kinetics

and extent of CD4+ T cell decline were observed in untreated

control PTM infected with SIV (Fig. 7D). CD4+ T cell decline

was less severe in the two PTM with lower viremia (P9665, P9663).

These two animals also showed the longest survival (.105 weeks)

[13].

Increased naive to memory CD4+ T cell ratio and CD4+ T
cell proliferation in PTM but not AGM

The decline of CD4+ T cells in pathogenic models of AIDS

infected with a CCR5-tropic virus is mainly due to a loss of

memory CD4+ T cells [6,30]. To assess the extent of memory

CD4+ T cell depletion, we evaluated the ratio of naı̈ve to memory

CD4+ T cells in PTM and AGM. We observed an initial loss of

Figure 4. CD8+ and CD20+ lymphocyte depletion in SIVagmVer90-infected PTM results in enhanced virus replication in contrast to
AGM. Representative SIV-specific in situ hybridization of lymph nodes collected at one and four weeks p.i. from a vervet AGM (left) and PTM (right).
Top panels show samples from CD8+ and CD20+ lymphocyte-depleted animals and bottom panels show samples from historical control animals.
Active viral replication in SIV positive cells is marked in black color.
doi:10.1371/journal.ppat.1000691.g004
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memory CD4+ T cells at peak viremia, as indicated by a higher

ratio of naı̈ve to memory CD4+ T cells than before infection

(Fig. 8A, B) in all but one SIV-infected AGM. The non-infected

lymphocyte-depleted AGM experienced a similar increase in the

ratio of naı̈ve to memory CD4+ T cells as SIV-infected AGM

(Fig. 8A). In AGM, memory CD4+ T cells express higher levels of

CD8a than naive CD4+ T cells (data not shown) and therefore

may be preferentially depleted by the anti-CD8 mAb. After the

transient loss of memory CD4+ T cells, the naı̈ve to memory

CD4+ T cell ratio recovered to levels comparable to pre-infection

ratios, with the exception of A7. A7 recovered from the initial loss

of memory CD4+ T cells to a higher, but nevertheless stable ratio

of naı̈ve to memory CD4+ T cells. As described above, one of the

AGM (A346) suffered an almost complete loss all of its peripheral

blood CD4+ T cells (Fig. 7A). The loss of CD4+ T cells also

included a precipitous decline of naive CD4+ T cells as indicated

by the decline in the naive to memory CD4+ T cell ratio indicated

(Fig. 8A).

In contrast to the effects on the CD4+ T cell subset in vervet

AGM, a much more obvious but also transient increase in the

naive to memory CD4+ T cell ratio was observed in three of four

CD8+ and CD20+ lymphocyte-depleted, SIV-infected PTM

(Fig. 8C). The short term depleted PTM, P24, only showed a

minor increase in the naı̈ve to memory CD4+ T cell ratio with a

subsequent slow decline to low levels just prior to death. In

contrast, a much more muted decline in memory CD4+ T cells

was observed in SIV-infected control PTM (Fig. 8D).

A more severe pathogenic SIV infection is generally associated

with an increased turnover of CD4+ T cells. The increased

proliferation of CD4+ T cells can be directly assessed by an

increase in Ki-67 expression on memory CD4+ T cells. We

therefore evaluated the proliferation of memory CD4+ T cells in

both AGM and PTM (Fig. 9). As expected, a vigorous

proliferation of memory CD4+ T cells was seen in both the

lymphocyte-depleted and the historical control SIV-infected PTM

(Fig. 9C and D). In contrast to the pathogenic SIV infection, we

only observed a marginal increase in proliferation of memory

CD4+ T cells in both of the two SIV-infected groups of AGM

(Fig. 9A and B). The brief increase of memory CD4+ T cell

proliferation in both SIV negative AGM and PTM was likely the

result of compensatory homeostatic mechanisms in response to the

depletion of CD8+ T cells (Fig 9A and B).

B cell depletion induces a delay in SIV-specific antibody
responses but has marginal effect on viremia

Even low numbers of remaining B cells in lymphoid tissue after

CD20+ lymphocyte depletion may support the generation of SIV-

specific antibodies. We therefore evaluated the efficacy of the

inhibition of humoral immune responses by determining the

generation of SIV-specific antibody responses by Western blot and

neutralization assays. Western blot assays of AGM plasma against

whole SIVagmVer90 virus lysate revealed a delay in the development

of SIV-specific antibodies in three of the four lymphocyte-depleted

AGM compared to historical non-depleted control AGM

inoculated with the same virus (Fig. 10A and C). All control

AGM developed SIV-specific antibodies by four to six weeks p.i.

Similarly the inefficiently CD20+ lymphocyte-depleted AGM (A7)

developed SIV-specific antibodies by six weeks p.i. The three long-

term B cell-depleted AGM only seroconverted after week six, and

two animals showed only a weak response to SIV antigen even at

24 weeks post infection.

A more dramatic effect on seroconversion was observed in PTM

that were depleted of CD8+ T cells and CD20+ cells (Fig. 10B).

Only the PTM (P24) transiently depleted of CD8+ T cells and B

cells developed SIV-specific antibody responses at four weeks p.i.

The three other B cell-depleted PTM did not develop any SIV

specific antibodies. All of the historic control PTM developed

variable levels of SIV-specific antibody responses by four to six

weeks p.i. (Fig. 10D). We attempted to confirm these data using

SIVagmVer90 envelope-pseudotyped HIV particles in a single round

neutralizing antibody (Ab) assay [31]. However, SIVagmVer90

appeared to be highly resistant to neutralization and therefore we

were unable to detect neutralizing Ab in any of the AGM in this

study. However, using a tissue culture lab-adapted SIVmac251 strain,

we observed a delay in the generation of neutralizing Ab in AGM

that had been well-depleted of B cells compared to the historic non-

depleted SIV infected control AGM (Fig. 11A). The appearance of

neutralizing Ab had no consistent effect on the magnitude of plasma

viremia in either of these AGM (Fig. 11B and C).

Discussion

Soon after the discovery of AIDS viruses it became apparent

that natural hosts of SIV do not generally develop immunodefi-

ciency in association with SIV infection, whereas these viruses

readily induce disease in Asian nonhuman primates and humans

[8,12,32,33,34]. However, the mechanisms employed by these

primates to avoid the pathogenic consequences of SIV-infection

remain unclear.

Figure 5. Reduced survival of SIVagmVer90-infected CD8+ and
CD20+ lymphocyte-depleted PTM in contrast to disease-free
survival of AGM. Kaplan-Meier survival curves for CD8+ and CD20+
lymphocyte-depleted and historic control vervet AGM (A) and PTM (B)
are shown. Differences in survival were determined by log rank test.
doi:10.1371/journal.ppat.1000691.g005
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In the present study, we made a direct comparison of the role of

SIV-specific adaptive immune responses in a nonnatural host and

natural host of SIV infection, PTM and vervet AGM, respectively.

To do this, we evaluated the effect of antibody-mediated temporal

inhibition of cellular and humoral immune responses during

primary infection with the uncloned SIV virus, SIVagmVer90, in

PTM and AGM. Recent investigations have shown that this virus

does not induce an AIDS-like disease in AGM but is not inherently

nonpathogenic as infection studies in PTM have shown [25]. Here

in this study, temporal inhibition of adaptive immune responses in

primary SIV infection of PTM resulted in an increased peak and

set point viremia and accelerated disease progression similar to

observations recently made in CD8+ lymphocyte-depleted rhesus

macaques infected with pathogenic SIV [35,36,37]. Interestingly,

in the present study and in unpublished observations evaluating

sabaeus AGM (R.C. Zahn et al.), peak viremia was not increased

in lymphocyte-depleted AGM but only a relatively brief

prolongation of peak viremia was observed during primary

infection. The delay in resolution of primary viremia was very

likely due to the inhibition of cellular immune responses since

primary viremia had resolved before the appearance of humoral

immune responses. Also, the eventual generation of humoral

immune responses in B cell-depleted animals following reappear-

ance of these cells did not appear to have a significant influence on

the magnitude of viremia. This observation was recently

confirmed by others when B cell depletion during primary and

chronic SIV infection of AGM did not result in an increased

viremia or clinical signs of illness (personal communications with

Ivona Pandrea). Thus, the data presented here and unpublished

observations using sabaeus AGM (R.C. Zahn et al.) suggest that

cellular immune responses contribute to viral containment in

AGM but humoral immune responses appear to be less critical.

However, in contrast to rhesus monkeys the absence of CD8+
lymphocytes in AGM resulted in a much more subdued impact on

viremia, similar to observations recently made in sooty mangabeys

[38].

Although no overt signs of SIV disease were seen in the

lymphocyte-depleted AGM, the depletion of these cells was

associated with reactivation of CMV. A similar transient

reactivation of CMV without clinical signs was observed in one

of the two PTM that were lymphocyte-depleted but not challenged

with SIV. The most significant signs of pathogenicity were seen in

PTM that were depleted of CD8+ and CD20+ lymphocytes and

inoculated with SIV: in these animals, we observed a massive

increase in plasma CMV DNA copies, precipitous loss of CD4+ T

cells and an increase in naive/memory CD4+ T cell ratio,

indicating a rapid loss of memory CD4+ T cells.

These observations raise a number of questions. Is it possible

that the impairment of adaptive immune responses in AGM was

not of sufficient duration to negatively impact the health of these

animals? Or, is the inherent ability to suppress immune activation

in SIV-infected AGM the critical factor that helps AGM to cope

with chronic SIV infection?

CD8+ lymphocyte depletion in rhesus macaques results in a

significantly enhanced disease progression. However, as recently

shown [35,39,40] and observed here in the PTM depleted of

CD8+ lymphocytes, the fastest disease acceleration is seen in

nonnatural hosts when CD8+ lymphocytes are depleted for at least

the first 4 weeks during primary SIV infection. However, the

CD8+ lymphocyte depletion in most AGM in this study was of

fairly short duration. But even the one relatively long-term CD8+
lymphocyte-depleted AGM (A13; about 6 weeks) did not develop

an AIDS like-disease with rapid disease progression as we have

seen in all rhesus macaques studied so far with a similar length of

Figure 6. CD8+ and CD20+ lymphocyte depletion results in CMV reactivation in AGM and PTM. CMV DNA copies in plasma of vervet
AGM (A) and PTM (C) are shown graphically for animals not infected with SIVagm but depleted of CD8+ and CD20+ lymphocytes (black symbols), and
animals that were depleted of CD8+ and CD20+ lymphocytes and SIVagmVer90-infected (red for vervet AGM, blue for PTM). For comparison, historic
SIV-infected control AGM (B) and PTM (D) that did not receive administrations of mAbs are shown. The median values of six replicates for sequential
plasma samples at each time point from each animal are shown.
doi:10.1371/journal.ppat.1000691.g006
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CD8+ lymphocyte-depletion [39,40]. In addition, PTM P24 in

this study also was only depleted for 2 weeks, but succumbed to

AIDS within 18 weeks p.i.

A number of recent investigations have shown that natural hosts

exhibit a much lower level of immune activation during chronic

viremia compared to nonnatural hosts [16,32]. The low level

immune activation may protect the natural host species from more

aggressive virus replication and the development of an AIDS-like

disease. Recent investigations have shown that short-term immune

activation using LPS or an IL-2/diphtheria toxin fusion protein in

AGM can result in an increased viremia, supporting the notion

that hyperactivation of the immune system plays a role in virus

replication and disease progression [41]. However, these brief in

vivo manipulations had no apparent effect on the health of the

animals. Thus, in vivo manipulations in AGM that are capable of

suppressing adaptive immune responses for a longer duration than

in the present study and/or induce a prolonged immune activation

may result in a different outcome.

In addition, there may be a number of possible caveats in our

study. (1). Since CD4+ T cells in vervet AGM dimly coexpress the

CD8a molecule, administration of the anti-CD8a antibody may

have also affected CD4+ T cell targets and thus limited virus

replication. However, a similar result was recently observed in

sabaeus AGM that did not coexpress the CD8a molecule on

CD4+ T cells (R.C. Zahn et al., unpublished observations). We

also cannot clearly rule out that NK cells that express the CD8a
molecule may contribute to viral containment as these cells are

also depleted by the anti-CD8a antibody. It is also possible that

some of the differences observed in the control group and the

antibody-treated group may be due to utilizing historical controls

for this study. However, both the historical controls and antibody-

treated group were treated identically except for receiving

lymphocyte-depleting antibodies. Finally, it is conceivable that

the combined depletion of CD8+ and CD20+ lymphocytes may

affect AGM and PTM differently. However, to formally rule out

that the antibody treatment may have a more significant

pathogenic effect on PTM we have performed the lymphocyte

depletion experiments as well in SIV-negative AGM and PTM

which both did not exhibit any signs of disease following the

antibody administrations.

Recent investigations have shown that evolutionary adapta-

tions in natural hosts (paucity of CCR5+ cells, decreased immune

activation, and ability to down modulate the CD4 molecule on

CD4+ T cells) may assist adaptive immune responses or may even

render SIV-specific adaptive immune responses unnecessary

[32,42,43]. In contrast, if the AIDS virus can bypass restriction

Figure 7. CD4+ T cell count changes in PTM and vervet AGM. Effect of CD8+ and CD20+ lymphocyte depletion on absolute CD4+ T cell counts
in peripheral blood of vervet AGM (A) and PTM (C) that were inoculated with SIVagmVer90 (color symbols) or not infected (black symbols). Absolute
CD4+ T cell counts in peripheral blood of historic control vervet AGM (B) and PTM (D) that were inoculated with the same dose of SIVagmVer90 but
were not treated with mAbs are shown for comparison.
doi:10.1371/journal.ppat.1000691.g007
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factors in nonnatural hosts, adaptive immune responses appear

to be the major defense against uncontrolled virus replication.

However, the eventual failure of viral control is due to inevitable

viral immune escape [44,45]. A sign of the incredible plasticity of

the immune system of natural hosts to cope with SIV infection

was seen in one of the lymphocyte-depleted AGM (A346). This

animal eventually lost all of its peripheral blood CD4+ T cells

(both memory and naı̈ve cells), suggesting that the virus in this

animal might have changed coreceptor usage (characterization of

coreceptor usage is still ongoing). Even with an almost complete

loss of peripheral blood CD4+ T cells the animal showed no signs

of disease. Recently, a similarly abrupt decline in CD4+ T cells

was observed in another natural host of SIV, sooty mangabeys,

upon emergence of a CXCR4-tropic SIV variant without

inducing disease [46]. This abrupt decline of CD4+ T cells in

sooty mangabeys does not necessarily always depend on

switching the tropism of the virus to CXCR4 [47]. AGM may

be capable of utilizing a large fraction of CD4- T cells, which can

be found in peripheral blood and tissues, as surrogate T helper

cells [43,48].

Investigations into natural hosts of SIV, including AGM, will

allow us to understand how these animals can coexist with SIV

without developing disease. The observations made here and in

sabaeus AGM (R.C. Zahn et al., unpublished observations) suggest

that CD8+ T cell responses participate to some degree in

controlling viral replication in natural hosts. However, the effects

were considerably more limited than observations made in

macaques and it is not clear whether a more long-term increase

in viremia would precipitate disease progression in AGM. Further

investigations are required to assess the relative contribution of

adaptive immune responses versus non-adaptive mechanisms in

the maintenance of an AIDS-free course of infection in natural

host species. Our aim is that these investigations will provide clues

how pathogenic AIDS virus infections could be limited, identify

new therapeutic approaches, and contribute to the development of

a successful HIV vaccine.

Materials and Methods

Ethics statement
All animals were maintained in accordance with the guidelines

of the Committee on the Care and Use of Laboratory Animals

under a NIAID-approved animal study protocol [49], and all

studies and procedures were reviewed and approved by the

Institutional Animal Care and Use Committees of the NIH and

Harvard Medical School.

Figure 8. Increase in naive/memory CD4+ T cell ratio in SIVagmVer90-infected, efficiently CD8+ and CD20+ lymphocyte-depleted
PTM. Ratio of naive to memory CD4+ T cells in peripheral blood of vervet AGM (A) and PTM (C). SIVagmVer90-challenged vervet AGM and PTM are
shown with red and blue symbols, respectively. Animals that received the anti-CD8 and anti-CD20 depleting antibodies but were not inoculated with
SIV are shown in black symbols. The ratio of naive to memory CD4+ T cells is shown for four control SIV-infected vervet AGM (B) and PTM (D) in black
symbols and lines.
doi:10.1371/journal.ppat.1000691.g008
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Animals and viruses
Animals were inoculated intravenously with SIVagmVer90, an

isolate from a naturally-infected vervet AGM (Chlorocebus pygery-

thrus) imported from Kenya in 1987 [7]. The virus (SIVagmVer90)

was isolated from the mesenteric lymph nodes of monkey AGM90

by coculture of viably frozen mononuclear cells with pigtailed

macaque peripheral blood mononuclear cells (PBMC). The vervet

AGM utilized for this study were imported from Tanzania and

screened for SIV infection by Western blotting, virus isolation

from PBMC, and plasma viral RNA (vRNA) loads. PTM were

colony bred in North America. All study animals were

seronegative for SIV, respiratory syncytial virus (SRV), and simian

T-cell leukemia virus (STLV-1).

Animal study design
A total of six adult vervet AGM and six adult PTM were

recruited for combined CD8+ and CD20+ lymphocyte depletion

studies. The chimeric anti-human CD8a monoclonal antibody

(mAb), cM-T807 (NIH Nonhuman Primate Reagent Resource)

was administered at 10 mg/kg of body weight subcutaneously on

day 0 (the day of SIV infection) followed by 5 mg/kg intravenous

injections on days 3, 7, 10 and 14. The anti-human CD20 mAb,

RituxanH (Rituximab), purchased from Genentech, Inc. (South

San Francisco, CA), was administered intravenously at 50 mg/kg

of body weight on days 27, 14 and 35. For lymph node biopsies,

animals were sedated with TelazolH. For all other procedures

including brochoalveolar lavage (BAL), phlebotomy and Ab

injections, animals were sedated with ketamine hydrochloride.

Of these twelve treated animals, four AGM and four PTM were

inoculated intravenously with 1,000 50% tissue culture infectious

doses (TCID50) of SIVagmVer90 on day 0. The remaining antibody-

treated animals (two AGM and two PTM) were not infected.

Animals were monitored for 50 weeks following inoculation by

plasma viral load, SIV-specific antibody responses by Western

blot, lymphocyte subsets in the blood, BAL and lymph node

biopsies (22, 1, and 4 weeks p.i.), and clinical evidence of disease.

Animals showing weight loss of greater than 10% of body weight,

diarrhea, or evidence of pneumonia that was unresponsive to

antibiotic or supportive therapy were humanely euthanized and

tissues collected for pathology. An additional four AGM and four

PTM previously inoculated with the same SIVagmVer90 stock and

dose served as historic, untreated controls [7,29].

Figure 9. Ki-67 expression in memory CD4+ T cells from vervet AGM and PTM. Ki-67 expression of CD4+ T cells in peripheral blood of
vervet AGM (A) and PTM (C). SIVagmVer90-challenged vervet AGM and PTM are shown with red and blue symbols respectively. Animals that received
the anti-CD8 and anti-CD20 depleting antibodies but were not inoculated with SIV are shown in black symbols. For comparison, the percentage of Ki-
67+ CD4+ T cells is shown for four control SIV-infected vervet AGM (B) and PTM (D) in black symbols and lines.
doi:10.1371/journal.ppat.1000691.g009
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Plasma viral load assay
Plasma levels of viral SIV RNA in PTM and AGM were

measured by a quantitative real-time RT-PCR assay as previously

described [7], using methodology based on the 7700 sequence

detection system (Applied Biosystems, Foster City, CA). Plasma

samples were collected from EDTA-anticoagulant whole blood

and were stored in a 280uC freezer until analysis. Plasma viral

RNA was isolated using a QIAmp viral RNA kit (QIAGEN,

Valencia, CA), and RT-PCR reactions were performed in 96-well

plates.

Measurement of CMV DNA in plasma by real-time PCR
CMV DNA was quantitated in plasma using real-time PCR as

previously described [50]. DNA was extracted from plasma with

the QIAmp DNA Mini Kit (Qiagen, Inc., Valencia, CA). The

rhesus CMV specific primers amplify a 108-bp amplicon in the

exon 1 region of the immediate-early gene of rhesus CMV [51]

and are reactive with the published AGM CMV [52]. The forward

primer (5-GTTTAGGGAACCGCCATTCTG-3) corresponds to

residues 4847 to 4867 of AGM CMV, the reverse primer (5-

GTATCCGCGTTCCAATGCA-3) corresponds to residues 4936

to 4954, and the probe (5-FAM-TCCAGCCTCCATAGCCGG-

GAAGG-tamra-3) corresponds to residues 4908 to 4930. The

PCR was run on an ABI-Prism 7700 Sequence Detection System

(PerkinElmer, Foster City, CA) [50].

Immunohistochemistry and SIV-specific in situ
hybridization

Nonradioactive in situ hybridization (ISH) for SIV expression

was performed in formalin-fixed, paraffin-embedded lymph nodes

utilizing sense or antisense digoxigenin labeled riboprobes that

spanned the entire SIVagm9063-2 genome as previously described

[25]. The number of SIV-expressing cells was measured as follows:

Six random fields of view were selected for each of the ISH stained

lymph nodes and the AxioVision automated segmentation

measurement program was used to calculate the number of

Figure 10. Impairment of SIVagm-specific antibodies in CD8+ and CD20+ lymphocyte-depleted vervet AGM and PTM. Development of
SIVagm-specific antibody responses by Western blot analysis is shown for CD8+ and CD20+ lymphocyte-depleted vervet AGM (A) and PTM (B) in the
top row. The bottom row shows historic SIVagm-infected vervet AGM (C) and PTM (D) as controls. Numbers below the strips indicate time in weeks
following SIVagmVer90 infection. The location of the major SIV proteins is shown on the right.
doi:10.1371/journal.ppat.1000691.g010
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SIV+ cells per high powered field (HPF). Lymph node biopsies

were also evaluated for CD20 positive cells by using a mouse anti-

human CD20 antibody (M0755, DAKO Cytomation, Carpen-

teria, CA), a mouse IgG avidin biotin complex-peroxidase kit

(Vector Laboratories, Ltd., Burlingame, CA), and diaminobenzi-

dine (DAB) substrate.

Western blot analysis for SIV-specific antibodies
Serology for antibodies to SIVagm was performed by Western

blot analysis, as previously described [25]. Briefly, virus was

pelleted from cell-free supernatant of CEMss cells infected with

SIVagmVer90. Virus particles were disrupted in Laemmli sample

buffer, viral proteins were separated by SDS/polyacrylamide gel

electophoresis and transferred onto nitrocellulose membranes.

Individual strips containing SIVagm viral proteins were reacted

with diluted PTM and AGM plasma and washed to remove

unbound material. The bound SIV specific antibodies were

visualized by subsequent reaction with ImmunoPure A/G protein

conjugated with alkaline phosphatase (Pierce Biotechnology,

Rockford, IL), followed by nitroblue tetrazolium-5-bromo-4-

chloro-3-indolylphosphate (BCIP/NBT) substrate system (KPL,

Laboratories, Gaithersburg, MD).

Serum neutralizing antibody assays
Neutralization was measured as a function of reduction in

luciferase reporter gene expression after a single round of infection

in TZM-bl cells as described [31]. TZM-bl cells were obtained

from the NIH AIDS Research and Reference Reagent Program,

as contributed by John Kappes and Xiaoyun Wu. Briefly, 200

TCID50 of virus was incubated with a serial 3-fold dilution of test

sample in duplicates in a total volume of 150 ml for 1 h at 37uC in

96-well flat-bottom culture plates. Freshly trypsinized cells (10,000

cells in 100 ml of growth medium containing 75 mg/ml DEAE

dextran) were added to each well. One set of control wells received

cells and virus (virus control) and another set received cells only

(background control). After a 48 h incubation, 100 ml of cells were

transferred to a 96-well black solid plate (Corning, Lowell, MA) for

measurement of luminescence using the Britelite Luminescence

Reporter Gene Assay System (PerkinElmer). Neutralization titers

are the dilution at which relative luminescence units (RLU) were

reduced by 50% compared to virus control wells after subtraction

of background RLUs. Assay stocks of molecularly cloned Env-

pseudotyped viruses were prepared by transfection in 293T cells

and were titrated in TZM-bl cells as described [31].

Monoclonal antibodies and immunophenotyping of
lymphocytes

All antibodies were purchased from BD Biosciences (San Jose,

CA), BD Pharmingen (San Jose, CA), Caltag (Carlsbad, CA),

R&D Systems (Minneapolis, MN) or Beckman Coulter (Miami,

FL). The antibodies used in this study were anti-CD95-

Allophycocyanin (DX2; BD Pharmingen), anti-CD28-PerCP-

Cy5.5 (L293; BD Biosciences), anti-CD4-AmCyan (L200; BD

Biosciences), anti-CD3-Pacific blue (SP34-2; BD Biosciences),

anti-CD3-Alexa Fluor 700 (SP34; BD Pharmingen), anti-CD8a-

Allophycocyanin-Cy7 (SK1; BD Biosciences), anti-CD8a-Phyco-

erythrin (DK25; Dako, Carpenteria, CA), anti-CD8a-PerCP-

Cy5.5 (SK1; BD Biosciences), anti-CD8a-Allophycocyanin (SK1;

BD Biosciences), anti-CD8ab-Energy-Coupled Dye (ECD)

(2ST8.5H7; Beckman Coulter), anti-CD20-Allophycocyanin-Cy7

(L27; BD Biosciences), CD79a-PerCP-Cy5.5 (HM47; BD Phar-

mingen), CD20-Phycoerythrin-Cy7 (L27; BD Biosciences), Ki-67-

Fluorescein Isothiocyanate (B56; BD Biosciences). In order to

determine the efficacy of lymphocyte depletion, whole blood was

stained with anti-CD3, anti-CD4, anti-CD8, anti-CD8ab, anti-

CD20, and anti-CD79a antibodies. The use of the anti-CD8 clone

DK25 (coupled to PE) and anti-CD79a permits detection of CD8+
lymphocytes and B cells with the best sensitivity in lymphocyte-

depleted animals treated with the antibodies cM-T807 and

Rituximab [53,54]. For detection of maturation-associated T cell

subsets, whole blood samples were stained for 15 min with anti-

surface antibodies (CD3, CD4, CD8a, CD8ab, CD28 and CD95).

Red blood cells were lysed by a TQ-prep instrument (Beckman

Coulter) and the cells were washed with PBS. For determination of

proliferation, cells were then fixed and permeabilized with

Cytofix/Cytoperm solution (BD Biosciences) according to the

manufacturer’s description and stained with anti-Ki-67 mAb.

Labeled cells were fixed in 1.5% formaldehyde-phosphate-

Figure 11. CD8+ and CD20+ lymphocyte depletion delays the
generation of neutralizing antibodies in SIVagmVer90-infected
AGM. A neutralizing antibody assay using tissue culture lab-adapted
SIVmac251 was utilized to detect neutralizing Ab in historical control
(black symbols) and CD8+ and CD20+ lymphocyte-depleted SIVagmVer90-
infected vervet AGM (A). Impact of delayed appearance of neutralizing
Ab on set point viremia in two long-term B cell-depleted animals (A346:
B; A13: C).
doi:10.1371/journal.ppat.1000691.g011
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buffered saline. Samples were collected on an LSR II instrument

(BD Biosciences) and analyzed using FlowJo software (TreeStar

Inc., Ashland, OR). Mononuclear cells were purified from BAL

samples and lymph node biopsies and viably frozen in media

consisting of 20% DMSO and 80% FCS, and flow cytometry was

performed on thawed suspensions.

Statistical analyses
Statistical analyses and graphical presentations were computed

with GraphPad Prism 5.02 (GraphPad Prism Software, La Jolla,

CA). P values of ,0.05 were considered significant. Mann-

Whitney tests were applied for comparison of two groups. Kaplan-

Meier graphs were used to compare survival, and log-rank tests

were applied for statistical comparison.
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