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Abstract

HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is
a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other
retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into
the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found
that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in
vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-
HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN–dependent
manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant
deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the
requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1
(HDAC1H141A) was utilized. Incorporation of HDAC1H141A decreased the virion-associated histone deacetylase activity.
Furthermore, incorporation of HDAC1H141A decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity
due to virion-associated HDAC1H141A occurred specifically at the early reverse transcription stage, while entry of the virions
was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated
HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind
SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated
HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication.
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Introduction

HIV-1 replication is characterized by a dynamic interplay

between the host and the virus [1]. While host restriction factors

inhibit HIV-1 replication at various steps, HIV-1 actively engages

cellular proteins for its own replication and for subversion of

antiviral effects. Several host factors that either restrict or promote

HIV-1 replication have been identified in recent years. A high-

throughput screening of siRNA mediated knock-down of cellular

proteins identified several hundred host proteins that played

activating or inhibitory roles in HIV-1 replication highlighting the

importance of studying host-virus interaction during HIV-1

replication [2]. While the high through-put screen allows the

identification of proteins whose loss of function is not lethal to cells,

it is likely that many host factors that are both essential for cellular

function and play a role in HIV-1 replication were not identified in

such a screen. Several host factors including INI1/hSNF5 and

LEDGF, both of which directly bind to HIV-1 integrase (IN), a

virally encoded protein required for insertion viral cDNA into host

chromosomal DNA, have been identified using the yeast two

hybrid system [3,4]. LEDGF appears to be involved in tethering

integrase to transcriptionally active regions [5]. However, INI1/

hSNF5 appears to play dual roles in HIV-1 replication in that

while INI1/hSNF5 present in the producer cells appears to be

required for HIV-1 replication, INI1/hSNF5 present in the target

cells may be inhibitory. Our previous studies have indicated that

ectopic (cytoplasmic) expression of a dominant negative mutant of

INI1, harboring the minimal IN-binding domain, inhibits HIV-1

p24 release in a manner dependent on IN-INI1 interactions [6].

INI1/hSNF5 is specifically incorporated into HIV-1 virions and
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the virion associated INI1 is required for early events of HIV-1

replication [1,6,7]. Furthermore, cellular INI1 binds to Tat and

appears to be required for Tat-mediated transactivation [8–11].

Knock-down studies suggested that INI1 is antiviral and inhibits

early events [12]. One possibility is that cellular INI1 may play a

different role than the virally incorporated INI1 explaining the

observed effects on HIIV-1 replication.

The complex role of INI1 during HIV-1 replication necessitates

deciphering of its cellular function. INI1/hSNF5 also known as

BAF47 or SMARCB1, is a component of the human chromatin

remodelling SWI/SNF complex [13]. SWI/SNF is an evolution-

arily conserved, multi-subunit, high molecular weight (.2 MDa)

complex that remodels chromatin in an ATP-dependent manner.

The SWI/SNF complex consists of at least nine subunits that are

conserved among eukaryotes [14]. Among these are four core

subunits that are required for chromatin remodelling, including

the key ATPase subunit (BRG1, BRM, SWI2/SNF2), INI1/

hSNF5, BAF170 and BAF155. There are two functionally distinct

classes of SWI/SNF complexes in mammalian cells, hSWI/SNF-A

or BAF and hSWI/SNF-B or PBAF, and three additional

complexes that consist of a mixture of components derived from

HDAC (histone deacetylase complex) and SWI/SNF including

hBRM, hBRG1 (I) and hBRG1 (II) complexes [14]. It is important

to note that INI1/hSNF5 is present in each of these SWI/SNF

complexes, suggesting multiple functions for this protein in

mammalian cells. The stoichiometry, sub nuclear distribution

and exact functions of SWI/SNF complexes have yet to be clearly

defined in mammalian cells [14]. INI1 is also a tumour suppressor

biallelically deleted in highly malignant paediatric tumours known

as rhabdoid tumours [15]. We have found that INI1 causes G0–

G1 arrest, and represses Cyclin D1 transcription by directly

recruiting HDAC1 (histone deacetylase) to its promoter [16].

These studies suggest that INI1 can mediate both repression and

activation of cellular transcription. But the exact mechanism by

which INI1 recruits HDAC1 to the promoters to mediate

transcriptional repression is unknown.

Here we report that INI1 and IN directly associate with SAP18,

a component of the Sin3a-HDAC1 complex. We report a

surprising finding that components of Sin3a-HDAC1, but not

the core components of the SWI/SNF complex are specifically

incorporated into HIV-1 virions. Furthermore, we found that

incorporation of a dominant negative mutant of HDAC1

decreases the HDAC1 activity associated with the HIV-1 virions

and that this decrease in HDAC1 activity is correlated to a

decrease in infectivity of these virions. Finally, we demonstrate that

HDAC1 activity is required for modulating a post-entry step at or

before reverse transcription during HIV-1 replication. These

results indicate an unanticipated role of IN and INI1 in recruiting

the HDAC1 complex, independent of SWI/SNF complex, into

HIV-1 virions and provide new insights into the role of INI1/

hSNF5 and Sin3a-HDAC1 complex in HIV-1 replication.

Results

INI1 directly interacts with SAP18, a component of the
Sin3a-HDAC1 complex

Since INI1/hSNF5 is specifically incorporated into HIV-1

virions [6,7], we tested to determine if other core components of

SWI/SNF complex such as BRG1, BAF155, and BAF170, were

present in the virus particles. HIV-1 virions were purified by density

gradient centrifugation to separate the microvescicular fraction and

the virions were subjected to subtilisin treatment to remove any

cellular proteins non-specifically associated with the virions [17].

These purified, subtilisin-treated virions were subjected to immu-

noblot analysis using antibodies to components of SWI/SNF

complex. Protein extracts from: (i) MON (INI12/2 rhabdoid cells)

that do not express INI1 but express all other components of the

SWI/SNF complex; and (ii) 293T cells that express endogenous

levels of INI1 and all the components of SWI/SNF complex, were

used as controls in these experiments. The same blot was subjected

to sequential immunoblot analysis using several different antibodies,

to allow the identification of multiple proteins in the same virion

preparation. This analysis revealed the presence of INI1, consistent

with the previous reports [7]. However, other components of the

SWI/SNF complex including BRG1, BRM, BAF155, and BAF170

were not detected, despite the presence of these components in the

control 293T cells used as producer cells (Figure 1A and Figure S1).

Preliminary density gradient analysis of total nuclear extracts

demonstrated that INI1 indeed is present in several high molecular

weight fractions, including those devoid of BRG1 (data not shown),

suggesting the existence of other unidentified INI1-associated

complexes in the cell.

To determine if INI1 could associate with proteins other than

SWI/SNF complex, we carried out a yeast two-hybrid analysis

where LexADB (DNA Binding domain)-fusion of INI1 was used as

bait to screen a HL60 cDNA library fused to GAL4AC (activation

domain) [18]. One of the positive clones (#18829-49.1) that

specifically interacted with INI1 but not with controls such as

LexADB, LexADB-IN, LexaDB-cMYC, LexADB-Laminin and

LexADB-cMYC (Figure 1B) was identified as a fragment of SAP18

(aa 45–153). Both cMYC and IN are known INI1 interacting

proteins and Laminin is a negative control [18].

IN and INI1/SNF5 directly interact with SAP18 in vitro
To determine if the interaction of SAP18 with INI1 is direct, we

carried out a GST pull down assay using purified components of

GST (glutathione-S-transferase)-SAP18 and 6H(hexa-histidine)-

INI1/hSNF5 fusion proteins, as well as IN. We found INI1

interacts with GST-SAP18 but not GST (Figure 1C, lanes 3 and

4). Interestingly, IN also interacted with GST-SAP18 but not with

Author Summary

The interaction between the host and HIV-1 virus is a
dynamic process. While some host cellular proteins mount
antiviral response, HIV-1 utilizes other host proteins for its
propagation. It is crucial to understand the role of host
proteins in HIV-1 replication for successful development of
strategies to combat AIDS. INI1/hSNF5 is a cellular protein
that directly binds to an HIV-1 protein, integrase (IN). It is
selectively encapsidated into HIV-1 virions and is required
for the subsequent viral replication. However, how INI1
mediates its effects is not completely understood. Here we
report a novel finding that INI1 as well as IN directly binds
to SAP18 (Sin3a-associated protein of 18 kD), a component
of the cellular Sin3a/HDAC (Histone Deacetylase) complex.
The HDAC complexes are multiprotein epigenetic modifi-
ers known to affect cellular transcription. In this report we
find that along with INI1, SAP18 and the components of
the Sin3a-HDAC1 complex are specifically recruited into
HIV-1 virions. In addition, we find that virion-associated
deacetylase activity is required for efficient reverse
transcription in target cells. These studies indicate that
HIV-1 IN protein may recruit HDAC1 complex into the
virions for utilizing them in the subsequent stages of
replication. Our findings provide new insight into the roles
of cellular HDAC1 complex in HIV-1 replication and provide
a novel paradigm to understand host-virus dynamic
interaction.

Virion-Associated HDAC1 in HIV-1 Replication
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GST in these assays (Figure 1C, lanes 1 and 2). It is likely that the

physical constraints, perhaps present in yeast two hybrid system,

may be absent in vitro, allowing for the free interaction between IN

and SAP18. Furthermore, both IN and INI1 were pulled down by

GST-SAP18 suggesting that the three proteins have the potential

to form ternary complex (Figure 1C, lanes 5 and 6).

IN and INI1/hSNF5 co-immunoprecipitate with SAP18
and associate with components of Sin3a-HDAC1
complex in vivo

To further corroborate the in vitro finding, we carried out a series

of co-immunoprecipitation assays. First, we found that antibodies

to SAP18 could co-immunoprecipitate endogenous INI1, indicat-

ing that the two endogenous proteins interact with each other in

vivo (Figure 2A).

HDAC1 is associated with several complexes, such as Sin3a,

NuRD and CoREST [19]. Both Sin3a and SAP18 are

components of Sin3a-HDAC1 complex but not that of NuRD

and CoREST complexes. On the other hand, MTA1 and CHD3

are exclusive components of NuRD complex but not that of Sin3a

complex [19]. To determine if INI1 can specifically associate with

the Sin3a-HDAC1 complex, we carried out immunoprecipitation

studies to determine the ability of INI1 to pull down HDAC1 and

CHD3. MON (INI12/2 rhabdoid cells) and HeLa cells were

transfected with a plasmid expressing HA-INI1/hSNF5, and total

proteins were immunoprecipitated with either a-HA, a-HDAC1,

control a-6His, or no antibody. The results indicated that a-HA

and a-HDAC1 antibodies were able to co-immunoprecipitate HA-

INI1/hSNF5 and HDAC1 respectively (Figure 2B, lanes 3, 5, 9,

and 11), while the control antibodies did not (Figure 2B, lanes 4, 6,

10, and 12). Additionally, a-HA antibodies co-immunoprecipitat-

ed BRG1, consistent with INI1 being part of the SWI/SNF

complex (Figure 2B, lanes 3 and 9). We probed the above co-

immunoprecipitates with antibodies against CHD3, an exclusive

component of NuRD complex. While a-HDAC1 antibody co-

immunoprecipitated CHD3, a-HA antibody did not (Figure 2B,

lanes 5 and 11). Furthermore, another component of NuRD

complex, MTA1 was also not pulled down by HA-INI1 in the

same immunoprecipitates (data not shown). These results

suggested that INI1/hSNF5 specifically associates with the

Sin3a-HDAC1 complex.

To further establish that components of Sin3a-HDAC1 complex

associate with INI1, we carried out co-immunoprecipitation

experiments in the presence and absence of HIV-1 vectors, and a

plasmid expressing FLAG-INI1. Co-immunoprecipitation experi-

ments with a-FLAG antibodies indicated an association of SAP18

and HDAC1 with INI1 (Figure 2C, lane 5). Interestingly,

association of these components and Sin3A was enriched when

cells were cotransfected with HIV-1 vector (Figure 2C, compare

lanes 5 and 7). This enrichment was not due to an increase in the

level of these components in the presence of HIV-1 vector, as the

input control from cells expressing Flag-INI1 with or without co-

transfection of HIV-1 vectors indicated identical levels of expression

of INI1, BRG1, SAP18, HDAC1 and Sin3A (Figure 2C, compare

lanes 1 and 2, in the presence and absence of HIV-1). Furthermore,

immunoprecipitation with a-FLAG antibodies resulted in similar

amounts of FLAG-INI1 both in the presence and absence of viral

vectors (Figure 2C, compare lanes 5 and 7). These results suggested

that association of SAP18, HDAC1 and Sin3a is preferentially

increased in the presence of HIV-1, despite the presence of similar

levels of these proteins (Figure 2C, compare lanes 5 to 7). This is

consistent with the idea that HIV-1 IN also binds to SAP18. Since

both IN and INI1 bind to SAP18, it is possible that association of

INI1 with SAP18-Sin3a-HDAC1 complex is increased upon HIV-1

infection. In fact, we have found that co-expression of IN with INI1

increases the ability of INI1 to co-immunoprecipitate HDAC1,

consistent with our hypothesis (Figure S2). Furthermore, we found

that co-expression of GFP-IN with FL-SAP18 in INI12/2 MON

Figure 1. INI1/hSNF5 is incorporated into HIV-1 virions
independent of SWI/SNF complex, and directly interacts with
SAP18. (A) Purified and concentrated HIV-1MN virions were immuno-
blotted and the same blot was sequentially probed with a-INI1, a-BRG1,
a-BAF155, a-BAF170, a-p24 and a-gp41, and a-hBRM antibodies, as
indicated. Lysates from MON (INI12/2 rhabdoid cells) and 293T (INI1+/
+) cells are used as controls. (B) Interaction of SAP18 and INI1 in the
yeast two-hybrid system. ‘‘++’’ = Medium interaction; ‘‘+++’’ = strong
interaction; and ‘‘2’’ = no interaction, LexADB = LexA DNA binding
domain. (C) GST pull-down assay to demonstrate interaction between
SAP18, INI1 and IN. Glutathione sepharose beads bound to GST alone or
GST-SAP18 were incubated with purified IN or INI1 or both and bound
proteins were analyzed by Western blot using the indicated antibodies.
doi:10.1371/journal.ppat.1000463.g001

Virion-Associated HDAC1 in HIV-1 Replication
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Figure 2. INI1 associates with components of Sin3a-HDAC1 complex in vivo. (A) Interaction between endogenous INI1 and SAP18. Cell
lysates from confluent HeLa cells were subjected to co-immunoprecipitation analysis using a-SAP18 antibodies. Rabbit IgG was used as a control. (B)
Immunoprecipitation of HA-INI1 with HDAC1 in vivo. Total proteins from MON (INI12/2) and HeLa cells, transfected with HA-INI1, were subjected to
co-immunoprecipitation analyses using a-HA and a-HDAC1 antibodies. No antibodies (beads) and a-6His antibodies were used as negative controls.
The immunoblots were sequentially probed with a-HA, a-HDAC1, a-BRG1, and a-CHD3 antibodies. (C) Association of INI1/hSNF5 with components of
SIN3a/HDAC1 complex in the presence and absence of HIV-1 viral proteins. 293T cells were co-transfected with HIV-1 viral vectors or an empty vector
and plasmid expressing either FLAG-INI1 or HA-INI1. Immunoprecipitation was performed using a-FLAG antibodies. Immunoblots were sequentially
probed with a-INI1, a-SAP18, a-HDAC1, a-SIN3A, a-BRG1 and a-HDAC3 antibodies as indicated. (Note: A weak Sin3a band is visible upon longer
exposure in lane 7. The BRG1 band in the lane 6 is due to spill over from lane 5). (D–G) In vivo association of HA-INI1, GFP-IN, and FLAG-SAP18. 293T
cells were transfected with vectors expressing FL-SAP18 and HA-INI1 (D), HA-INI1 and YFP-IN (E), FL-SAP18 and YFP-IN (F), or FLAG-SAP18, HA-INI1,
and YFP-IN (G). Immunoprecipitations were carried out using a-FLAG (D), a-HA (E), a-GFP (F), or a-HA (G) antibodies. Bound proteins and input
controls were immunoblotted with a-HA, a-FLAG, or a-IN antibodies. In all panels, WB = Western blot analysis.
doi:10.1371/journal.ppat.1000463.g002

Virion-Associated HDAC1 in HIV-1 Replication
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cells results in weak association of IN with SAP18 in the absence of

INI1 (Figure S3). As a control, we demonstrate that BRG1, a known

protein associated with INI1, co-immunoprecipitates equally well in

the presence and absence of HIV-1 (Figure 2C, compare lanes 5

and 7).

There are at least four classes of histone deacetylase (HDAC)

enzymes, grouped according to their homology to yeast histone

deacetylases. Class I HDACs (HDAC1, 2, 3 and 8) are

homologous to yeast Rpd3 and are localized in the nucleus, with

the exception of HDAC3, which localizes to both nucleus and the

cytoplasm [20]. Among these, HDAC1 and HDAC2 are part of

the Sin3A-HDAC1 complex. To further test the specificity of

association of various HDACs with INI1, we probed the INI1 co-

immunoprecipitates with HDAC3, a class I HDAC, not present in

the Sin3a-HDAC1 complex. Our results indicated that HDAC3

was not co-immunoprecipitated by FLAG-INI1 in the presence or

absence of HIV-1 (Figure 2C, lanes 5 and 7). Furthermore, the

specificity of a-FLAG antibodies to pull down FLAG-INI1 was

indicated by the fact that no co-immunoprecipitation of

components of Sin3a-HDAC1 complex was obtained by a-FLAG

antibodies in cells expressing HA-INI1 (Figure 2C, lane 9). These

results together indicate a selective association of INI1 with the

components of SIN3a-HDAC1, and enhancement of this

association in the presence of HIV-1 proteins.

To further confirm that IN, INI1 and SAP18 form a complex in

vivo, we carried out co-immunoprecipitation studies using cells

transiently transfected with combinations of either YFP-IN and

HA-INI1, HA-INI1 and FLAG-SAP18, YFP-IN and FLAG-

SAP18 or all the three proteins simultaneously (Figure 2D–G).

The antibodies to FLAG, HA, or GFP (as they are cross reactive

with YFP) were used for the co-immunoprecipitation experiment.

We found that a-FLAG antibodies could co-immunoprecipitate

FLAG-SAP18 and HA-INI1 (Figure 2D), a-HA antibodies could

co-immunoprecipitate HA-INI1 and YFP-IN (Figure 2E), and a-

GFP antibodies could co-immunoprecipitate YFP-IN and FLAG-

SAP18 (Figure 2F), confirming the interaction of pairs of these

proteins, in vivo. Finally, we found that a-HA antibodies could

simultaneously co-immunoprecipitate HA-INI1, FLAG-SAP18

and YFP-IN consistent with the idea that these proteins form a

ternary complex in vivo (Figure 2G). To further establish the

stringency of our immunoprecipitation reactions, we subjected the

a-GFP immunoprecipitates from the cells transfected with YFP-IN

to silver staining. We found that only a select set of protein bands

specific to a-GFP lane was observed, indicating the stringency of

immunoprecipitation reactions (Figure S4).

Components of the Sin3A-HDAC1 complex are
specifically incorporated into HIV-1 but not SIVmac

particles in an IN-dependent manner
Since INI1 is specifically incorporated into HIV-1 virions and

the other components of SWI/SNF complex are not, we examined

the possibility that INI1-associated components of SIN3a-HDAC1

complex could be recruited to HIV-1 virions. HIV-1 virions were

purified, treated with subtilisin and subjected to sequential

immunoblot analysis using antibodies to components of SWI/

SNF complex and that of Sin3a-HDAC1 complex. The results of

these analyses indicated that while INI1/hSNF5, SAP18, SAP30,

and HDAC1 were incorporated into virions, the components of

the SWI/SNF complex were not (Figure 3A, lanes 1 and 2).

Previously, we had reported that INI1 is not incorporated into

other lentiviral or retroviral particles including SIV-1, HTLV-I,

and MuLV [7]. Therefore, we examined purified and subtilisin

treated preparations of SIV and HTLV-I virions for the presence

of components of Sin3a-HDAC1 complex. We found that while

INI1/hSNF5, SAP18, SAP30, and HDAC1 were clearly present

in HIV-1 virions, they were absent from SIVmac and HTLV-1

virions (Figure 3A, lanes 3–6). Furthermore, BRG1 and BAF155,

the two core components of the SWI/SNF complex were absent

from all virion preparations (Figure 3A, lanes 1–6). These results

indicate that INI1 and its associated components of Sin3a-

HDAC1 complex are specifically incorporated into HIV-1 virions.

Figure 3. Specific IN-dependent incorporation of the INI1-
associated components of SIN3A/HDAC1 complex into HIV-1
virions. (A) Incorporation of components of SIN3A/HDAC1 complex
into primate retroviral particles such as HIV-1MN, SIVmac, and HTLV-1.
Immunoblot of purified subtilisin-treated virions (,125 mg each/lane),
sequentially probed using a-INI1, a-BRG1, a-BAF155, a-SAP18, a-SAP30,
and a-HDAC1 antibodies. (B) IN protein is required for incorporation of
INI1/hSNF5 and associated components into HIV-1 virions. Purified and
subtilisin-treated, wild type, and DIN (lacking IN) virion particles were
sequentially immunoblotted using a-INI1, a-SAP18, a-SIN3A, a-VSVG,
and a-p24 antibodies. Note that INI1, SAP18, and SIN3a are absent in
virion treated with subtilisin (lane 4).
doi:10.1371/journal.ppat.1000463.g003

Virion-Associated HDAC1 in HIV-1 Replication
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To determine if the IN-INI1 interaction mediates specific

recruitment of the Sin3a-HDAC1 complex, we generated virions

lacking IN protein. Immunoblot analysis of virions lacking IN

indicated that while wild type virions contained significant levels of

INI1, SAP18, and SIN3a, none of these proteins were present in

the subtilisin-treated virus particles lacking IN (Figure 3B,

compare lanes 4 with 7). Thus, INI1 and its associated Sin3a-

HDAC1 complex are specifically recruited into HIV-1 virions in a

manner dependent on IN. This is consistent with the observation

that IN binds to both INI1 and SAP18 in vitro (Figure 3B).

HDAC1 activity is associated with HIV-1 virions
Recent findings have established a complex interplay between

host cellular proteins including HDACs, histone acetyl transferase

(HAT), SWI/SNF complex and HIV-1 Tat during HIV-1 LTR

transcription [21–23]. It has been established that nucleosome

organization at the LTR and proviral transcription is modulated

by acetylation and deacetylation of histones [24]. While these

histone modifications, occurring at the LTR promoter site, have

been well established, our results indicate an association of the

Sin3a-HDAC1 complex within purified HIV-1 virions. To our

knowledge, specific recruitment of HDAC proteins to virions has

not been documented before, either for HIV-1 or any other virus.

Therefore, we decided to further investigate specifically the role of

virion-associated HDAC1 in HIV-1 replication.

We first examined for the presence of deacetylase activity in

HIV-1 virion preparations to ensure that the Sin3a-HDAC1

complex is catalytically active. A fluorescence-based assay was

used to detect the presence of deacetylase activity in two different

preparations of virions including HIV-1R3B, and three-plasmid

based HIV-1 vectors, using histones as substrates (Figure 4A and

B). The results indicated the presence of HDAC activity that was

above background and directly proportional to the amount of

virus assayed. This activity was sensitive to 4 mM TSA (trichostatin

A), a non-specific inhibitor of deacetylase activity (Figure 4A and

B). The HDAC activity present in mock varied from batch to

batch (perhaps due to the presence of cellular HDACs). Therefore,

the HDAC activity of each virus preparation was normalized by

subtracting mock activity. Furthermore, to eliminate the contam-

inating cellular HDAC proteins, we treated both virion and mock

preparations with subtilisin and found that virion preparations

have subtilisin-resistant HDAC1 activity, while mock preparations

Figure 4. HDAC activity is associated with HIV-1 virions. Graphic representation of TSA-sensitive HDAC activity associated with HIV-1 virions,
determined using a fluorimetric analysis. (A,B) HDAC activity in HIV-1R3B (A) and three plasmid-based HIV-1 [(3pV, (B)] viral preparations. (C,D) Effect of
incorporation of a catalytically inactive dominant negative mutant, HDAC1H141A on HDAC activity associated with HIV-1 3pV (C) and HIV-1R3B (D)
virions. The bar graphs represent mean of three to four independent experiments +/2SEM.
doi:10.1371/journal.ppat.1000463.g004
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do not, indicating that HDAC1 activity is incorporated specifically

within the virion cores (Figure S5). It should be noted that

deacetylase activities of different virion preparations varied

considerably depending on the type of virus, the HDAC1 activity

kit and sample preparation. The three plasmid-based vectors

demonstrated highest activity (200–3000 units/ng p24) as

compared to R3B (20–400 units/ng p24). We also attempted to

determine the HDAC1 activity associated with HIV-1 virions

produced in INI12/2 MON cells, however, these results were

inconclusive due to low virus yield and consequent high

background (data not shown).

The fluorescence based deacetylase activity assay is relatively

non-specific and will not distinguish between different HDACs.

Based on our co-immunoprecipitation studies, INI1 appears to

specifically associate with the Sin3a-HDAC1 complex. To

investigate if deacetylase activity associated with HIV-1 virions is

due to the recruitment of HDAC1, we employed an HDAC1

mutant containing a single amino acid substitution in the catalytic

site (HDAC1H141A). This mutation renders HDAC1 protein

catalytically inactive without impairing its structure, stability or

association with other components of the Sin3a-HDAC1 complex

[25]. Three-plasmid based HIV-1 virions were produced either in

the presence of empty vector or in the presence of a vector

expressing Flag-HDAC1H141A. The virions produced were then

normalized for p24 and were assessed for the presence of

deacetylase activity using a fluorescence-based assay, as above.

The results of these analyses indicated that while virions produced

in the presence of empty vectors harboured significant HDAC

activity above the background, the virions (normalized for p24)

produced in the presence of HDAC1H141A demonstrated 3–10

fold statistically significant decrease (p = 0.0313) in HDAC activity

compared to the controls (Figure 4C and Table S1). These results

established that the deacetylase activity associated with HIV-1

virions is mainly contributed by HDAC1 protein and that the

active HDAC1 and the associated proteins are selectively recruited

into HIV-1 virions. We further assessed the activity of full-length

molecular clones HIV-1R3B produced in the presence or absence

of HDAC1H141A after normalizing the virions for p24. We found

that there is a statistically significant decrease (p = 0.004), albeit to

a lesser degree, in activity associated with HIV-1R3B produced in

the presence of HDAC1H141A (Figure 4D).

Requirement of HDAC1 for early events of HIV-1
replication

To determine the functional significance of virion-associated

HDAC1 for HIV-1 replication, we tested the effect of expressing a

catalytically inactive mutant, HDAC1H141A that acts as a

dominant negative mutant, on HIV-1 p24 release and infectivity.

Pharmacological agents such as TSA are not specific to HDAC1

and would inhibit all Class I and Class II HDACs. The effect of

HDAC1H141A is specific and it impairs neither the structure nor

the stability of the protein, nor the association of the mutant

protein with other components of the Sin3a-HDAC1 complex

[25]. Therefore, by expressing this mutant in the producer cells,

we could incorporate it into the virions and selectively test the

requirement of virion-associated HDAC1. We produced HIV-1

virions in the presence of HDAC1H141A or the wild type HDAC1

as control, by co-expressing these proteins in the producer cells

along with the viral vectors. Immunoblot analysis of normalized

amounts of purified virions produced from these cells revealed

specific incorporation of equivalent amounts of FLAG-tagged

HDAC1 or HDAC1H141A proteins in the virions (Figure 5A, lanes

6 and 7). Furthermore, re-probing the same blot with antibodies

specific to IN and p24 indicated identical amounts of these

proteins, suggesting that incorporation of HDAC1 mutant does

not impair the level of these viral proteins (Figure 5A).

To assess the effect of HDAC1H141A expression on p24 release,

virions were collected from cells expressing empty vector, HDAC1

or HDAC1H141A and subjected to p24 analysis. We observed a

significant increase in viral p24 release when FLAG-HDAC1H141A

was expressed in the producer cells (,5–10 fold compared to the

empty vector control, p = 0.0331, Figure 5B and Table 1). There

was a slight increase in p24 release when wild type HDAC1 was

expressed as compared to empty vector, but the difference was

much less (p = 0.0948). We next assessed the infectivity of virions

produced in the presence of either FLAG-HDAC1 or FLAG-

HDAC1H141A for their ability to infect target cells, after

normalizing for p24 levels. We found that virions produced in

the presence of FLAG-HDAC1H141A were significantly reduced in

their infectivity (over 3–10 fold reduction; p = 0.0005 and 0.0062

for 10 ng and 5 ng p24 of virions, respectively) compared to

virions produced in the presence of empty vector, given the

identical amount of p24 (Figure 5C and Table 2). There was a

slight decrease in the infectivity of virions produced in the presence

of wild type HDAC1, but the difference was much less compared

to virions produced in the presence of FLAG-HDAC1H141A

(Figure 5C). Since these virions were produced in cells containing

endogenous wild type HDAC1, it is likely that we were unable to

completely eliminate encapsidation of this protein into virions.

This is reflected by the presence of significant residual HDAC1

activity within virions harbouring mutant FLAG-HDAC1H141A

(Figure 4D). Overall, these results indicated that virion-associated

HDAC1 activity is required for efficient infectivity of HIV-1.

HDAC1 activity does not modulate SIV replication
INI1 interacts with HIV-1 but not SIV IN [7]. Furthermore, INI1

and the components of Sin3A-HDAC1 complex are incorporated

into HIV-1 but not SIVmac virions (Figure 3A). To further confirm

the functional specificity of the Sin3A-HDAC1 complex to HIV-1,

we tested the effect of FLAG-HDAC1H141A on the production and

infectivity of a VSVG pseudotyped SIV-based vector, carrying a

GFP reporter gene [26]. SIV virions were produced in the presence

and absence of FLAG-HDAC1H141A in 293T cells. We observed

that expression of FLAG-HDAC1H141A did not significantly increase

SIV particle production as compared to empty vector control

(p = 0.5287, Figure 6A). Contrary to the effect on HIV-1, presence of

FLAG-HDAC1H141A did not significantly affect the infectivity of

SIV virions (p = 0.1748, Figure 6B). To further confirm that HDAC1

is not incorporated into SIV, we carried out a fluorescent-based

deacetylase activity assay as described above using SIV and HIV-1,

produced in the presence or absence of FLAG-HDAC1H141A. We

found that SIV virions produced in the presence or absence of

FLAG-HDAC1H141A exhibited deacetylase activity similar to that of

the mock control (p = 0.5916, Figure 6C). Unlike SIV, HIV-1 virions

exhibited higher deacetylase activity compared to mock control

(Figure 6C). Furthermore, presence of FLAG-HDAC1H141A de-

creased the HDAC1 activity in HIV-1 virions (p = 0.0265,

Figure 6C). These results establish that HDAC1 activity is

specifically associated with HIV-1 but not SIV, consistent with the

selective incorporation of the Sin3A-HDAC1 complex into HIV-1.

HIV-1 virion-associated HDAC1 activity is required for a
post-entry step during or before early reverse
transcription

The results of the above experiments strongly suggest that

virion-associated HDAC1 is required for early events of HIV-1

replication, which include virus entry, uncoating, reverse tran-
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scription, nuclear translocation and integration. To rule out the

possibility that incorporation of HDAC1 mutant may affect

general processing or incorporation of viral proteins, the purified

viral preparations were subjected to immunoblot analysis using

anti-HIV-1 serum. The results indicated that the general

processing of viral proteins was not affected in the presence of

FLAG-HDAC1H141A (Figure 7A). To determine if the incorpora-

tion of FLAG-HDAC1H141A blocks virus entry, we carried out a

FRET-based entry assay, using Vpr-fused b-lactamase (BLAM)

[27]. In this assay, entry of HIV-1 leads to cleavage of a substrate

by virion-associated b-lactamase, which can be quantitated by

observing changes in FRET. Cells successfully infected with HIV-

1 emit a blue FRET whereas cells without viral entry remain

green. We produced HIV-1 virions in the presence and absence of

FLAG-HDAC1H141A, simultaneously incorporating Vpr-BLAM.

Normalized amounts of virions containing Vpr-BLAM were then

used to carry out the entry assay. We quantitated blue cells and

determined the ratio of blue cells (successful HIV-1 entry) to blue

Figure 5. Virus-associated HDAC1 activity is required for HIV-1 replication in target cells. (A) Immunoblot analysis of virions produced in
the presence of either an empty vector or vectors expressing FLAG-HDAC1 or FLAG-HDAC1H141A, using indicated antibodies. (B) Effect of expression
of FLAG-HDAC1 or FLAG-HDAC1H141A vectors on the production of HIV-1 virus particles. The bars represent average p24 values obtained from three
independent experiments (+/2SEM). (C) Effect of incorporation of HDAC1H141A on the infectivity of HIV-1 virions. Graphic representation of the % GFP
positive (infected) cells obtained when 293T cells were exposed to three plasmid based HIV-1 harbouring either FLAG-HDAC1 or FLAG-HDAC1H141A

(average of 3 independent experiments +/2SEM).
doi:10.1371/journal.ppat.1000463.g005
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plus green cells (total number of cells). We found that virions

containing FLAG-HDAC1H141A exhibited the same level of entry

compared to that of the empty vector control, indicating that

FLAG-HDAC1H141A does not affect HIV-1 entry (Figure 7B).

We next examined if replication of virions harbouring FLAG-

HDAC1H141A is blocked at a post entry step such as uncoating,

early or late reverse transcription. A quantitative-real-time PCR

(Q-PCR) analysis was carried out using DNA isolated from cells

infected with equal amounts of virions normalized by p24 ELISA.

HIV-1 infection resulted in synthesis of early RT products within

2 h, with a peak at 6 h post-entry (Figure 7C). We found that

HIV-1 virions harbouring FLAG-HDAC1H141A exhibited a ,10

fold decrease in the amount of early RT products at all time points

tested compared that of control virions (Figure 7C). A similar trend

was observed for late RT products using qPCR. Virions

harbouring FLAG-HDAC1H141A exhibited ,10 fold decrease in

late RT products compared to that of the controls (Figure 7D).

The levels of reduction in early and late reverse transcription

products are in agreement with the reduction in the level of

infectivity of virions harbouring HDAC1H141A. These results

strongly suggest that the defect in infectivity of virions harbouring

HDAC1H141A is due to a block at a step after entry and before or

at early reverse transcription.

RNA interference analysis to determine the requirement
of HDAC1 to HIV-1 infection

To further substantiate a link between virion-associated

HDAC1 activity and infectivity, we carried out an RNA

interference analysis. 293T cells were first transfected with either

control siRNA or siRNA against HDAC1. These cells were then

co-transfected 24 hours later with siRNA a second time, along

with HIV-1R3B DNA. To determine if knock-down of HDAC1

affects viral infectivity, viral supernatants were collected and

subjected to p24 ELISA. Equal amounts of p24 isolated from

control and HDAC1 siRNA transfected cells were subjected to

HDAC activity and infectivity assays. Western analysis indicated a

partial knock-down of HDAC1 from the producer cells (Figure 8A).

Knock-down of HDAC1 did not affect particle production

(Figure 8B). However, virions produced in the knock-down cells

exhibited a decrease in infectivity compared to that of the controls

(Figures 8C). Analysis of virions produced from the knock-down

cells indicated a decrease in HDAC1 activity that varied from

experiment to experiment (representative experiments are provid-

ed in Figure S6A). Interestingly, the fold decrease in HDAC1

activity correlated to fold decrease in infectivity (Figure S6A and

Figure S6B). These results strongly indicate that virion-associated

HDAC1 activity plays an important role in determining the degree

of virion infectivity.

Discussion

Our results provide a novel paradigm for the role of INI1 and

components of the Sin3a-HDAC1 complex in HIV-1 replication.

Interaction of the SWI/SNF complex with components of the

HDAC1 complex has been previously reported [14,28]. Our

results demonstrate that INI1/hSNF5 and IN directly interacts

with SAP18, a component of Sin3a-HDAC1 complex. Further-

more, for the first time, we find that components of the Sin3a-

HDAC1 complex are selectively recruited into HIV-1 virions. It is

also interesting to note that core components of the SWI/SNF

complex such as BRG1, BRM, BAF155 and BAF170 are absent

from HIV-1. To our knowledge, this is the first report where

association of INI1 with components of an HDAC1 complex has

been demonstrated in the absence of the SWI/SNF complex. We

believe that further analysis of this association will lead to

uncovering novel biological functions of INI1 and the Sin3a-

HDAC1 complex.

The recruitment of the Sin3a-HDAC1 complex appears to be

specific to HIV-1 and dependent on IN. However, more

experiments are needed to determine if IN alone can recruit the

complex into virions and if INI1 is required for this function.

Furthermore, we have demonstrated that HIV-1 virions harbour

deacetylase activity, which is reduced when a catalytically inactive

mutant, HDAC1H141A, is incorporated into virions. To our

knowledge, this is the first report of an HDAC1 activity associated

with HIV-1 particles. Expression of HDAC1H141A in producer

cells leads to two distinct effects: (i) enhancement of p24 release;

and (ii) a statistically significant decrease in the infectivity of the

particles produced. These effects appear to be specific to HIV-1

and not SIV. Furthermore, knocking down HDAC1 in the

Table 1. Effect of co-transfection of HDAC1 and HDAC1H141A

on p24 release.

Viral DNA
(10 mg)

Plasmid
co-transfected

Mean
p24 ng/ml* +/2SEM**

3pV pCDNA 29509 9299

3pV pHDAC1 134460 8802

3pV pHDAC1H141A 279801 63706

*Indicates mean of six different experiments done in triplicates. The average of
each experiment was computed to obtain mean value.

**SEM = standard mean of error.
doi:10.1371/journal.ppat.1000463.t001

Table 2. Effect of co-transfection of HDAC1 and HDAC1H141A in the producer cells on viral infectivity.

Viral preparation Amount of virus used (p24) % cells infected (mean)* +/2SEM**

3pV+pCDNA 10 ng 13.07 1.413

3pV+pHDAC1 10 ng 10.51 1.116

3pV+pHDAC1H141A 10 ng 4.871 0.6632

3pV+pCDNA 5 ng 7.216 1.116

3pV+pHDAC1 5 ng 5.569 0.8977

3pV+pHDAC1H141A 5 ng 2.414 0.3753

*Indicates mean of six different experiments done in triplicates. The average from each experiment was computed to obtain mean value.
**SEM = standard mean of error.
doi:10.1371/journal.ppat.1000463.t002
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producer cells also resulted in decrease of virion-associated

HDAC1 activity and reduction in infectivity of those particles,

consistent with the results of the HDAC1H141A mutant.

We surmise that the increase in particle production observed

when HDAC1H141A is expressed is due to the derepression of viral

and/or cellular transcription. We found that intracellular p24 was

indeed increased when HDAC1H141A mutant was expressed (data

not shown), consistent with this idea. The decrease in infectivity of

HIV-1 virions harbouring HDAC1H141A is directly correlated to a

decrease in virion-associated deacetylase activity. While the HIV-

1-associated deacetylase activity is not required for entry into

target cells, it appears to be required for early reverse

transcription. These results suggest that virion-associated Sin3a-

HDAC1 complex is required for either efficient reverse transcrip-

tion or uncoating after entry. It is interesting to note that virions

produced in INI12/2 cells are defective for reverse transcription,

Figure 6. Effect of HDAC1H141A on SIV replication. (A) Effect of expression of FLAG-HDAC1H141A vectors on the production of SIV-1 particles.
The bars represent average p27 values obtained from three independent experiments (+/2SEM). (B) Effect of incorporation of HDAC1H141A on the
infectivity of SIV virions. Graphic representation of the % GFP positive (infected) cells obtained upon infection of 293T cells with SIV vector produced
in the presence or absence of pFLAG-HDAC1H141A (average of 3 independent experiments +/2SEM). (C) Comparative analysis of HDAC1 activity
associated with HIV-1 and SIV virions in the presence and absence of HDAC1H141A. Equal amounts of SIV (in p27 ng) and HIV-1 (in p24 ng) were
subjected to HDAC activity assay along with the mock-transfected culture supernatants. Note: the HDAC activity detected in SIV is similar to that of
mock control, and HIV-1 harbours higher levels of HDAC activity compared to that of SIV and mock.
doi:10.1371/journal.ppat.1000463.g006
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and that INI1 is associated with the HIV-1 reverse transcription

complex [29,30]. Furthermore, many laboratories including ours,

have demonstrated that IN directly interacts with RT and that

mutants of IN affect RT function [31–34]. These observations

raise the possibility that one mechanism by which IN influences

RT function is via the recruitment of the Sin3a-HDAC1 complex

through its direct interaction with SAP18 and INI1. Future

experiments to address the relationship between binding of IN to

INI1 and SAP18, and its influence on RT function, are likely to

shed new light on the dynamic and functional interaction between

HIV-1 RT, IN and IN-associated complexes.

Our results also parallel an earlier report where, it was

demonstrated that cellular Sin3a protein was required for

retrotransposition of Schistosaccharomyces pombe transposon, Tf1. In

the Tf1 system, Sin3a appears to be required for a post reverse

transcription event and mutations in Sin3a block a step before

nuclear entry [35]. This genetic study indicated that the Sin3a-

HDAC1 complex is required for a step other than viral

transcription in retroviral/retrotransposon replication. However,

in the case of HIV-1, we have found that the Sin3A-HDAC1

complex is required for early reverse transcription. Future

experiments are required to uncover the exact mechanism by

which virion-associated HDAC1 modulates post entry events of

HIV-1.

INI1 appears to play a complex role in HIV-1 replication due to

its multitude of effects. Studies using INI1 dominant negative

Figure 7. Functionally inactive HDAC1H141A inhibits early post-entry events of HIV-1 replication. (A) Immunoblot analysis of virion-
associated proteins produced in the presence of FLAG-HDAC1H141A. Equal amounts of purified and concentrated virions were loaded and subjected
to immunoblot analysis using IgG from HIV-1 patient serum and a-FLAG antibodies. (B) Effect of incorporation of HDAC1H141A on the entry and fusion
of HIV-1. Virions were produced incorporating Vpr-BLAM, and equal p24 amount of virions were used to infect SupT1 cells to determine the ratio of
blue cells to green+blue cells. (C,D) Graphic representation of copy number of early (C) and late (D) reverse transcription products formed upon
infection of 293T cells with equal amounts of virus harbouring FLAG-HDAC1H141A. The average copy numbers of RT products (Y-axis) were
determined by quantitative real time PCR at various time points post-infection (X-axis). Data represents average of three independent experiments
(+/2SD).
doi:10.1371/journal.ppat.1000463.g007
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mutants as well as p24 release in INI1(2/2) cells indicated that

INI1 is required for HIV-1 replication [6,29]. Furthermore,

particle produced in INI12/2 MON cells were defective for

infection and were blocked at the stage of reverse transcription

[29]. These latter results are consistent with the current report in

that virion-associated HDAC1 activity is required for efficient

early events of HIV-1. On the contrary, Maroun et al reported

that while knocking-down INI1 in the producer cells has no effect,

knocking-down INI1 in the target cells increases infection of the

virus, indicating that it is an anti-viral protein [12]. In this report,

virions produced in the INI1 knock-down cells were not analyzed

for the presence of INI1 and hence the data is not interpretable.

Furthermore, it is possible that INI1 was not completely knocked-

down in the producer cells and that INI1 in the target cells plays

different roles to INI1 in the producer cells.

Studies on siRNA-mediated knock-down of INI1 is complicated

due to the fact that INI1 is a tumour suppressor and it is required

for the survival of many cell types. Complete knock down of INI1

results in flat cell formation and apoptosis in HeLa cells [36].

Furthermore, other studies demonstrated that: (i) homozygous

deletions of INI1 causes embryonic lethality at the peri-

implantation stage; (ii) embryonic cells lacking INI1 undergo

apoptosis; and (iii) conditional knock-out of INI1 results in massive

apoptosis [37–41]. These studies highlight the fact that knocking-

down INI1 may cause cell lethality. Inefficient transient knock-

down of INI1 can be achieved in cells, but may not be suitable for

assessment of the effect of its loss, as it has been documented for

LEDGF that even a small amount of the protein is sufficient to

provide the desired function during HIV-1 replication [42]. In

addition to playing a role in late events during p24 release, INI1

binds Tat and is required for Tat-mediated LTR transcription [8–

11]. Because of these reasons, it is important to first to segregate

multiple effects of INI1 on cellular and viral functions to fully

comprehend its effect on HIV-1 replication.

Based on our current study, we hypothesize that while the

virion-associated INI1-Sin3a-HDAC1 complex may affect early

reverse transcription, cellular INI1 associated with the SWI/SNF

complex may have antiviral effects in target cells. It is possible that

deacetylation of a substrate (an acetylated viral or cellular protein)

by virion-associated HDAC1, is required to mediate efficient early

reverse transcription of HIV-1. The acetylated viral or cellular

protein may block early post-entry events and deacetylation may

be necessary to overcome this block. Alternatively, a viral or

cellular protein required for an early event may need deacetylation

to become active. While histones are classic substrates that are

modified by acetylation and deacetylation, an increasing list of

non-histone proteins that are similarly modified have been

identified [43]. Possible candidate viral proteins include IN,

although requirement of acetylation for IN activity is controversial

[44,45]. Alternatively, other viral proteins or unidentified cellular

proteins could be substrates for deacetylation by the virion-

associated Sin3a-HDAC1 complex.

While our studies investigate the virion encapsidation and

functional significance of Sin3A-HDAC1 complex in HIV-1

replication, a recent report illustrated the association of NURD,

another HDAC1 complex, with the HCMV viral protein UL38.

In this case, association of UL38 with HDAC1 complex leads to

inhibition of host stress response [46]. Whether association of IN,

INI1 with the SAP18-HDAC1 complex also serves to inhibit host

stress response remains to be determined. We have recently found

that INI1 is involved in inducing an interferon response in

rhabdoid tumour cells [47]. By binding to INI1 and SAP18, HIV-

1 IN may inhibit anti-viral interferon response during infection.

Future experiments to determine such interference of the host

innate immune response (due to the binding of viral and cellular

proteins such as IN, INI1, and the SAP18-HDAC1 complex), are

likely to shed novel insight into complex host-virus interactions.

Furthermore, we believe that strategies involving disruption of IN-

INI1-SAP18-HDAC1 interactions or selective targeting of virion-

associated HDAC complexes may lead to novel methods to inhibit

HIV-1 replication.

Figure 8. siRNA knockdown of HDAC1 in virus producer cells
results in decreased infectivity of HIV-1 in target cells. Analysis
of the effect of HDAC1 knockdown on viral particle production and
subsequent infectivity of HIV-1: (A Immunoblot analysis of 293T cells
exposed to either siHDAC1 or siControl. (B) Effect of HDAC1 knockdown
on viral particle production. Viral supernatants from cells co-transfected
with either siHDAC1 or siControl along with HIV-1R3B were subjected to
p24 analysis. Bars represent average p24 ng/ml values obtained from
three independent experiments. (C) Analysis of infectivity of normalized
amounts of HIV-1R3B virus produced in cells transfected with either
siControl or siHDAC1 using GHOST reporter cells. Bars represent the
average fold change in infectious units/ng p24 from three independent
experiments.
doi:10.1371/journal.ppat.1000463.g008
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Materials and Methods

Plasmids
pGEX-SAP18 expressing GST-SAP18 was generated by

cloning into pGEX3xPL, a BamH1-EcoRI fragment obtained

by PCR amplification of a full length SAP18 EST clone (IMAGE

364760, GenBank accession number AA025356) using primers 59-

CTGACGGAAAATGAATTCAAC-39 and 59-GGCCGTAA-

GAGGATCCTGGCGGTC-39. A plasmid encoding INI1-FLAG

fusion protein, pBABEpuro-INI1-FLAG was generated as de-

scribed [48]. The pBABEpuro-FLAG control plasmid was

generated from pBABEpuro-INI1-FLAG by deleting INI1 frag-

ment. The gag-pol expression vector containing IN deletion,

pCMVDR8.2DIN was generated as follows. First, an intermediate

vector (pSP72-Cla-Sal) carrying a ClaI-SalI fragment of HIV-1

R3B virus was generated and subjected to site directed

mutagenesis using the primers 59…GCTCTCCAATTACTGTGC-
TAGCTCTCATGTTCTTCTTGG…39 and 59…CCAAGAACATGAGAGC-
TAGCACAGTAATTGGAGAGC…39 to generate stop codon at the

beginning of IN (pSP72-deltaIN). The SalI-BclI fragment contain-

ing IN mutation was isolated from pSP72-deltaIN and cloned into

the pCMVDR8.2 vector to generate pCMVDR8.2DIN. The

pCDNA3.1-HDAC1 and pCDNA3.1-HDAC1H141A plasmids

were gifts from Dr. Schreiber (Harvard Medical School). Three-

plasmid HIV-1-based vectors were obtained from Dr. Trono and

the SIV-based lentiviral system (pCAG-SIVgprre, pCAG4-RTR-

SIV and pCL20cSLFR MSCV-GFP) was a kind gift of Dr.

Nienhuis (St. Jude Children’s Research Hospital). These vectors

were pseudotyped by VSVG (expressed from pMDG-VSVG).

GHOST (3) X4/R5 reporter cells containing LTR-GFP (Cat#
3942) was obtained from NIH AIDS research and reference

reagent program.

Virus particle production and infection
HIV-1 virus harbouring HDAC1H141A mutant and the control

and wild type proteins were generated by co-transfecting the HIV-

1 or SIV-based viral vectors, carrying GFP marker with FLAG-,

FLAG-HDAC1 or FLAG-HDAC1H141A-encoding plasmids. Par-

ticle production was monitored by using p24 ELISA kit (Perkin

Elmer Cat# NEK050B for HIV-1) and p27 ELISA kit (Advanced

Bioscience Laboratories Inc., Kensington, MD, Cat# 5436 for

SIV) and the infectivity was determined by monitoring the

expression of GFP markers upon infection of target cells using

FACS analysis.

Immunoblot analysis
Concentrated and purified virions digested with subtilisin, were

lysed and then subjected to immunoblot analysis using the

following antibodies: monoclonal a-IN (a kind gift of Dag Helland

and Alan Engelman); affinity purified polyclonal a-INI1, INI1-

PB3 (Yung et al., 2001); goat polyclonal a-p24, monoclonal a-

gp41, polyclonal a-p30, polyclonal a-VSVG (were provided by Dr.

Ott); polyclonal a-BRG1, a-BAF155, a-BAF170 (gift of Dr.

Weidong Wang at National Institute on Aging, National Institute

of Health). Antibodies against the following proteins and tags were

purchased: SAP18 (Santa Cruz #SC-8473); HA (Santa Cruz

#SC-805); SIN3A (Santa Cruz #SC-767); HDAC1 (Upstate #
06-720); HDAC3 (Upstate # 06890); FLAG (Sigma # F3165);

HIV IgG (AIDS Reagent Program, catalogue # 3957); hBRM1

(BD Biosciences cat# 610389); b-Actin (Sigma #AC-15).

Protein–protein interactions
SAP18 as an interacting partner for INI1 was isolated by using

LEXADB-INI1 as a bait and screening HL60 cDNA library in

yeast two hybrid system as described [18]. For GST pull down

assay to analyze direct interaction between GST-SAP18 and His-

INI1 and His-IN, glutathione sepharose 4B beads bound to 5 mg

of either GST or GST-SAP18 were prepared as described [18]

and incubated with 2 mg of either Ni-NTA purified His-IN or Ni-

NTA and hydroxylapatite purified His-INI1 in buffer containing

20 mM HEPES-KOH (pH 6.8), 200 mM NaCl, 0.1 mM EDTA,

2–5 mM DTT, 0.1% IGEPAL, 100 mg/ml ethidium bromide and

protease inhibitors and treated with 10 U of DNaseI. Following

incubation, beads were washed 3–56 with buffer containing

20 mM HEPES-KOH (pH 6.8), 200 mM NaCl, 0.1 mM EDTA,

1 mM DTT, 100 mg/ml ethidium bromide, 0.5% IGEPAL and

1 mM PMSF. Bound proteins were resolved by SDS-PAGE and

analyzed by Western blot using indicated antibodies.

Co-immunoprecipitation analyses
(i) Co-immunoprecipitation of INI1 with components of

HDAC1 complex. HeLa and MON cells were collected

40 hours after transfection and sonicated in 500 ml buffer G

(dPBS containing 0.1% IGEPAL, 1 mM DTT, 2 mg/ml BSA,

1 mM PMSF and 1 mg/ml each of pepstatin, aprotinin and

leupeptin). Lysates were pre-cleared by incubating with 30 ml of

protein A sepharose (50% slurry), antibodies were added to pre-

cleared lysates followed by protein A sepharose beads (30 ml of

50% slurry) and incubated overnight at 4uC. Bound proteins were

washed 4 times with buffer G without BSA, separated by SDS/

PAGE and subjected to immunoblot analysis. Co-

immunoprecipitations of FLAG fusion proteins were carried out

using FLAG Immunoprecipitation Kit (Sigma cat # FLAGIPT-1)

as per manufacturer’s recommendations.

(ii) Co-immunoprecipitation of endogenous proteins.

Confluent HeLa cells were lysed in co-IP buffer containing

20 mM HEPES-KOH (pH 7.9), 150 mM NaCl, 5 mM MgCl2,

5 mM CaCl2, 0.1 mM EDTA, 1 mM DTT, 1% Triton-X, treated

with 0.033 U/ml micrococcal nuclease and immunoprecipitated

overnight with 1.6 mg of a-SAP18 antibody (ABCam ab31748-25)

or rabbit IgG. Complexes were pulled down with Protein A

Agarose and washed 3 times with wash buffer containing 20 mM

HEPES-KOH (pH 7.9), 150 mM NaCl, 0.1 mM EDTA, 1 mM

DTT, 1% Triton-X. Complexes were resolved by SDS-PAGE and

Western blot analysis was carried out using affinity purified rabbit

polyclonal a-SAP18 antibody.

(iii) Co-immunoprecipitation of IN-INI1-SAP18 in

vivo. For analysis of complex formation between HA-INI1,

FLAG-SAP18 and YFP-IN, 293T cells were transfected with the

plasmids expressing these proteins. 48 hrs post-transfection, cells

were lysed in co-IP buffer as above and treated with 0.033 U/ml

micrococcal nuclease and immunoprecipitated overnight with

2 mg of indicated antibodies or control IgG. Complexes were

pulled down with Protein A Agarose and washed 3–56with wash

buffer as above. Complexes were resolved by SDS-PAGE and

Western blot analysis carried out using indicated antibodies. The

antibodies used for immunoprecipitation were rabbit polyclonal a-

HA (SantaCruz sc805), monoclonal a-FLAG (Sigma F3165),

monoclonal a-GFP (Sigma G6539) and for Western blot analysis

were a-HA-HRP (Sigma H6533), a-FLAG-HRP (Sigma A8592)

and monoclonal a-IN antibodies.

Quantitative real-time PCR (qPCR)
Virus stocks (5 ng p24) produced in 293T cells were treated with

50 U ml21 with DNase (Roche) for 60 min at 37uC, and used to

infect 2.06105 293T cells in 6-well plates. After 2 hours of

infection, the cells were washed with PBS, and incubated with

fresh DMEM. Genomic DNA was isolated at various time points

Virion-Associated HDAC1 in HIV-1 Replication

PLoS Pathogens | www.plospathogens.org 13 June 2009 | Volume 5 | Issue 6 | e1000463



using DNeasy kit (Qiagen). Early HIV-1 reverse transcripts were

quantified using primers ert2f, ert2r and the ERT2 probe; and late

reverse transcripts were quantified using primers MH531 and

MH532 respectively, as described [49] using Taqman method.

Reactions were analyzed in triplicates using the ABI Prism 7700

(Applied Biosystems).

Quantitation of HDAC activity in HIV-1/SIV virions
Virion-associated HDAC activity was measured using HDAC

Fluorometric Activity Assay kit (Upstate #17-356) as per

manufacturer’s recommendations. The HDAC Activity assays

were measured using a Victor 2 multi-well plate reader (Perkin

Elmer) with an excitation and emission wavelength set to 355 and

460, respectively. The lamp energy was set to 3948 with a

measurement time of 0.1 sec and an emission aperture set to

normal. For determining the HDAC activity of HIV or SIV based

vectors in the presence or absence of HDAC1 or HDAC1H141A

mutant, equal amount of virion preparations (by p24 ELISA) were

subjected to HDAC1 activity assay. Mock-transfected culture

supernatants were clarified in a manner similar to viral

preparations and were used to determine the background level

activities. HDAC activities detected in the mock samples were

subtracted from the control and test samples, except in Figure 6C.

Statistical analysis
Statistical analysis was performed using GraphPad Prism

version 4.00 for Macintosh, GraphPad Software, San Diego

California USA, www.graphpad.com. All data points (including

outliers) were included in the analysis for significance and paired

comparisons were carried out using t-statistic (two tailed) where

equal variance in data between categories was assumed.

Gene symbols and nomenclature used in the manuscript have

been provided in the Table S2.

Supporting Information

Figure S1 Immunoblot analysis of virions. Purified, concentrat-

ed, and subtilisin-treated HIV-1 mn virions were immunoblotted

with various antibodies. The same blot was sequentially probed

with a-INI1 (A), a-BRG1 (B), a-BAF170 (C), a-BAF155 (D), a-

gp41 (E), and a-gp24 (F) antibodies, as indicated. Total protein

lysates from MON (INI12/2 rhabdoid cells) and 293T (INI1+/+)

were used as controls.

Found at: doi:10.1371/journal.ppat.1000463.s001 (0.24 MB PDF)

Figure S2 IN enhances the complex formation of INI1 with

HDAC1. 293T cells were transfected with FLAG-INI1 and either

pCDNA or YFP-IN plasmids and subjected to immunoprecipita-

tion with either IgG or anti-FLAG monoclonal antibody agarose,

as indicated. Immunoprecipitated complexes were analyzed by

anti-FLAG monoclonal, anti-GFP polyclonal, and anti-HDAC1

polyclonal antibodies. Input lysates showing equal loading for

FLAG-INI1, YFP-IN, and HDAC1 are shown.

Found at: doi:10.1371/journal.ppat.1000463.s002 (0.14 MB PDF)

Figure S3 Interaction of IN with Sap18 in (INI12/2) MON

cells. MON cells were transfected with YFP-IN and FLAG-SAP18

plasmids and subjected to immunoprecipitation using either

mouse IgG or anti-FLAG monoclonal antibody agarose. Immu-

noprecipitated complexes were analyzed using western blots with

both anti-GFP polyclonal and anti-FLAG monoclonal antibodies.

Input lysates showing equal loading for both YFP-IN and FLAG-

SAP18 are shown.

Found at: doi:10.1371/journal.ppat.1000463.s003 (0.15 MB PDF)

Figure S4 Silver stain analysis of immunoprecipitations to

determine the specificity of interaction. Silver stain analysis of

immunoprecipitations to determine the specificity of interaction.

293T cells were transfected with YFP-IN plasmid and subjected to

immunoprecipitation using either mouse IgG or anti-GFP

monoclonal antibody. Immunoprecipitated complexes were ana-

lyzed by SDS-PAGE followed by silver staining. Position of YFP-

IN, IgG heavy (Hc) and light (Lc) chains are indicated with an

arrow. Polypeptides that are specifically immunoprecipitated with

anti-GFP antibodies are indicated with asterisk.

Found at: doi:10.1371/journal.ppat.1000463.s004 (0.55 MB PDF)

Figure S5 Presence of subtilisin-resistant HDAC1 activity in the

HIV-1 virus. Graphic representation of HDAC activity associated

with HIV-1 virions, determined using a fluorimetric analysis.

3pV = three plasmid based vectors, and mock = culture superna-

tant of mock transfected cells. HIV-1 (3pV) and mock were treated

with subtilisin and subjected to HDAC activity assay. Note the

presence of subtilisin-resistant activity in HIV-1 (3pV), indicating

that this activity is present within the virions.

Found at: doi:10.1371/journal.ppat.1000463.s005 (0.12 MB PDF)

Figure S6 Reduction in HDAC activity within the virions

correlates with a reduction in infectivity of virus. Three different

representative experiments are indicated to illustrate the correla-

tion of virion-associated HDAC1 activity to infectivity. Viral

supernatants collected from producer cells transfected with

siHDAC1 or siControl from Experiments I–III were normalized

for p24 and subjected to HDAC activity (A) and infectivity (B)

assays. Bars represent the fold change in HDAC activity/ng p24

(A) and Infectivity, i.u./ng p24 when compared with virus

produced in the presence of siControl (B).

Found at: doi:10.1371/journal.ppat.1000463.s006 (0.27 MB PDF)

Table S1 HDAC activity of virus produced in the presence of

HDAC1H141A (activity/ng p24). 293T cells were co-transfected

with three plasmid-based vectors along with either empty vector or

vector expressing HDAC1H141A, and virions produced from

these cells were used in HDAC activity assays. The results

represent HDAC activity units minus background/ng p24.

Found at: doi:10.1371/journal.ppat.1000463.s007 (0.05 MB

DOC)

Table S2 Gene symbols.

Found at: doi:10.1371/journal.ppat.1000463.s008 (0.03 MB

DOC)
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