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Abstract

Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host
reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of
successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness
benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show
that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia
infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets.
Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall
comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a
previously unrecognized role as nutritional mutualists in insects.
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Introduction

Wolbachia pipientis is arguably the most abundant endosymbiont

in the insect world [1–4]. It is strictly maternally inherited and has

evolved a number of mechanisms, broadly classed as reproductive

parasitism, to facilitate its invasion into host populations. The most

common of these traits is termed cytoplasmic incompatibility (CI),

which is a form of early embryonic developmental arrest seen in

the offspring of uninfected female insects that have been mated to

an infected male. CI can also be seen in cases where Wolbachia

infected females have mated to males carrying an unrelated

Wolbachia strain [5,6]. CI results in Wolbachia infected females

possessing a reproductive advantage over uninfected females and

as a result Wolbachia is able to invade host populations [7,8].

CI is considered to be the major driving force behind Wolbachia

invasion. This paradigm, however, is based primarily on

experimental work with a limited number of Wolbachia strains

that induce strong CI in Drosophila simulans [7–9]. A number of

Wolbachia strains, including all of those recovered from D.

melanogaster, induce very weak and variable CI especially under

field conditions [10–12]. Theoretical work indicates that such

weak CI is unlikely to be sufficient to drive a Wolbachia invasion in

the field. Moreover, strains of Wolbachia have been indentified in

D. simulans that induce no CI at all, yet these strains have managed

to invade host populations [12,13]. Alternatively, these strains may

represent defective CI inducing strains that have lost the ability to

induce CI and represent a snapshot of a Wolbachia infection that in

time will be lost [14]. In the absence of strong CI induction the

most obvious explanation for the ability of these strains to invade

would be that they do not act as reproductive parasites at all, but

possibly serve some mutualistic function for the insect. Wolbachia

infections in Drosophila melanogaster have been observed to act

positively upon non-reproductive fitness traits, such as the

extension of adult lifespan or protection against viral and fungal

pathogens [15–17]. Yet despite considerable efforts to find a posi-

tive fecundity benefit for Wolbachia infected Drosophila melanogaster,

none has been identified [18].

Wolbachia also infect filarial nematodes, where the bacterium is

an obligate mutualist required for successful reproduction and

development of the worm [19,20]. Analysis of the full genome

sequence of the worm, Brugia malayi revealed that it lacked a

complete biosynthetic pathway for both heme and riboflavin [21].

In contrast, the much reduced genome of its infecting Wolbachia

strain, wBm contained a complete suite of genes for both pathways

[22]. Genes that encode components of the heme biosynthetic

pathway were subsequently shown to be under diversifying

selection in wBm, providing further support for the hypothesis

that this pathway may be a key point of interaction in the

association and offering a potential explanation for the basis for

the obligate mutualism [22]. Positive selection was also identified

on genes in the same pathways in the genome of the Wolbachia

strain, wMel that infects D. melanogaster [23], raising the possibility
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that the bacterium may play a role in metabolic provisioning in

insects as well as nematodes [24].

Although insect hosts are not dependent upon Wolbachia for

heme biosynthesis, the microbe could supplement host stores or

play a role in iron homeostasis. Iron is an essential micronutrient

required for a diverse range of metabolic processes [25–27]

including maturation and development of the insect egg [28].

Iron also varies in the environment [26] and hence is likely to be

variable in the diet of wild insects. Here we examine how the

presence of Wolbachia infection alters fitness of the model insect

host, Drosophila melanogster when reared under varying levels of

dietary iron to test the hypothesis that Wolbachia may function as

a nutritional mutualist as well as a reproductive parasite in

insects.

Results

The total amount of iron within D. melanogaster was responsive to

our dietary manipulations as measured by mass-spectrophotom-

etry. Flies reared on high iron diets contained approximately twice

as much total iron as those reared on cornmeal diet (Figure 1).

Flies reared on either tea or BPS diets had approximately half the

amount of total iron compared to those reared on cornmeal diet.

The presence of Wolbachia did not influence the total iron content

of adult D. melanogaster as both infected and uninfected fly lines

were estimated to have similar total iron contents (data not shown).

The total content of eight other biologically relevant metals (see

Materials and Methods) did not change in response to the altered

diets; the only metal that was responsive to the modified diets was

iron.

The total iron content of field adult female flies collected from

four locations in and around Brisbane, Australia, was also

determined. The total iron content of adult female flies from

three of the four collection sites were similar to that determined for

flies reared on low iron diets (Taringa, Brisbane; St Lucia,

Brisbane; and Byron Bay; Figure 1). At one location (Chapel Hill,

Brisbane), the total iron content was higher than other locations,

and was similar to that observed for flies reared on standard

cornmeal fly diets. Not surprisingly total iron content of wild flies

was different at each location, but in general iron content of flies

taken from the field was lower (t test; p,0.0001) than that of lab

reared flies on cornmeal diet and more similar to lab flies reared

on restricted diet.

To investigate if Wolbachia could provide a fecundity benefit to

D. melanogaster in a low iron environment, two fly lines both derived

from the same genetic background were used [11]. The first line

was infected with wMel, the second was uninfected due to the

prior application of antibiotics. Wolbachia had no effect on the

fecundity of D. melanogaster when reared on cornmeal fly diets.

(Controls 1–4; Figure 2). In contrast, when D. melanogaster females

were reared on low iron diets due to the addition of black tea,

Wolbachia conferred a fecundity advantage in three of four

independent experiments. In one experiment (Figure 2, Expt 3)

Figure 1. Total iron content of adult D. melanogaster females as
determined by inductive coupled plasma mass-spectrometry.
Field collected flies are represented by white bars and lab reared flies by
black bars. Flies reared on cornmeal fly diet contained approximately
half the amount of iron as flies reared on high iron food, and
approximately twice the amount of flies reared on low iron diets. All
observations of lab-reared flies are statistically different from each other
(t test; p,0.0001; groups a, c and d). The total iron content for three of
the four field caught fly populations were significantly lower than those
reared on normal food, where no Wolbachia fecundity advantage was
observed (t test; p,0.0001; group b). The total iron content of flies
collected from the St Lucia field site (t test; p.0.9999) was not
significantly different from flies reared under low iron conditions where
Wolbachia-associated fecundity benefits were observed. Standard error
bars are indicated. Analysis was performed on pools of 10 adult female
flies. A total of 10 pools were examined for each of the four defined
diets; 4 pools of flies were examined for field-collected flies.
doi:10.1371/journal.ppat.1000368.g001

Author Summary

Wolbachia are bacteria that infect millions of insect species
worldwide. Wolbachia aren’t infectious, but are maternally
inherited symbionts passed from mother to offspring. To
infect a host population, Wolbachia behave as reproduc-
tive parasites and alter the host reproductive system in a
manner that increases infected female reproductive
success. Some strains of Wolbachia, however, cannot
manipulate their host’s reproductive systems—yet they
can successfully infect insect populations. How is this
possible? Here we show that a Wolbachia strain that
naturally infects Drosophila melanogaster, and induces very
low levels of reproductive parasitism, can also act as a
nutritional mutualist. When D. melanogaster flies were
reared on normal diets, we observed no cost or benefit
associated with the Wolbachia infection. But, if we reared
flies on diets containing either very low or high amounts of
iron, Wolbachia-infected flies produced more eggs than
uninfected flies. As wild-caught flies contain low amounts
of iron, our results suggest that flies in the wild should
benefit from their Wolbachia symbiont.

Wolbachia and Iron Stress
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no significant difference in fecundity was observed. Where a

fecundity advantage was observed, Wolbachia infected D. melano-

gaster females laid on average 20% more eggs than uninfected

females (Expt 2 and 4; Figure 2), and for one experiment a 50%

advantage was observed (Expt 1; Figure 2). In no experiments was

there a fecundity reduction in the presence of Wolbachia. In

addition to using black Tea as an iron chelating agent bath-

ophenanthroline disulfonate (BPS) was used to specifically chelate

iron(II) [29] in two independent experiments. Again variable

results were obtained with a 20% fecundity advantage seen in one

experiment and no difference seen in a subsequent experiment

(Figure 3). To ensure the Tea or BPS diets were efficiently

chelating iron we measured the total iron content of flies that

showed no fecundity advantage and compared these to flies that

did. We observed no statistical difference among these treated flies

(t test; p.0.9999) and conclude the diets used successfully reduced

the total iron of D. melanogaster flies.

When D. melanogaster were reared on diets that contained high

levels of iron, due to the addition of FeCl3 we observed a significant

reduction in fecundity for both infected and uninfected fly lines

relative to flies reared on cornmeal diets. However, the presence of

Wolbachia in flies on high iron diets resulted in significant gains in

fecundity in two independent experiments (p,0.05 and p,0.001

Mann-Whitney U; Figure 4). As the FeCl3 diet contains both higher

concentrations of iron as well as chloride, we reared flies on NaCl

diets to determine if the Wolbachia associated effects were due to the

addition of iron and not chloride. We observed no fecundity

difference between infected and uninfected D. melanogaster females

when reared on a diet rich in chloride (data not shown). Therefore

we conclude that the fitness benefits conferred by Wolbachia were in

response to the high iron content.

Assessments of Wolbachia effects on male fertility in response to

changes in dietary iron were performed using Wolbachia infected

and uninfected BNE lines reared on Tea, BPS and FeCl3 diets. In

no experiment did we observe a cost or benefit to male fertility

associated with Wolbachia infections (data not shown), and

conclude that Wolbachia only benefits female fecundity and not

male fertility during periods of iron deficiency or overload.

Figure 2. Mean fecundity measures of female D. melanogaster reared on low iron food (tea). The total number of eggs laid by a single
female was counted over a three-day period and the average calculated. Standard error bars are indicated; replicate numbers are noted within the
columns. Uninfected females are denoted by an open bar, Wolbachia-infected females by a filled bar. Female flies reared on cornmeal fly diet are
described as ‘‘Control.’’ Mean fecundities that are significantly different are denoted by * (p,0.05; ANOVA) or ** (p,0.001; Mann-Whitney U Test).
doi:10.1371/journal.ppat.1000368.g002

Figure 3. Mean fecundity measures of female D. melanogaster reared on low iron food (BPS). The total number of eggs laid by a single
female was counted over a three-day period and the average calculated. Standard error bars are indicated; replicate numbers are noted within the
columns. Uninfected females are denoted by an open bar, Wolbachia-infected females by a filled bar. Female flies reared on cornmeal fly diet are
described as ‘‘Control.’’ Mean fecundities that are significantly different are denoted by * (p,0.05; ANOVA).
doi:10.1371/journal.ppat.1000368.g003
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Discussion

Metabolic provisioning of hosts by endosymbionts is commonly

observed in obligate associations [30]. Wolbachia strains that infect

filarial nematodes are one such example, and are thought to

provide their host with essential vitamins, nucleotides and

cofactors, including heme [22]. These same biosynthetic pathways

exist in insect Wolbachia, and evolutionary analyses have previously

identified signatures of positive selection on pathway genes [23].

Given the multiple predictions of heme and iron as potential

interaction points for Wolbachia and their hosts, we experimentally

determined if Wolbachia could influence iron homeostasis and

female fecundity in an insect host.

Wolbachia had no effect on Drosophila melanogaster fecundity when

reared on cornmeal diets, consistent with previous observations

[31]. In contrast, Wolbachia did provide a significant fecundity

benefit to female Drosophila when subjected to low or high iron

environments in the majority of experiments conducted. This is

the first report of a Wolbachia conferred compensatory effect during

periods of nutritional stress or deficiency to an insect host. The

observed variability in fecundity measures is consistent with

previous experiments in D. melanogaster, which have shown that

laboratory measurements of fecundity are highly sensitive to local

assay conditions, and are notoriously difficult to replicate even

under controlled laboratory conditions [32–34].

Given the observed Wolbachia fecundity advantage in perturbed

iron environments and the observed low iron content of flies from

the wild, it is likely that the results of the laboratory experiments

reported here may have ecological relevance, providing a variable

but positive fitness benefit to Wolbachia infected flies across a range

of environments. Previous studies have shown that if Wolbachia can

simultaneously induce cytoplasmic incompatibility and increase

female fecundity, the rate at which Wolbachia invades naı̈ve host

populations is increased [35].

Benefits observed under high iron conditions, while not

ecologically relevant based on the estimates of total iron in field

caught flies, are interesting mechanistically. Increases in dietary

iron result in an increase in oxidative stress for most insects [36],

and in our experiments severely reduced the fecundity of both

infected and uninfected females. The fecundity cost incurred by

infected females was, however, reduced relative to uninfected

females suggesting that Wolbachia might provide protection against

oxidative stress.

Materials and Methods

Fly rearing
The Drosophila melanogaster strain BNE was derived from field

caught female flies from Brisbane, Australia, and is described in

detail elsewhere [11]. In brief, field caught flies were treated

with tetracycline to remove endosymbiont bacteria and a wMel

infection introgressed by crossing to yw67c23 females. Subsequent

offspring were backcrossed with males derived from the original

field collection for a minimum of five generations to re-establish

the original BNE genetic background. All flies were maintained

at˜25uC on a 12/12hr light/dark schedule throughout the study.

Tetracycline treatments were performed as described previously

[37] to generate a genetically identical fly line that lacked the

Wolbachia infection. To reconstitute gut flora, stock bottles

containing cornmeal fly diet were seeded with non-tetracycline

treated males for a period of three days. These males were then

excluded from the diet and newly emerged tetracycline treated

adult flies allowed to mate and lay eggs on the diet. Assessments

of fecundity were performed at least three generations post

tetracycline treatment and reconstitution of gut flora to

minimise maternal or grandmaternal mitochondrial effects

[38,39]. To minimize genetic drift between these fly lines,

approximately every 10 generations reciprocal crosses (BNE-

wMel Female 6 BNE Tet male; BNE Tet female 6 BNE-wMel

Male) were performed using one-week-old adults. Fly lines were

reared on four types of diets. Cornmeal fly diet was made from

yellow corn meal medium (Sigma). Two low iron diets were

made by either substituting the water that was used to make up

the medium with an aqueous extract of black tea (Camellia

sinensis; 3 Tetley tea bags infused in 1litre of water for 5 minutes

[40]) or through the addition of 20 mM bathophenanthroline

disulfonate (BPS; Sigma) to melted cornmeal fly diet at 65uC. In

both instances the amount of available iron to the developing

Drosophila larvae was reduced by iron chelating agents [41,42].

A high iron diet was made by the addition of a FeCl3 solution

to the cornmeal fly diet to a final concentration of 10mM [42].

In a single experiment (Female fecundity: n = 30 Wolbachia-

BNE and n = 28 Tet-BNE individuals; Male fertility: n = 20

Wolbachia-BNE and n = 21 Tet-BNE individuals) cornmeal fly

diets supplemented with 30mM NaCl were generated as a

control to test if the addition of chloride ions from FeCl3 could

influence fecundity.

Figure 4. Mean fecundity measures of female D. melanogaster reared on high iron food (FeCl3). The total number of eggs laid by a single
female was counted over a three-day period and the average calculated. Standard error bars are indicated; replicate numbers are noted within the
columns. Uninfected females are denoted by an open bar, Wolbachia-infected females by a filled bar. Female flies reared on cornmeal fly diet are
described as ‘‘Control.’’ Mean fecundities that are significantly different are denoted by *(p,0.05) or ** (p,0.001; Mann-Whitney U Test).
doi:10.1371/journal.ppat.1000368.g004
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Reproductive analyses
Females were allowed to lay eggs onto molasses/agar plates in

the absence of yeast. First instar D. melanogaster larvae were

introduced to vials containing modified or cornmeal fly diets at low

densities (50–80 larvae) and reared to adulthood at 25uC. Virgin

males and females were collected and maintained separately on

the same diet for a period of three days. Individual crosses among

males and females of identical infection status were allowed to

mate once within a 60-minute window. Once mating was

complete, males were discarded and mated females allowed to

oviposit onto molasses plates seeded with yeast for a period of

three days. A new plate was introduced every 24 hours and the

total number of eggs laid was scored. To determine the impact of

Wolbachia infection on female fecundity under iron limitation or

overload, females reared on modified diets were mated with males

reared on cornmeal diet. The reciprocal cross permitted

assessment of male fertility. Once the total number of eggs laid

over the three-day period had been scored, comparisons of

fecundity between Wolbachia infected or uninfected Drosophila were

made using parametric (ANOVA) or non-parametric (Mann-U

Whitney) tests where appropriate.

Iron concentration analysis
The total content of biologically relevant metals (manganese,

iron, cobalt, nickel, copper, zinc, Cadmium, lead and arsenic)

present in flies reared on each of the food types or collected from

the field, were determined using inductive coupled plasma mass-

spectrometry (ICP-MS) at the Advanced Centre for Isotope

Research Excellence at the University of Queensland. The only

metal responsive to diet was iron. Pools of 10 female flies were

used for each analysis and replicated ten times for lab reared flies

or four times for field caught flies. Flies were caught using modified

banana traps, such that flies were attracted to the bait but

excluded from feeding upon it to ensure that total iron levels were

not affected.
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