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Abstract

Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these
viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular
localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein–Barr virus. Twenty-four
of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and
five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection.
In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML
bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights
into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating
nuclear bodies that control key cellular processes.
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Introduction

Herpesviruses are large DNA viruses that each encode between

80 and .200 proteins. This complex network of proteins results in

a variety of effects on the host cell and ensures efficient

proliferation of the virus. While the functions of a subset of these

proteins are reasonably well understood, there is little or nothing

known about the function of many of the proteins. Understanding

the role that each viral protein plays is not only useful for

determining how the virus propagates and potentially inhibiting

that propagation, but also for identifying mechanisms that regulate

key cellular processes.

Herpesviruses are divided into alpha, beta and gamma

subfamilies, which differ considerably in their modes of latent

infections and in their effects on the host cells. These studies

involve one member of each of the three subfamilies of

herpesviruses; herpes simplex type 1 (HSV-1) of the alphaherpes-

viruses, human cytomegalovirus (CMV) of the betaherpesviruses

and Epstein-Barr virus (EBV) of the gammaherpesviruses. All

three of these viruses can cause significant human disease in

addition to providing interesting model systems for viral-host

interactions. HSV-1 and EBV encode 80–85 proteins, while the

larger CMV encodes approximately 200–230 proteins (depending

on the strain). Beyond a set of core genes found in all

herpesviruses, the remaining genes are specific to either the

subfamily or individual virus and likely contribute to their

individual and complex replication strategies. The high number

of CMV proteins relative to those of HSV and EBV clearly reflects

aspects of CMV infection that must be unique to this virus or

subfamily, and many of these proteins have no assigned function;

in fact, over 60% of the CMV-encoded proteins have no

functional annotation. A better understanding of the individual

protein functions would be useful for a more mechanistic

understanding of the commonalities and differences in these three

viruses.

Determination of subcellular localization is one way that the

potential roles of large numbers of proteins can be assessed [1].

Such global screening of subcellular localization has been

successfully conducted with yeast and human proteins, where

individual proteins were expressed fused to epitope or to GFP tags

[2–4]. For most proteins, localization results were found to be

consistent in different studies regardless of the tag used or

expression level. Subcellular localization screening is also an

appropriate starting point for the characterization of herpesvirus

proteins, providing insight into the potential contribution of the

protein to viral infection as well as the cellular processes that may

be manipulated. Although the localization is known for the

majority of HSV proteins, the localization is known for only about

50% of the EBV proteins and 10% of CMV proteins, leaving over

200 proteins from these 3 viruses that are uncharacterized.

Successful herpesvirus infections require manipulation of the host

cell processes to favor viral infection, including alterations of host

nuclear bodies (NBs). Indeed many RNA and DNA viruses are

known to target various host NBs as part of their replication

strategies. For example, adenoviruses and herpesviruses encode

several proteins that cause redistribution of nucleolar components,
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reorganization of the nucleolus and interference with nucleolar

function, including disrupting rRNA synthesis, processing and

trafficking [5,6]. Cajal bodies, which are important for the

maturation of nuclear RNP complexes, are site of localization of

the avian herpesvirus MDV Meq protein [7] and are reorganized by

adenovirus infection [8,9] and by groundnut rosette virus ORF3

[10]. A few herpesvirus proteins have been reported to associate

with nuclear speckles (also called SC35 domains or splicing

speckles), nuclear structures that are storage sites for splicing factors

and, in some cases, alter nuclear speckles as a reflection of their

effects on cellular transcription and splicing [11–16].

Perhaps the most notable NB affected by viral infection are

promyelocytic leukemia (PML) bodies (also called ND10s or

PODs). PML NBs are involved in several important host cell

processes including apoptosis and the DNA damage response [17].

In addition, they suppress lytic infection of both RNA and DNA

viruses as part of an intrinsic immune response and may also

regulate quiescent viral infections [18–22]. For example, overex-

pression of a PML isoform has been shown to inhibit the

replication of Human Foamy Virus, Vesicular Stomatitis Virus

(VSV) and influenza virus, while silencing of PML enhances the

propagation of influenza virus and CMV [18,21,22]. Also PML-

deficient mice are more susceptible to VSV, rabies virus and

lymphocytic choriomeningitis virus infections [23–25]. To coun-

teract this antiviral response, some viral proteins disrupt PML

NBs, often through degradation or dispersal of the PML protein

that forms the core of PML NBs [15,16,26]. For herpesviruses,

HSV ICP0, CMV IE1 and EBV BZLF1 proteins have been found

to disrupt PML bodies through effects on the PML protein, and

this effect of ICP0 and IE1 has been shown to correlate with

increased lytic viral expression and replication [22,27–31]. While a

small number of herpesvirus proteins have been identified that

contribute to viral infection through alteration of host NBs, many

proteins have never been examined for these effects.

To gain a more comprehensive understanding of the many

functions of herpesvirus proteins, we have generated a mammalian

expression library consisting of most of the open reading frames of

HSV, CMV and EBV. These proteins are expressed fused to a C-

terminal tag suitable for protein localization and protein

interaction studies. We present the subcellular localization

screening for all of these proteins. We also identify viral proteins

that localize to and/or alter host NBs, including several that had

not previously been characterized.

Results

Expression libraries
In order to conduct genome-wide studies on herpesvirus

proteins, we attempted to clone each of the predicted ORFs from

HSV-1, CMV (strain AD169) and EBV into a mammalian

expression vector from which proteins are expressed fused to a C-

terminal sequential purification affinity (SPA) tag comprised of a

calmodulin binding peptide and a triple FLAG epitope [32]. Such

constructs are suitable for both protein localization and protein

interactions studies. In addition, nineteen CMV ORFs (UL133-

151) not present in the AD169 laboratory strain were cloned from

the Towne strain of CMV. While not every potential ORF was

recovered in the high throughput cloning effort, we generated

expression constructs for the majority of each genome namely, 60

HSV, 61 EBV, 148 CMV ORFs. A comprehensive list of the

individual proteins used in this study is provided as Table S1. We

examined the migration of approximately half of the viral proteins

in Western blots to verify the quality of the expression library and

found that 91% (103 out of 113) migrated at the predicted size or

larger (see sample blots in Figure S1), with the remaining 9% ran

faster than expected (perhaps due to protein truncation, proteolysis

or anomalous migration). Note that anomalously slow migration in

SDS-PAGE is a common property of highly charged proteins and

is consistent with the highly basic or acidic nature of most of the

viral proteins that we found to migrate slower than their predict

molecular weight.

Subcellular localization of herpesvirus proteins
We attempted to determine the subcellular localization for all of

the viral proteins expressed in 293T cells, by transient transfection

of the expression plasmids and immunofluorescence (IF) micros-

copy for the FLAG epitope (Figure 1A). We obtained localization

data for 234 proteins from the 269 expression plasmids tested, of

which 148 (14 HSV, 100 CMV, 34 EBV) have not been previously

characterized in terms of their localization and most of these also

lack any functional characterization. The localization of 35 of the

viral proteins could not be determined due to protein expression

below detectable levels and/or cell toxicity. Of the 234 viral

proteins we visualized, 85 have previously published subcellular

localization data, and there is excellent agreement between our

results and previous reports (see Table S1 for individual protein

results). Minor discrepancies in localization were observed for

about 15 proteins with only 2 proteins (1.3%; HSV UL56 and

EBV BRRF1) being exclusively in subcellular compartments

different from previous reports. To determine the likelihood of the

protein localization being altered due to our C-terminal tag, we

also compared our localizations to those in the literature for

individual proteins expressed without a tag. Twelve such proteins

(4 HSV and 8 CMV) were identified and all had localizations

consistent with ours (see Table S1). Some discrepancies would be

expected with localizations determined in the context of viral

infection since interactions between viral proteins can alter the

localization of the individual proteins. Therefore we also

compared our localization data to that determined for untagged

viral proteins in the context of viral infection. 24 of the HSV, 12

CMV and 9 EBV proteins in our study had been previously

localized in the context of an infection using specific antibodies.

Two of these proteins (HSV UL19 and UL56) had localizations

that were inconsistent with our observations, while seven more

(HSV ORFP, UL29, UL30, UL31, UL35, UL51, US12) had

Author Summary

Herpes simplex virus, Epstein–Barr virus, and cytomegalo-
virus are three types of human herpesviruses that infect
most people for their entire life and, under some
circumstances, cause significant diseases. Each virus
encodes a large number of proteins that function to
manipulate the host cell to the best advantage of the virus;
however, many of these encoded proteins have never
been studied. We have generated constructs to express
most of the proteins encoded by these three viruses in
human cells and have determined the precise localization
of each in the cell. We have also examined how each viral
protein affects host nuclear structures called PML bodies,
which are part of the cellular response to suppress viral
replication. We identified several proteins from all three
viruses that disrupt PML bodies, suggesting that they
would enable viral infection. Our study has given the first
information on the potential function of 120 previously
unstudied viral proteins and shows that each virus has
multiple mechanisms to disrupt PML bodies that were not
previously recognized.

Herpesvirus Protein Effects on PML Bodies
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staining patterns that overlapped with but were more restricted

than the patterns we observed (see Table S1). Differences in

localization could be due to the presence of additional viral

proteins during infection, differences in protein expression levels or

the presence of our epitope tag. As expected, this initial analysis

shows that such high through-put localization screening will not

accurately determine the localization of every viral protein in the

context of infection, however it does show that such an approach is

appropriate for predicting the localization of the vast majority of

viral proteins even in the context of infection.

Protein localizations were broadly categorized as either pan-

cellular, pan-cytoplasmic, subcytoplasmic, pan-nuclear or subnu-

clear. Some proteins had more complex localization patterns and

fell into multiple categories (e.g. HSV UL24 is subcytoplasmic and

subnuclear) and, in these instances, the protein was recorded in the

most prevalent category and the localization pattern detailed in

the notes section of Table S1. The results for all proteins are

summarized in Figure 1A and detailed in Table S1. Most of the

viral proteins were diffusely localized throughout the nucleoplasm

(52 proteins), throughout the cytoplasm (40 proteins) or through-

out both compartments, often at unequal levels (87 proteins). In

addition, 44 proteins localized to subcytoplasmic structures as

shown in Figure S2. Five proteins (CMV UL12, UL59, US3, US5

and HSV UL12), appeared as vesicular-like bodies throughout the

cytoplasm and seven proteins (HSV UL49, CMV UL77, UL135,

US27 and EBV BcRF1, BORF2, BXLF1) formed foci or plaques.

The remainder of the 44 subcytoplasmic proteins demonstrated

staining patterns indicative of organelle association similar to that

observed with the ER-localized protein disulphide isomerase

(PDI), and many co-localized with this marker indicating

association with the ER and/or secretory pathway (Table S1,

Figure S3). Finally, 14 of the viral proteins screened in 293T cells

localized to a variety of subnuclear structures with many adopting

a nucleolar-like appearance (Figure 1).

There are 26 proteins that are considered to be conserved across

all three families of herpesviruses [33], although in some cases the

degree of homology is limited. We have localization data for all of

the three homologues in HSV, CMV and EBV for six of these

protein families (Table S2). Not unexpectedly, the homologues

generally have the same subcellular localization with only two

proteins (CMV UL103 and HSV UL31) showing staining that was

slightly altered (but overlapping) with their homologues.

Subnuclear localizations
We are particularly interested in how herpesviruses manipulate

host nuclear events and therefore further characterized the viral

proteins that localized to the nucleus. Ninety-three proteins which

were completely (66) or predominantly (27) nuclear in 293T cells,

were reanalyzed in U2OS cells to verify their localization in

another cell background, free of endogenous viral proteins. Results

for individual proteins are indicated in Table S1. Eighty-three out

of the 93 proteins had localizations in U2OS cells that were

indistinguishable from those in 293T cells, including the 14

proteins found to be subnuclear in 293T cells (Figure 2, images

without asterisk). The remaining 10 proteins, recorded as pan-

nuclear or pan-cellular in 293T cells, also had the same

localization in most U2OS cells, but in a fraction of the U2OS

cells showed subnuclear localization (Figure 2, images with

asterisks). We have added these to the list of sub-nuclear proteins,

since they clearly have the capacity to form subnuclear structures

under some circumstances, perhaps at higher expression levels.

Two of the additional subnuclear proteins, HSV US1.5 and EBV

BKRF4, did not actually form nuclear bodies but rather exhibited

largely pan-nuclear staining with discreet foci that excluded the

viral protein (see Figure 2 and Figure S4).

In order to define the localization of the 24 subnuclear proteins

more precisely and to determine how these proteins affect nuclear

substructures, we analyzed the proteins by IF microscopy with

markers for four nuclear bodies (nucleoli, PML NBs, nuclear speckles

and Cajal bodies) that are targets of some viral proteins (Table 1).

Several of the proteins had a nucleolar-like localization and hence

were further examined for co-localization with EBP2 (EBNA-1

binding protein 2), a nucleolar protein involved in rRNA processing

[34,35]. Twelve of the 24 proteins tested co-localized with the EBP2

marker to varying degrees (Figure 3 and Table 1). Notably, CMV

US33 was almost exclusively localized to the nucleolus, whereas all

other proteins also demonstrated some nucleoplasmic localization. In

addition, three HSV proteins, RL1 (ICP34.5), US11 and UL24 also

showed significant cytoplasmic staining, including cytoplasmic

structures in the cases of US11 and UL24.

We also examined subnuclear proteins for localization to PML

NBs, Cajal NBs and nuclear speckles by co-staining for the main

constituents of these bodies, namely PML, coilin and SC35

proteins, respectively. Five of the 24 subnuclear proteins co-

localized at least partially with PML bodies (Table 1, Figure 4A).

CMV US32 showed the most striking co-localization with PML,

while CMV UL3 formed larger NBs that contained PML NBs and

Figure 1. Localization summary of herpesvirus proteins
expressed in 293T cells. (A) Summary table indicating the
localizations of herpesvirus proteins expressed in transfected 293T cells
as determined by IF detection of the C-terminal FLAG epitope. Viable
clones refers to the number of clones for which the viral protein was
detected by IF. (B) IF micrographs representative of the pan-cellular,
pan-cytoplasmic, subcytoplasmic, pan-nuclear and subnuclear localiza-
tions. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1000100.g001

Herpesvirus Protein Effects on PML Bodies
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CMV UL80a formed foci that were often juxtaposed to PML NBs.

CMV UL35 formed nuclear structures ranging from small round

foci to larger spherical nuclear and cytoplasmic structures in which

UL35 was excluded from the centre. PML co-localized with

smaller UL35 foci and was found at the periphery of the larger

spheres, following the contour of the structure. For EBV BKRF4,

10–20% of transfected cells exhibited diffuse nuclear staining with

multiple small foci from which BKRF4 was excluded. In these

cells, PML NBs were found at the periphery of these foci.

None of the 24 subnuclear proteins co-localized with Cajal

bodies or nuclear speckles (Table 1). The remaining seven

subnuclear proteins (HSV US1, US1.5, UL26.5, UL54 and

CMV UL30, UL69 and UL137) did not co-localize with any of the

host NBs that we examined, and the size and shape of these

structures tended to vary from cell to cell, depending on protein

expression levels.

Disruption of Cajal bodies
Although none of the 24 subnuclear proteins analyzed co-

localized with coilin at Cajal bodies in U2OS cells, we noticed a

tendency for cells expressing CMV UL3 or CMV UL30 to have

fewer or no coilin-positive bodies (Figure 5A). It should be noted

that, although both UL3 and UL30 can localize to sub-nuclear

bodies (Figure 2), in most of the cells the staining was pan-nuclear

as illustrated in Figure 5A. We saw no obvious correlation between

the presence or absence of subnuclear staining and the disruption

of Cajal bodies (data not shown). The observed decrease in Cajal

bodies was quantified by counting the number of Cajal bodies

observed by IF microscopy in U2OS cells expressing and not

expressing the viral protein. Untransfected U2OS cells contained

between 0 and 6 Cajal bodies per cell, with an average of 2.2 Cajal

bodies per cell, whereas cells expressing UL3 and UL30 had

significantly lower averages of 1.6 (p,0.05) and 1.2 (p,0.01) Cajal

bodies, respectively (Figure 5B). The effect of these proteins on the

number of Cajal bodies was even more apparent when the number

of cells with each of 0 to 6 Cajal bodies per cell was plotted

(Figure 5C). The expression of UL3 and UL30 resulted in a 2-fold

increase in the percentage of cells with no Cajal bodies and a

similar decrease in the percentage of cells with 4 to 6 Cajal bodies

per cell. These results indicate that CMV UL3 and CMV UL30

can cause the disruption and/or loss of Cajal bodies.

Figure 2. Herpesvirus proteins with subnuclear localization. U2OS cells transfected with expression plasmids for the indicated viral proteins
(green) were fixed and stained with FLAG antibody to visualize the viral protein. DNA was visualized with DAPI stain (blue). For proteins marked with
an asterisk (*), subnuclear structures were observed in U2OS cells but not in 293T cells while those not marked were observed in both U2OS and 293T
cells. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1000100.g002

Herpesvirus Protein Effects on PML Bodies

PLoS Pathogens | www.plospathogens.org 4 July 2008 | Volume 4 | Issue 7 | e1000100



Reorganization and disruption of PML bodies
We were particularly interested in examining the effects of viral

nuclear proteins on PML NBs, since some viral proteins are known

to stimulate lytic viral replication by disrupting PML NBs. As

mentioned above, five proteins at least partially co-localized with

PML NBs and three of these also noticeably altered the PML

bodies in various ways (Figure 4A). CMV US32 and UL3

expression resulted in PML NBs with altered size and shapes

relative to PML bodies in untransfected or vector-transfected cells

(compare to control panel in Figure 4B). In addition, in cells in

which CMV UL35 formed ring-shaped structures, PML was

reorganized into semi-circular structures corresponding to the

periphery of the viral protein donuts.

A small number of herpesvirus proteins are known to contribute

to lytic infection by decreasing the number of host PML NBs but

only a minority of the viral proteins have been tested for this

phenomenon. Given the important roles of PML NB in antiviral

defenses, apoptosis and other processes, we expanded our analysis of

PML alterations beyond the 24 subnuclear proteins to include all 93

proteins with nuclear localization. The effect of these proteins on the

size, shape and number of PML NBs was examined in U2OS cells

(Table S1). Sixty-one of the 93 nuclear proteins had no apparent

effect on PML NBs and only the three proteins mentioned above

appeared to reorganize the PML NBs. These results indicate that

most viral proteins with nuclear localization do not alter PML NBs

even at relatively high expression levels.

For any viral protein that was perceived to decrease or alter

PML NBs (35 proteins), the number of PML NBs per cell was

counted for 100 cells and compared to the same cells lacking viral

protein expression. Although the number of PML NBs varies from

cell to cell, untransfected U2OS cells contained an average of ,13

PML bodies per cell (Figure 4B and Figure 6A). Of the 35 viral

proteins for which PML NBs were counted, 16 decreased the

number of PML NBs by 20% or less with most of these 16 proteins

averaging between 11 and 14 PML bodies per cell. One of the

viral proteins in our study was EBV BZLF1 (also called Zta or

Zebra), which is known to disrupt PML bodies and was therefore

used as a positive control [29]. At low levels of protein expression,

BZLF1 had little effect on the number of PML bodies, however at

higher expression levels PML bodies were severely disrupted

(Figure 4B). On average, cells expressing various levels of BZLF1

had a modest yet significant (p,0.01) 21% decrease in the average

number of PML NBs (Figure 6A). Eighteen viral proteins, from all

three herpesvirus subfamilies, disrupted PML NBs to a greater

degree than BZLF1, causing a 23% to 57% decreases in the

average number of PML NBs per cell (Figure 6A) and examples of

these observed effects are shown in Figure 4B. Qualitatively, some

proteins appeared to require higher levels of protein expression

before effects on PML were observed (CMV UL69, UL76, UL98

and EBV BZLF1 and BFLF2). For all of the19 proteins that

significantly reduced the number of PML NBs, the size and shape

of the PML NBs was not obviously affected. The sizes of all of the

19 PML-disrupting proteins as well as the PML-altering proteins

in Figure 4A were verified by Western blotting (Figure S1).

PML body formation requires modification of PML by the small

ubiquitin-like modifier, SUMO [26,36], and SUMO-modified

proteins such as BZLF1can disrupt PML NBs by competing with

PML for limited cellular SUMO pools, resulting in inefficient

SUMOylation of PML [29]. Therefore we analyzed the 19

proteins that disrupted PML NBs for potential SUMOylation sites

using SUMOplot (www.abgent.com.cn/doc/sumoplot/). This

identified 8 proteins (EBV BZLF1, BRLF1, BDLF1, BFLF2 and

EBNA3B and CMV UL69, UL98 and US25) with at least one,

high-probability potential SUMO modification site (Table S3). We

tested whether these proteins were SUMOylated by co-expressing

them with myc-tagged SUMO-1 in U2OS cells then immuno-

precipitating the viral protein (Figure 6B). Consistent with previous

reports, BZLF1 and BRLF1 were SUMO-1 modified and

produced multiple higher molecular weight, SUMOylated forms

(Figure 6B; also see Figure S1 for protein migration in the absence

of exogenous SUMO). In addition, four other proteins (EBNA3B,

BFLF2, UL69 and US25) also showed various higher molecular

weight bands that reacted with the anti-myc antibody for SUMO-

1, indicating that they too are SUMO-1 modified. No SUMO-1

bands were evident for BDLF1 and CMV UL98 (Figure 6B,

bottom panel), although the low expression level of BDLF1 might

have hampered the detection of SUMO-modified forms.

Discussion

Herpesviruses are large DNA viruses with complex host

interactions but only a minority of the encoded proteins have

been functionally characterized. In order to gain insight into the

possible functions of the many uncharacterized herpesviral

proteins, we generated and screened genomic expression libraries

from HSV, EBV and CMV for subcellular localization, resulting

in the subcellular classification of 234 proteins. With only a few

exceptions, previously reported protein localizations were con-

firmed, while new localization data was generated for approxi-

mately 160 previously unlocalized proteins, most of which

Table 1. Subnuclear proteins and their association with host
nuclear bodies.

Nucleolus
Nuclear
Speckles PML Bodies Cajal Bodies

HSV RL1 Yes No No No

HSV US1 No No No No

HSV US1.5 No No No No

HSV US11 Yes No No No

HSV UL24 Yes No No No

HSV UL26.5 No No No No

HSV UL27.5 Yes No No No

HSV UL54 No No No No

CMV TLR5 Yes No No No

CMV TLR7 Yes No No No

CMV TLR9 Yes No No No

CMV US32 No No Yes No

CMV US33 Yes No No No

CMV UL3 No No Yes No

CMV UL29 Yes No No No

CMV UL30 No No No No

CMV UL31 Yes No No No

CMV UL35 No No Yes No

CMV UL69 No No No No

CMV UL76 Yes No No No

CMV UL80a No No Yes No

CMV UL108 Yes No No No

CMV UL137 No No No No

EBV BKRF4 No No Yes No

doi:10.1371/journal.ppat.1000100.t001

Herpesvirus Protein Effects on PML Bodies
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originate from CMV. A genome-wide subcellular localization

study similar to ours was recently published for the human

gamma-herpesvirus HHV-8, which was found to have 51%

cytoplasmic and 22% nuclear proteins (with 27% in both

compartments) [37]. A comparison to our results with the other

human gamma-herpesvirus, EBV, suggests that EBV has a higher

proportion of nuclear proteins than HHV-8, with 31% in nuclear

and 31% in cytoplasmic compartments. We have focused our

attention on nuclear proteins for all three herpes viruses in our

study, including several proteins that localized to subnuclear

structures, in order to gain a more comprehensive understanding

of how herpesviruses alter host nuclear bodies to support viral

replication.

Many viruses encode proteins that interact with and/or alter the

nucleolus [38]. Traditionally described as the site of ribosome

biogenesis, the nucleolus is emerging as a multifunctional and

dynamic nuclear body that can contain hundreds of different

cellular proteins and is involved in several signaling pathways,

including cell cycle control [39,40]. Therefore, it is not surprising

that some herpesvirus proteins would alter nuclear process

through interactions with the nucleolus. Prior to this study, five

HSV proteins (ICP0, UL24, UL54, US11, RL1), one CMV

protein (UL76) and one EBV protein (EBNA5) were reported to

associate with the nucleolus, in some cases causing nucleolar

reorganization or redistribution of nucleolar components [41–45].

While ICP0 and EBNA5 were not included in our screen, we also

found that the remaining four proteins were associated with the

nucleolus, although to varying degrees. Although HSV UL24 and

CMV UL76 are related proteins, their localization was not

identical in our study. UL76 was almost exclusively located at the

nucleolus, whereas UL24 was observed in the nucleolus, the

nucleoplasm and in subcytoplasmic structures. UL24 has been

reported to disperse nucleolin from the nucleolus during HSV

infection [41], but we did not observe alterations in EBP2

Figure 3. Herpesvirus proteins associated with the nucleolus. U2OS cells expressing the indicated viral proteins were stained with FLAG
antibody to detect the viral protein (green) and with EBP2 antibody to visualize the nucleolus (red). Scale bar = 10 mm.
doi:10.1371/journal.ppat.1000100.g003

Herpesvirus Protein Effects on PML Bodies
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localization, suggesting that UL24 may affect specific nucleolar

components or may require other HSV protein for nucleolar

remodeling. The former possibility is consistent with previous

observations that UL24 did not alter the nucleolar localization of

fibrillarin [41]. In addition to the differences in localization, UL76,

but not UL24, caused a significant decrease in the number of PML

NBs per cell. These differences would suggest that despite

sequence similarities, the functions of these two proteins may vary.

In addition to previously known nucleolar proteins, our screen

identified eight more proteins with nucleolar association; HSV

UL27.5 and CMV TRL-5, TRL-7, TRL-9, UL29, UL31, UL108

and US33. None of these proteins have been functionally

Figure 4. Effects of herpesvirus proteins on PML NBs. U2OS cells expressing the indicated viral proteins were stained with FLAG antibody to
detect the viral protein (green) and with PML antibody to visualize the PML protein (red). (A) Viral proteins that exhibit some degree of co-localization
with PML NBs. Images were also merged to show co-localization of viral proteins with PML bodies (yellow). (B) PML staining of untransfected control
cells and viral proteins that disrupt PML NBs. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1000100.g004
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characterized, although deletion of the UL29, UL31 or UL108

genes are known to moderately inhibit CMV infection [46]. Our

results suggest that these three proteins, as well as the remaining

nucleolar proteins may contribute to viral infectivity through

alteration of nucleolar functions.

None of the viral proteins in our screen co-localized with

nuclear speckles or Cajal bodies, however HSV US1 (more

commonly known as ICP22) was found to form small nuclear foci

that are juxtaposed and similar in number to nuclear speckles

(Figure S4). This pattern of pairing of ICP22 with nuclear speckles

has been previously reported [12]. In addition, the nuclear

speckles appeared to be remodeled in the presence of ICP22,

becoming more separated and punctate, rather than elongated

and interconnected (Figure S4). Since nuclear speckles are linked

to transcription and splicing, these observations may be connected

to the reported effects of ICP22 on cellular and viral gene

expression [47,48]. EBV BMLF1 (also called Mta) has also been

reported to be associated with nuclear speckles in transfected cells

[14], however this was not observed in our study possibly due to

the low expression level of this protein.

In the course of studying the subnuclear viral proteins, we found

that two previously uncharacterized CMV proteins, UL3 and

UL30, significantly decreased the number of Cajal bodies per cell.

UL3 and UL30 have little sequence similarity and vary

considerably in their contribution to CMV infection in fibroblasts;

UL3 is classified a non-essential gene, while deletion of UL30

caused a severe defect in viral replication [46]. The Meq protein

from the avian herpesvirus MDV has been reported to associate

with Cajal bodies [7], however, to our knowledge, CMV UL3 and

UL30 are the first human herpesvirus proteins reported to

associate with or disrupt these structures. Although the functions

of Cajal bodies are not completely clear, they are strongly

associated with transcription and the maturation of ribonuclear

particles and only form when these processes are active [49].

Therefore the disruption of Cajal bodies by UL3 and UL30 may

reflect inhibition of transcription or RNP formation.

There may also be a relationship between Cajal and PML NBs

in that these bodies have been reported to be juxtaposed and to

associate through the PIASy protein [50] . Therefore it may not be

a coincidence that we also found UL3 and UL30 to affect PML

NBs, albeit in different ways. UL3 formed NBs in about 20–30%

of the cells expressing this protein and, in these cells, PML NBs

were irregularly shaped and always associated with UL3 NBs,

suggesting remodeling of PML NBs by UL3. On the other hand,

UL3-expressing cells with pan-nuclear staining were unaffected in

the number or shape of PML NBs. In contrast, Cajal body

disruption was observed for US3-expressing cells that had either

pan-nuclear or NB localization, indicating that the mechanisms by

which UL3 affects Cajal and PML NBs differ and that Cajal body

disruption can occur in the absence of PML reorganization.

Unlike UL3, UL30 significantly decreased the number of PML

NBs per cell. UL30 formed NBs in 40–60% of expressing cells, but

neither PML nor Cajal NB disruption by this protein was

dependent on NB formation. These effects of UL30 may be part of

Figure 5. Disruption of Cajal bodies by CMV UL3 and UL30. (A) UL3- and UL30- expressing U2OS cells and untransfected control cells were
stained with FLAG antibody to detect the viral protein (green) and coilin antibody to detect Cajal bodies (red) and counterstained with DAPI (blue).
Scale bar = 10 mm. (B) Histogram showing the average number of Cajal bodies per cell in cells prepared as in (A). Mean values6SE from 5 separate
experiments are shown. (C) Data from samples in (B) were plotted to show the percentage of cells with a given number of Cajal bodies per cell. Mean
values6SE from 3 separate experiments are shown.
doi:10.1371/journal.ppat.1000100.g005
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its important role in viral replication [46]. While the two proteins

that we found to disrupt Cajal bodies also affect PML NBs, the

reverse is not true, as we identified several viral proteins that

disrupted PML NBs but had no noticeable effect on Cajal bodies.

Four viral proteins in addition to UL3 were observed to localize

with and/or alter the morphology of PML NBs to various degrees;

namely CMV US32, UL35 and UL80a and EBV BKRF4. The

most extensive co-localization with PML was seen for US32, an

uncharacterized protein that is not essential for viral replication in

fibroblasts [46]. UL80a functions in capsid assembly and is

homologous to HSV UL26.5 and EBV BDRF1 [51]. UL80a foci

were often juxtaposed to PML NBs although this was not observed

with the UL80a homologues. EBV BKRF4 was found extensively

through the nucleus except for multiple spherical regions from

which it was excluded, and which had PML in the periphery.

BKRF4 has not been functionally characterized but its localization

in the tegument portion of the virion indicates that it could exert

its effects immediately after infection [52].

For CMV UL35 we observed that a high proportion (,50%) of

both 293T and U2OS cells expressing this protein contained

donut-shaped UL35 NBs of various sizes and that all of the visible

PML was associated with the surface or periphery of these

structures. The UL35 gene produces two co-linear proteins at

different times during infection (75 kDa UL35 and 22 Kda

UL35a), which act to regulate transcription from the major

immediate early promoter [53]. Western blots of our UL35-

transfected cells predominantly showed the larger form of the

protein (data not shown), suggesting that UL35 is responsible for

the PML remodeling in our studies. Both UL35 and UL35a can

bind UL82, which is known to associate with PML NBs through

an interaction with hDaxx [54,55]. Previous reports have noted an

association of UL35 with PML NBs in human foreskin fibroblasts,

and found that this association is increased in the presence of

UL82 [54]. Our results extend previous results to show that UL35

can also remodel PML NBs in some cell backgrounds. In our

system co-expression with UL82 did not noticeably alter UL35

localization or PML effects (data not shown).

Our screen of 94 viral proteins with nuclear localization

identified 19 viral proteins that significantly decreased the number

of PML NBs in cells, including several that had not been

previously recognized to do so. Many of these proteins have not

been functionally characterized but their ability to disrupt PML

NBs suggests that they may contribute to viral infection at least in

part by altering host nuclear processes. For tegument proteins or

those expressed early in infection, the disruption of PML NBs may

directly contribute to viral infection. For proteins that are only

present later in infection, the disruption of PML NBs may not be

the contribution of the protein to infection, as PML NBs would

already be disrupted through the action of other proteins.

Nonetheless, the observed PML effects show that these proteins

alter pathways that are linked to PML NBs.

Of the 3 HSV proteins we found to disrupt PML NBs (UL8.5,

UL14, US10), the cellular effects of one (UL14) have been

previously studied. Interestingly, UL14 is a tegument protein that

has been shown to block apoptosis [56]. Since PML NBs are

important for apoptosis, the PML disruption we observed for

UL14 may account for its anti-apoptotic effects. Note that it is also

well established that HSV ICP0 disrupts PML NBs through

degradation of the PML protein [57,58]. While ICP0 was not

included in our initial screen, we did confirm that it disrupted

PML NBs in transfected U2OS cells and had a more dramatic

effect on PML NBs than any of the other viral proteins we tested

(data not shown).

Previously one CMV protein, IE1, was reported to disrupt PML

bodies [59]. While IE1 was not in our screen, we have identified

10 additional CMV proteins with similar effects on PML

disruption, which vary in their degree of importance for infection

[46]. One of the proteins that we found to significantly decrease

Figure 6. Quantification of PML disruption and detection of
SUMOylated viral proteins that cause PML disruption. (A)
Histogram showing the average number of PML bodies per transfected
U2OS cell for each of the indicated viral proteins. Data is presented at
the mean6SE (n = 3–8). (B) U2OS cells were co-transfected with the
indicated viral protein and myc-tagged SUMO-1 as indicated, then
subjected to anti-FLAG immunoprecipitation (IP) and Western blotting
(WB) for FLAG (top panel) or SUMO (bottom panel). The SUMO-blot lane
for BFLF2 is from the same blot, exposed for 1/3 the time of the
remaining lanes in order to resolve individual SUMOylated protein
forms. Arrowheads indicate the predicted molecular weight of the
unmodified viral protein. Bands marked with an asterisk (*) represent
higher molecular weight forms of the viral protein that were evident in
the viral protein immunoblot and shown to contain SUMO in the
SUMO-blot.
doi:10.1371/journal.ppat.1000100.g006
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PML NBs (UL137) is from the region of the viral genome that is

deleted from the AD169 laboratory strain, and hence may

contribute to infection in specific cell backgrounds such as

endothelial cells which are infected by clinical CMV isolates but

not by AD169 [60]. The fact that CMV produces so many

proteins that target PML likely reflects the importance of PML

disruption and PML-related pathways for the CMV replication

and persistence.

The BZLF1 EBV protein has been previously reported to

disrupt PML NBs thereby promoting lytic infection. We also found

BZLF1 to disrupt PML NBs in our assay but identified 5

additional EBV proteins that had a greater effect on PML NBs

than BZLF1 (BDLF1, BFLF2, BLLF2, BRLF1, EBNA3B). Four of

these proteins had predicted sites of SUMOylation and three

(BRLF1, BFLF2 and EBNA3B) were confirmed to be SUMOy-

lated in the transfected U2OS cells. PML must be SUMO-

modified to form NBs, and other SUMO-modified proteins such

as BZLF1 are known to disrupt PML NBs at least in part by

competing for limiting amounts of SUMO thereby inhibiting PML

SUMOylation [17,29]. Therefore it is likely that competition for

SUMO is part of the mechanism by which BRLF1 and EBNA3B

disrupt PML NBs. BRLF1 (also called Rta) has been previously

reported to be SUMOylated at three sites, which contributes to its

ability to activate lytic gene expression [61], however BRLF1 was

not sufficient to disrupt PML NBs when expressed in HeLa

cells [29]. Our results show that BRLF1 is sufficient to disrupt

PML NBs in U2OS cells, indicating that this effect may vary in

different cell backgrounds and suggesting that BRLF1 and BZLF1

might cooperate in promoting lytic activation through PML

disruption.

The finding that EBNA3B disrupts PML NBs was unexpected

as EBNA3B is a latency protein and PML disruption by viral

proteins is generally associated with activation of lytic infection. In

fact EBNA3B is only expressed during latency III or the growth

program in B-cells, which occurs when B lymphocytes are

immortalized with EBV in vitro and in the lymphomas that arise

when patients are immunosuppressed [62,63]. How EBNA3B

contributes to latent infection has not been clearly determined,

although it may be able to regulate viral and cellular transcription

[64,65]. Since PML NBs are important for apoptosis and

negatively affect cancer development [66,67], our results suggest

that EBNA3B may contribute to cell immortalization and/or

malignant transformation by EBV by disrupting PML NBs. PML

disruption by EBNA3B might also be important for counteracting

antiviral responses to latent EBV infection. For example, the EBV

EBER RNA molecules expressed in EBV latency have been shown

to induce the interferon response, which activates expression of the

PML protein [68,69]. However, the number and size of PML NBs

was found to be similar in EBV-positive and EBV-negative B cell

lines [70], suggesting that one or more latency proteins may

counteract the accumulation of PML. EBNA3B is normally

expressed with EBNA3C. Although EBNA3C did not express well

in our assay, it has been previously shown to be modified by

SUMO-3 (but not SUMO-1) and to disrupt PML NBs when

overexpressed [71]. This study also reported detectable levels of

SUMO-3 modification of EBNA3B. However, this appeared to be

less efficient than the extensive modification by SUMO-1 that we

have observed, where EBNA3B was modified at least as efficiently

as the BZLF1 positive control. The similarity in PML disruption

by EBNA3B and EBNA3C suggests that they might act either

redundantly or cooperatively in this role during latency III

infection. It is striking that the functions of several EBV latent and

lytic gene products are regulated by SUMOylation and it seems

likely that this will also hold true for EBNA3B.

In addition to the SUMOylated EBV proteins, two CMV

proteins that we identified as disrupting PML NBs, UL69 and

US25, were shown for the first time to be SUMO-modified. While

US25 has not been functionally characterized, UL69 is a partial

homologue to HSV ICP27 (UL54) and EBV BMLF1 (Table S2)

and is known to have multiple contributions to viral infection,

including transcriptional activation, the export of viral RNA from

the nucleus and induction of cell cycle arrest [72–74]. Our results

suggest that UL69 may also influence viral infection by disruption

of PML NBs and that one or more of the functions of UL69 may

be regulated by SUMOylation. Neither ICP27 nor BMLF1 were

found to disrupt PML NBs, likely reflecting their rather limited

homology with UL69.

Our large-scale screening approach for viral protein localization

has led to the subcellular characterization of 234 proteins, many of

which have not been previously studied. These include 12 proteins

that we showed to be nucleolar and 5 that localize to and/or

remodel PML NBs. In addition we identified 18 proteins that

reduce the number of PML NBs to a greater extent than EBV

BZLF1, which was previously recognized for its ability to disrupt

PML NBs. Strikingly, most of the proteins that localized with and/

or disrupt host NBs are CMV proteins suggesting that this virus is

particularly adept at manipulating host nuclear processes. Our

studies have also shown that disruption of host PML NBs is not a

general phenomenon of viral proteins even when expressed at high

levels, but rather is a property of specific proteins. However, all

three herpesviruses that we tested clearly have multiple mecha-

nisms by which they can disrupt PML NBs, likely reflecting the

importance of this phenomenon and of PML-related pathways for

successful infection. PML NBs have been increasingly tied to key

cellular processes including host defenses, apoptosis, senescence

and DNA repair [17] , and our results provide a starting point for

investigating how the identified viral proteins may affect these

processes through PML disruption.

Materials and Methods

Expression constructs
Expression libraries for HSV-1 (strain 17), CMV (strain AD169)

and EBV (strain B95-8) were generated by PCR amplification of

each predicted open reading frame (ORF), according to the NCBI

entries for each virus, from viral genomic DNA samples generated

as described in [75]. Nineteen additional CMV ORFs (UL133-

151) not present in AD169 were obtained by PCR amplification

from the large Towne strain of CMV. In addition cDNAs for three

spliced EBV ORFs were obtained from Dr. Elliott Kieff (EBNA3B

and EBNA3C) and Dr. George Miller (BZLF1). cDNAs were

inserted into the multicloning site in pMZS3F [32], with the aid of

cloning robots, such that proteins are expressed fused to a C-

terminal sequential purification affinity (SPA) tag comprised of a

calmodulin binding peptide and a triple FLAG epitope.

Immunofluorescence microscopy
Human 293T and U2OS cells were seeded into 6-well

clusterplates on glass coverslips (700,000 cells/well) and transfect-

ed with expression plasmids using Lipofectamine 2000 (Invitrogen)

as per the manufacturer’s instructions, using a DNA to

Lipofectamine 2000 ratio of 2 mg:2 ml for 293T cells and 2 mg:4 ml

for U2OS cells. Transfected cells were fixed 40 h post transfection

with 3.7% formaldehyde in PBS (20 min), permeabilized with

0.5% Triton X-100 in PBS (10 min), and blocked with 4% BSA in

PBS (20 min) prior to incubation with primary and secondary

antibodies in 4% BSA in PBS. Herpesvirus proteins were detected

using either mouse anti-FLAG M2 (Sigma) or rabbit anti-FLAG
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(AbCam) antibodies. Nucleoli, PML bodies, nuclear speckles,

Cajal bodies and ER were visualized using rabbit anti-EBP2 ,

rabbit anti-pan-PML (Chemicon), mouse anti-SC35 (AbCam),

rabbit anti-coilin (Santa Cruz) and mouse anti-PDI (AbCam)

antibodies, respectively. Primary antibodies were detected using

either goat anti-mouse Alexafluor 488 or goat anti-rabbit

Alexafluor 555 secondary antibodies (Molecular Probes). Cover-

slips were mounted onto slides using ProLong Gold antifade

fluorescent mounting medium (Invitrogen) containing DAPI for

visualization of nuclear DNA. Images were acquired using the

636 oil objective (NA 1.4) on a Leica DM IRE2 inverted

fluorescent microscope. Images were processed using OpenLAB

(ver.4.0.2) and Adobe Photoshop version 6.0 using only linear

adjustments.

Quantification of nuclear bodies
Quantification of Cajal and PML bodies was conducted in

U2OS cells prepared as described above for fluorescence

microscopy. For each herpesvirus protein, the number of nuclear

bodies in each of 50 transfected cells was recorded. This data was

used to calculate the average number of PML or Cajal bodies per

transfected cell (histograms) and to quantify the frequency of a

given number of nuclear bodies per cell within a population (line

graphs). Statistical analyses (ANOVA and t-test) were conducted

using GraphPad Prism (version 4.03) software.

SUMOylation assay
U2OS cells in 10 cm plates were co-transfected with 6 mg each

of pMZS3F expressing a viral protein and pCMVmycSUMO1

expressing myc-tagged SUMO-1 (M. MacPherson and P.

Sadowski, in preparation). At 40 h post transfection, cells were

washed twice with PBS and harvested. Cells were lysed with

200 ml lysis buffer (2% SDS, 10% glycerol, 62.5 mM Tris pH 6.8)

plus 1 nM N-ethyl-maleimide (Sigma) and protease inhibitor

cocktail (P8340, Sigma). Samples were boiled for 5 min, sonicated

and clarified by centrifugation at 13,0006 g for 15 min at 4uC.

The viral protein was immunoprecipitated by diluting the samples

to 1 ml with IP buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1%

NP-40) and incubating with anti-FLAG resin (Sigma) for 4 hr at

4uC, with shaking. Beads were washed three times for 30 min in IP

buffer and protein eluted with 50 ml of 26 protein sample buffer

(5% SDS, 20 mM Tris pH 8, 10% DTT, 20% glycerol). Samples

were subjected to SDS-PAGE, transferred to nitrocellullose

membranes and probed for myc using mouse anti-myc (1:4000

dilution, Abcam) or FLAG using mouse anti-FLAG M2 (1:20,000

dilution, Sigma). 9/10 of each sample was used for the anti-myc

blot to detect SUMO and 1/10 of each sample was used for the

anti-FLAG blot to detect total protein. Bands were detected with

goat anti-mouse HRP (1:5000) and Western Lighting chemilumi-

nescent reagent (PerkinElmer).

Supporting Information

Table S1 Subcellular Localization and PML Disruption Results

for all Herpesvirus Proteins

Found at: doi:10.1371/journal.ppat.1000100.s001 (0.15 MB XLS)

Table S2 293T Cell Localizations of Proteins Conserved in

HSV, CMV and EBV

Found at: doi:10.1371/journal.ppat.1000100.s002 (0.04 MB

DOC)

Table S3 Potential SUMOylation sites in PML-disrupting

Proteins

Found at: doi:10.1371/journal.ppat.1000100.s003 (0.03 MB

DOC)

Figure S1 Size of Herpesvirus Proteins that Alter or Disrupt

PML NBs. Extracts of cell expressing the indicated viral protein

were analyzed by Western blotting using anti-FLAG antibody (A–

C). The predicted molecular weights (MW) for the untagged

proteins are noted below each lane and are not adjusted for the

10 kDa SPA tag. Positions of molecular weight markers are

indicated. Separations between lanes on the gels with the same

MW markers in A and B indicate different exposure times for each

lane from the same gel, to optimize detection of the indicated

protein. Both short and long exposures were included for the

proteins in (C) to show the major bands in the short exposure and

reveal SUMO-modified forms in the longer exposure. UL69 in (C)

was detected on a separate gel. BKRF4, BZLF1, BRLF1 and

UL69 have been previously reported to migrate anomalously

slowly on SDS-PAGE. The majority of proteins that we observed

to migrate slower than their predicted molecular weight are either

highly basic (BLLF2, UL68, TRL9, UL137 and US25) or highly

acidic (BKRF4, BZLF1, UL14, UL98), consistent with the known

property of highly charged proteins to migrate slower than their

molecular weight. Note that variability in protein expression levels

seen in the Western blots is at least partially due to differences in

the percentage of cells expressing each protein (caused by

differences in transfection efficiency of the various plasmids).

Found at: doi:10.1371/journal.ppat.1000100.s004 (4.54 MB TIF)

Figure S2 Herpesvirus Proteins with Subcytoplasmic Localiza-

tions. 293T cells transfected with the indicated viral proteins were

formaldehyde-fixed and stained with FLAG antibody to visualize

the viral protein. Scale bar = 10 mm.

Found at: doi:10.1371/journal.ppat.1000100.s005 (8.52 MB

PNG)

Figure S3 Confirmation of ER Localization. 293T cells were

transfected with the indicated viral proteins with subcytoplasmic

localizations. Cells were fixed and stained with FLAG (red) to

visualize the viral protein and protein disulphide isomerase (PDI,

green) to identify the endoplasmic reticulum. Co-localization is

indicated by yellow in the merged images. CMV US7 is known to

be ER-associated while the localization of BDLF2 is previously

unreported. Scale bar = 10 mm.

Found at: doi:10.1371/journal.ppat.1000100.s006 (3.29 MB TIF)

Figure S4 US1 Alters Nuclear Speckles. Untransfected U2OS

cells (A) and cells transfected with HSV US1 or US1.5 were fixed

and stained for FLAG (red) and SC35 (green) to identify viral

proteins and nuclear speckles respectively. Scale bar = 10 mm.

Found at: doi:10.1371/journal.ppat.1000100.s007 (2.06 MB

PNG)
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