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The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is likely mediated by disproportional
immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed
early host responses to SARS-CoV infection in the lungs of adolescent cynomolgus macaques (Macaca fascicularis) that
show lung pathology similar to that observed in human adults with SARS. Analysis of gene signatures revealed
induction of a strong innate immune response characterized by the stimulation of various cytokine and chemokine
genes, including interleukin (IL)-6, IL-8, and IP-10, which corresponds to the host response seen in acute respiratory
distress syndrome. As opposed to many in vitro experiments, SARS-CoV induced a wide range of type I interferons
(IFNs) and nuclear translocation of phosphorylated signal transducer and activator of transcription 1 in the lungs of
macaques. Using immunohistochemistry, we revealed that these antiviral signaling pathways were differentially
regulated in distinctive subsets of cells. Our studies emphasize that the induction of early IFN signaling may be critical
to confer protection against SARS-CoV infection and highlight the strength of combining functional genomics with
immunohistochemistry to further unravel the pathogenesis of SARS.
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Introduction

Infection with SARS-CoV causes lower respiratory tract
disease with clinical symptoms that include fever, malaise,
and lymphopenia [1]. Approximately 20%–30% of SARS
patients require management in intensive care units, and the
overall fatality rate has approached 10%. Interestingly,
children seem to be relatively resistant to SARS, but the
reason for this restriction is not known [2–4]. The clinical
course of SARS follows three phases [5,6]. In the first phase,
there is active viral replication and patients experience
systemic symptoms. In the second phase, virus levels start to
decrease while antibodies, which are effective in controlling
infection, increase. However, pneumonia and immunopatho-
logical injury also develop in this phase. Ultimately, in the
third phase, fatal cases of SARS progress to severe pneumonia
and acute respiratory distress syndrome (ARDS), character-
ized by the presence of diffuse alveolar damage (DAD) [1,7]. It
has been hypothesized that the pathological changes are
caused by a disproportional immune response, illustrated by
elevated levels of inflammatory cytokines and chemokines,
such as CXCL10 (IP-10), CCL2 (MCP-1), interleukin (IL)-6, IL-
8, IL-12, IL-1b, and interferon (IFN)-c [8–13]. These in vivo
data have been confirmed with in vitro experiments,
demonstrating that SARS-CoV infection induces a range of
cytokines and chemokines in diverse cell types [14–19].

In contrast, production of type I IFNs seems to be inhibited
or delayed by SARS-CoV in vitro [14–18,20–22]. Moreover, no
IFN-a or IFN-b has been detected in the sera of SARS patients
or in lungs of SARS-CoV–infected mice [23–25]. Recent in
vitro studies demonstrated that type I IFN inhibition or delay

may be orchestrated by SARS-CoV proteins ORF 3B, ORF 6,
and N [26]. The inhibition of IFN production would benefit
SARS-CoV replication, since pretreatment of cells with IFN
before SARS-CoV infection efficiently prevents replication in
these cells [21,27–30]. Furthermore, prophylactic treatment
of macaques with pegylated IFN-a reduces SARS-CoV
replication in the lungs [31].
Although IFN production was absent in clinical samples,

gene and protein expression profiles in these patients were
likely impacted by clinical treatments and concurrent
preexisting disease. In addition, most if not all virus–host
response information is from clinical blood/sera samples that
were taken relatively late during infection—little is known
about what happens early during infection. Animal studies
are of great value to decipher the host’s initial innate immune
response, without confounding clinical treatment (steroid
and mechanical ventilation) or underlying co-morbidity. In
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order to elucidate early host responses during the acute phase
of SARS-CoV infection, we infected cynomolgus macaques
with SARS-CoV and used macaque-specific microarrays and
real-time (RT)-PCR techniques to study host gene expression
profiles. Adolescent cynomolgus macaques infected with
SARS-CoV develop DAD similar to SARS patients, but clear
most of the virus in the lungs by day 6 [7]. Because SARS-CoV
replicates predominantly in the lower respiratory tract of
macaques, the virus infects a range of cells, including type 1
and type 2 pneumocytes, that are different from those
analyzed in vitro. The ability to simultaneously examine virus
replication and host response gene expression profiles in the
lungs of these animals during the acute phase of SARS offers
the opportunity to further unravel the pathogenesis of SARS.

Results

SARS-CoV Replication and Global Gene Expression in
Lungs of SARS-CoV–Infected Macaques

Six cynomolgus macaques were inoculated with SARS-CoV
strain HKU-39849 and lung tissues were collected at day 1 (n
¼ 2, 1A and 1B) or day 4 (n¼ 4, 4A–4D). No lesions or clinical
symptoms were detected on day 1 after SARS-CoV infection,
whereas on day 4, three out of four monkeys were lethargic,
with one of these animals showing mildly labored breathing.
Pathological changes at day 4 post infection included DAD,
characterized by flooding of the alveoli with edema fluid,
infiltration of neutrophils, damage to the alveolar and
bronchial epithelia, and occasional type 2 pneumocyte
hyperplasia, as described earlier [31]. Four mock-infected
animals were included in the study to serve as a reference for
host response without viral challenge and to examine outbred
inter-animal variation. Our previous experience with A/
Texas/36/91 influenza virus demonstrated that viral mRNA
was detected in representative samples of the lung rather
than throughout the whole lung [32]. Based on this
experience, the level of infection in separate lung samples
was evaluated using RT-PCR.

SARS-CoV mRNA was detected in all animals, and 13
pieces out of the total of 16 lung pieces from infected animals
contained high levels of virus, while the three remaining
pieces of lung contained very low levels of virus (;3–4 logs
lower, Figure 1A). No viral RNA could be detected in the
samples from the mock-infected animals. For gene expression
experiments, lung samples from SARS-CoV–infected animals
were compared to a reference lung sample from mock-
infected animals. The three samples with lower virus levels
(1A-low, 4A-low, and 4D-low) were analyzed individually so as
not to dilute the gene expression of pooled pulmonary
samples with higher SARS-CoV levels and also to potentially
further define pulmonary infection. Samples from animals
with high viral mRNA levels showed greater gene expression
changes (;2,000 genes day 1, ;800 genes day 4) compared to
samples from animals with low levels of viral mRNA (;400
genes), indicating a response of lung tissue to the virus
(Figure 1B). Additionally, the two day 1 animals showed
higher numbers of differentially expressed genes than the day
4 animals. In contrast, gene expression analysis of the
separate mock samples revealed limited differentially ex-
pressed genes.
In order to examine how gene expression would be

influenced by presence of virus, timing after inoculation,
and individual animal variation, global expression profiling
was performed. Hierarchical clustering methods were used to
order rows (genes) and columns (samples) to identify groups
of genes or samples with similar expression patterns [33,34].
These data were plotted as a heat map in which each matrix
entry represents a gene expression value (Figure 2A). Red
corresponds to higher gene expression than that of the
controls; green corresponds to lower gene expression. This
analysis yielded 2,050 genes with day 1 samples on one side of
the heat map and day 4 samples on the other side of the heat
map, indicating an influence of timing after inoculation.
There are two major roots to the hierarchical dendrogram,
with the larger root composed of all the day 1 samples and the
three day 4 samples with the highest virus levels. The smaller
root is composed of the remaining day 4 samples with the
lowest SARS-CoV levels. Although transcriptional profiling
shows some variation when comparing samples from the
same animal, the underlying gene expression is similar with a
reduction in fold change in the ‘‘low’’ samples. These
comparisons suggest that both individual animal variation
and the ‘‘asynchronous’’ nature of the infection in the
animals’ lungs are factors involved in determining tran-
scription of cellular genes. To validate that the host response
from infected animals comprises a stronger transcriptional
profile than individual variation from mock-infected animals,
differential gene expression patterns in the separate mock
samples were investigated, but only 38 genes were differ-
entially expressed (Figure 2B). These results suggest that
underlying basal levels of gene transcription do not confound
expression levels after infection. Even in a basal state, some
low-level lung-to-lung variations were identified within the
same animal but not enough to disrupt segregation of lung
pieces based on mock-infected animals.

Common and Unique Temporal Host Responses to SARS-
CoV Infection
In order to elucidate common responses to SARS-CoV

throughout the infection as well as unique responses at

PLoS Pathogens | www.plospathogens.org August 2007 | Volume 3 | Issue 8 | e1121130

Host Gene Expression in SARS-CoV–Infected Macaques

Author Summary

Severe acute respiratory syndrome coronavirus (SARS-CoV) infection
causes a progressive atypical pneumonia. In typical cases, largely
confined to adult and elderly individuals, acute respiratory distress
syndrome develops, and admission to an intensive care unit is
required. Although these complications can be fatal, most SARS
patients recover, suggesting that protective immune responses are
operational. In this study, we simultaneously examined virus
replication and host–response gene expression profiles in macaque
lungs during the acute phase of SARS to gain more insight into the
early events that take place after SARS-CoV infection. We show that
a strong host response is induced in the lungs of SARS-CoV–infected
macaques, illustrated by the induction of several pathogenic
cytokines and chemokines. Interestingly, antiviral pathways are
activated as well, demonstrated by the presence of phosphorylated
signal transducer and activator of transcription 1 (STAT1) tran-
scription factors throughout the lung, but not in SARS-CoV–infected
cells. A subset of cells was shown to produce interferon-b, a cytokine
involved in the resistance to many viral infections and able to
activate STAT1. Activation of this antiviral pathway upon SARS-CoV
infection may be an important escape route of the host to withstand
the devastating effects of SARS-CoV.



different time points after inoculation, a Venn diagram was
generated with each set (circle) holding to the parameters of
an absolute fold change . 2 and p , 0.0001 in at least two
animals (Figure 3A). The day 1 set contained 1,278 genes and
the day 4 set contained 950 genes. When examining host
responses that were similar throughout the course of the
infection, the intersection of the day 1 and day 4 sets
indicates that 597 genes show shared responses. The heat map
of these 597 genes is shown in Figure 3B. If more stringent
criteria were used to find common responses in all six
animals, using the 1,278 genes from the day 1 set and the 129
genes that are differentially expressed in all day 4 animals, a
subset of 97 genes was identified. This subset included IFN-
stimulated genes (ISGs), like IFITs, MX1, GBP1, and G1P2, and
also various chemokines and cytokines, such as CXCL10 (IP-
10), CCL2 (MCP-1), IL-6, and IL-8 (Figure S1). These same
cytokines and chemokines have been reported to be up-
regulated in human SARS cases [9–12]. This set also included
cathepsin L (CTSL), which has been shown to be required for
SARS-CoV entry into a cell [35]. Even though only 97 genes
were commonly regulated in all animals, indicated with blue
bars in Figure 3B, the heat map highlights that the other 500
genes show similar expression trends. Both sets of common-
response genes showed similar functionality: cellular growth

and proliferation, cell death, cellular movement, immune
response, and cell-to-cell signaling.
Next, we analyzed genes that were differentially expressed

exclusively on either day 1 or day 4 in order to find signature
gene expression patterns for each day. Genes identified as
unique responses at day 1 (681 genes) and at day 4 (353 genes)
in the Venn diagram showed unique functionality (Figure
3C). The gene expression profile at day 1 shows a prominent
innate host response to viral infection; top functional
categories on day 1 are the immune response, the hemato-
logical system, and the immune and lymphatic system. Genes
like IFN-c, CCL4 (MIP-1-b), CSF3, IL1A, and TNF are included
in these categories. At day 4, a smaller panel of unique
differentially expressed genes that play a role in cell cycle,
cellular assembly, and DNA repair were identified like
CCNB2, CCNE1, CDCA5, CENPA, CHAF1A, and PRC1.

Immune Response, Cell Cycle, and Lung Repair Genes
with Strongly Induced or Reduced Expression
In order to investigate genes that are most strongly

regulated after SARS-CoV infection, genes included in the
Venn diagram (Figure 3A) that also held to an absolute fold
change . 5 were queried (Figure S2). From this set, genes that
were involved in the immune response and lung repair

Figure 1. SARS-CoV mRNA Levels and Global Gene Expression in Lungs of SARS-CoV–Infected Macaques

(A) RT-PCR was performed on all individual pulmonary samples from SARS-CoV–infected animals and mock-infected animals to determine SARS-CoV
levels. Samples from SARS-CoV–infected animals that were pooled for microarray studies are indicated with circles. The three samples with lower levels
of virus were hybridized separately. The 12 samples from mock-infected animals (i.e., PBS) were pooled and served as a reference sample. The number
after PBS refers to the animal (i.e., PBS 1), while the number after the dash refers to the lung piece (i.e., PBS 1-1).
(B) Using microarrays, gene expression in SARS-CoV–infected animals was compared to gene expression in mock-infected animals. The bar graph shows
the total number of genes considered to be differentially expressed, defined as an absolute fold change . 2 with p , 0.0001. Samples 1A and 1B (day 1)
and 4A–4D (day 4) are composed of the pooled individual pulmonary samples shown in (A). Samples 1A low, 4A low, and 4B low are the outliers from
(A). Separate mock samples (i.e., PBS) were compared to the total mock pool.
doi:10.1371/journal.ppat.0030112.g001
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processes were used to generate a heat map (Figure 4). A
number of genes that have been reported to be up-regulated
in SARS patient sera, such as CCL2 (MCP-1), CXCL10 (IP-10),
IL-6, and IL-8, were strongly (;20-fold) induced in all
animals. Many cell cycle and matrix genes indicative of tissue
repair processes were also highly differentially expressed at
day 4 (e.g., ANLN, AREG, CDC2, CDKN3, CKS2, FOSL1, and
KIF2C). Likewise, tissue factor pathway inhibitor 2 (TFPI2), an
anticoagulant, was strongly up-regulated during infection in
all animals (averaging ;20-fold), as well as PLSCR1, SER-
PINE1 (PAI1), and THBS1, all genes involved in pro-
coagulation and platelet activation, were induced. Concom-
itant expression of TFPI2 with these pro-coagulation genes
might function as an inhibitory response to restrain the
activation of the coagulation pathway during acute inflam-
mation.

Surprisingly, expression of diverse IFN-a genes and
expression of IFN-b was up-regulated ;10- to 20-fold in the
day 1 samples. Furthermore, IFN-c, a type II IFN, was
efficiently transcribed on day 1 after SARS-CoV infection
(;5-fold). Other genes associated with the induction of IFNs
like DDX58 (Rig-I), IRF-7, and signal transducer and activator
of transcription 1 (STAT1), were also highly induced (;8-
fold). Up-regulation of type I IFNs in these SARS-CoV
infected macaques is remarkable, since SARS-CoV inhibits
IFN production in many in vitro studies. We did not detect
induced IFN-b mRNA expression using Ma104 cells or Caco2
cells and the SARS-CoV-HKU virus (unpublished data). Not
only IFNs, but also several IFN-responsive genes (e.g., G1P2,
GBP1/2, IFI/IFITs, MX1/2, ISG20, and OAS1/2/L) were highly
transcribed, showing a persistent activation of the innate
immune response. Furthermore, suppressor of cytokine
signaling 1(SOCS1) is induced at the onset of infection,
presumably to establish negative feedback to attenuate
cytokine signaling. Of note, IFIT1 (ISG56/IFI56), often used
to gauge IFN induction, was up-regulated an average of ;13-
fold.

Pathogenic and Antiviral Pathways Induced by SARS-CoV
To further explore some of the pathogenic and antiviral

pathways that are induced after SARS-CoV infection, we
investigated the transcription of various cytokines, chemo-
kines, IFNs, ISGs, and transcription factors involved in the
JAK/STAT pathway. As can be seen in Figure 5A, a wide range
of chemokines and cytokines are differentially expressed
after SARS-CoV infection in macaque lungs, especially on day
1 after infection. Besides previously mentioned chemokines,
we detected monocyte chemotactic protein genes like CCL8
(MCP-2) and CCL7 (MCP-3), but also CCL11 (eotaxin), a
chemotactic protein for eosinophils. In the samples with low
SARS-CoV mRNA levels, the induction of chemokines is less
evident, suggesting that the presence of these molecules is

restricted to areas in the lung where virus is present.
Furthermore, SARS-CoV–infected macaques showed a stron-
ger induction of IFNs (14 unique genes) and ISGs (20 unique
genes) on day 1 than day 4 and when virus was present at high
levels. Note that besides IFN-a, IFN-b, and IFN-c, the IFN-ks
(IL-29, IL-28A, IL-28B), which are type I IFNs, were induced in
samples with high SARS-CoV levels. In the absence of viral
RNA, no IFNs, but interestingly, a number of ISGs (17 unique
genes) were detected, suggesting paracrine stimulation
(Figure 5B).

Confirmation of IL-6, IL-8 IP-10/CXCL10, and IFN-b
Expression with RT-PCR and Correlation with SARS-CoV
Levels
Differential expression of a selection of strongly up-

regulated genes, CXCL10 (IP-10), IL-6, IL-8, and IFN-b, was
confirmed using RT-PCR (Figure 6). In accordance with the
microarray data, the RT-PCR data showed that CXCL10 (IP-
10), IL-6, IL-8, and IFN-b were all expressed at levels that were
approximately 100 times higher in the SARS-CoV–infected
animals at day 1 than in the uninfected control animals and
were still elevated on day 4 after infection. As can be seen in
Figure 6, the induction of IFN-b was strongly correlated to the
presence of virus (rspearman¼ 0.88, p , 0.0001). For CXCL10
(IP-10), IL-6, and IL-8 the correlation is less evident, which is
not surprising since these cytokines can be induced by other
factors than the virus itself.

Detection of IFN-b and Phosphorylated STAT1 in Lung of
SARS-CoV–Infected Macaques, Using
Immunohistochemistry
In order to visualize the host response in the lungs of

SARS-CoV–infected macaques, IFN-b production and trans-
location of phosphorylated STAT1 was studied using immu-
nohistochemistry. In the lungs of the SARS-CoV–infected
macaques, a modest number of cells stained positive for IFN-
b at day 1 post infection, whereas no IFN-b–positive cells
could be detected in mock-infected macaques (Figure 7A–
7C). Notably, most of the cells that stained positive for IFN-b
were located very close to blood vessels, but not in the alveoli
where most SARS-CoV antigen-positive cells (mainly type 2
pneumocytes at 1 day post infection) are located.
To examine whether the IFNs that are produced in the

lungs of these SARS-CoV–infected macaques are biologically
active and able to induce STAT1 phosphorylation and
translocation, lung sections of the infected macaques were
stained with antibodies against phosphorylated STAT1. As
shown in Figure 7D and 7E, no phosphorylated STAT1 could
be detected in the lungs of PBS-infected macaques, while in
the lungs of SARS-CoV–infected macaques, cells with
phosphorylated STAT1 in their nucleus were abundantly
present. Subsequently, the same pieces of lung from SARS-

Figure 2. Unsupervised Global Gene Expression Profile of SARS-CoV–Infected Macaques and Individual Variation in Mock-Infected Animals

Red corresponds to higher gene expression than that of the controls; green corresponds to lower gene expression.
(A) Gene expression profiles result from comparing gene expression in lungs of experimental animals versus gene expression in lungs of mock-infected
animals (pooled). Genes were included if they met the criteria of a 2-fold change or more (p � 0.0001). A two-of-nine strategy allowed samples to
cluster together if profile similarities existed based on timing of inoculation (n ¼ 2 samples for day 1).
(B) The number after PBS refers to the animal (i.e., PBS 1), while the number after the dash refers to the lung piece (i.e., PBS 1-1). Thirty-eight genes are
displayed with an absolute fold change . 2 and p ,0.0001 in at least two animal samples. Up-regulated genes are indicated in bold underline. Only
one gene, HLA-DQA1, was down-regulated . 5. No up-regulated genes met these criteria in mock-infected animals. Separate mock samples (i.e., PBS 1-
1) were compared to the total mock pool.
doi:10.1371/journal.ppat.0030112.g002
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CoV–infected macaques at day 1 were double stained for
phosphorlylated STAT1 and SARS-CoV (Figure 7 F). Notably,
phosphorylated STAT1 was not detected in the nucleus of
SARS-CoV–infected cells (type 2 pneumocytes), while cells
directly adjacent to these SARS-CoV–infected cells stained
for phosphorylated STAT1 in many, but not all, foci
containing SARS-CoV–positive cells. Thus, type I IFNs are
produced in the lungs of SARS-CoV–infected macaques, and
are able to activate the JAK/STAT pathway. However, trans-
location of STAT1 does not occur in SARS-CoV–infected
pneumocytes.

Detection of STAT1 Translocation after SARS-CoV
Infection In Vitro
Although recent studies indicate that the SARS-CoV ORF6

protein is able to inhibit nuclear translocation of STAT1 in
vitro, this was not demonstrated in experiments using
infectious SARS-CoV [26]. In order to assess whether SARS-
CoV inhibits phosphorylation and translocation of STAT1,
MA104 cells were infected with SARS-CoV for 24 h and then
either fixed directly or treated with type I IFN. Cells infected
with SARS-CoV, but not treated with IFN, stained positive for
SARS-CoV (unpublished data), but lacked staining for

Figure 3. Common and Unique Temporal Gene Responses to SARS-CoV Infection

(A) The Venn diagram shows genes with an absolute fold change . 2 and p , 0.0001 in two out of the two day 1 samples (left circle) or two out of the
four day 4 samples (right circle).
(B) The heat map includes the 597 genes from the grey Venn diagram intersections. The right column highlights the 97 genes that are commonly
regulated in all six samples with blue. All 97 genes are listed in Figure S1. All gene expression profiles are the results of comparing gene expression in
lungs of experimental animals versus gene expression in lungs of mock-infected animals (pooled).
(C) Functional annotation was used to categorize the 681 unique genes at day 1, and the 353 unique genes at day 4. The percentage of genes within
the top functional categories is indicated in the day 1 and the day 4 bar graph, with a white line indicating the percentage of genes found at the
alternative day. Cell-to-cell signaling and cell death, other top categories on day 1, and cell death, cellular growth, and proliferation, additional top
categories on day 4, are not included in the bar graph, as these categories were observed to have more genes differentially expressed in the common
signature.
doi:10.1371/journal.ppat.0030112.g003
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phosphorylated STAT1, indicating that SARS-CoV or other
soluble mediators are not able to induce STAT1 phosphor-
ylation (Figure 8). After treatment of the MA104 cells with
IFN, phosphorylated STAT1 could be detected in the nucleus
of most cells, but not in the nucleus of SARS-CoV–infected
cells (Figure 8). This demonstrates that SARS-CoV inhibits
the translocation of phosphorylated STAT1 to the nucleus,
confirming our in vivo data. Besides inhibiting translocation
of phosphorylated STAT1, SARS-CoV also seems to reduce
STAT1 phosphorylation, as the majority of SARS-CoV–
infected cells contained low levels of phosphorylated STAT1
in their cytoplasm.

Discussion

Pathogenic viruses escape the antiviral action of the IFN
system by inhibiting both IFN production and signaling
pathways. Here, we report that even though production and
signaling of type I IFNs is inhibited by SARS-CoV in vitro as
well as in SARS-CoV–infected cells in vivo, high levels of type
I IFNs are induced in the lungs of SARS-CoV–infected
macaques. These IFNs are able to activate STAT1, followed by
the transcription of numerous ISGs. Using immunohisto-
chemistry, we revealed that these antiviral signaling pathways
were differentially regulated in distinctive subsets of cells.
Our results emphasize the strength of combining functional
genomics with immunohistochemistry to further unravel the
pathogenesis of SARS-CoV infection in cynomolgus maca-
ques.
To our knowledge, this study represents the first functional

genomics investigation of SARS-CoV infection in cynomolgus
macaques. All experimental animals showed signs of infection
because viral mRNA could be detected in random samples
from the lung, indicating that the virus had spread through-
out the whole lung at the time of necropsy. Furthermore,
pathological examination of SARS-CoV–infected macaques
at day 4 post infection revealed multifocal DAD [31]. Unlike
10% of humans with SARS, which are mainly restricted to the
elderly, adult macaques used in this study do not succumb to
SARS-CoV infection. However, the SARS-CoV–induced path-
ology in these macaques likely resembles the pathological
changes seen in the majority of human SARS patients that
recover from the disease. Although none of the current animal
models has fully reproduced all features of SARS, the most
important aspects of this disease are observed in experimen-
tally infected macaques, providing valuable insights into the
initial innate immune response after infection without
confounding clinical treatment or underlying co-morbidity.
Using macaque-specific microarrays, we were able to

observe that with early infection, high levels of viral mRNA
corresponded to a strong cellular host response. This strong
host response is dominated by genes involved in the immune
response and includes a wide range of genes corresponding
with what is seen in human ARDS. During the acute phase of
human ARDS, activated neutrophils and macrophages enter
the alveoli and produce a number of cytokines and chemo-
kines such as IL-6, IL-8, and CXCL10 (IP-10) [36], as were
found in the lungs of our SARS-CoV–infected macaques.
Researchers have postulated that these genes also predict
adverse SARS patient outcome [37]. During the chronic phase
of human ARDS, type 2 pneumocytes start to proliferate and
differentiate in order to repair the damaged lung. At day 4,

Figure 4. Immune Response, Cell Cycle, and Lung Repair Genes with

Strongly Induced or Reduced Expression

A selection of genes, involved in the immune response, cell cycle, or lung
repair processes, that showed an absolute fold change . 5 and p ,
0.0001 in both day 1 animals and/or in at least two of the four day 4
animals was made. Genes with an absolute fold change . 5 in both day
1 animals and in at least two of the four day 4 animals are indicated with
bold, underlined text. A full summary of genes that show an absolute
fold change . 5 and p , 0.0001 after SARS-CoV infection is given in
Figure S2.
doi:10.1371/journal.ppat.0030112.g004
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the macaque lung shows similar evidence of lung repair, and
numerous genes are up-regulated that are involved in cellular
growth and proliferation, cell cycle regulation, and DNA
replication and repair. Genes involved in cell cycle regulation
and proliferation have been previously reported in corona-
virus infections other than SARS-CoV and have been
characterized by an accumulation of infected cells in the

G0/G1 phase [14,38]. We also detected a strong presence of
genes involved in the coagulation pathway, including TFPI2,
SERPINE1, and TIMP1. The idea of a pro-coagulation profile
mimics the clinical-pathological observations of SARS pa-
tients that showed unusually disseminated small vessel
thromboses in the lungs [5,39]. Additionally, cathepsin L
was up-regulated in all SARS-CoV–infected macaques.

Figure 5. Innate Host Response Profile from Tissues Showing Presence or Absence of Viral mRNA

Using a bioset that contained a selection of genes involved in pathological and antiviral pathways, a heat map was created showing all genes with
expression changes . 2 and p , 0.0001 in at least one of the samples with high SARS-CoV levels (A) or in at least one of the samples with low SARS-CoV
levels (B). Although there is some functional overlap with genes, the heat map is segregated by functional annotations. Chemokines (yellow), classical
antiviral genes (blue), interleukins (white), JAK/STAT pathway, interferons, or ISGs (red), and transcriptional factors (pink). Genes with an absolute fold
change . 5 in two day 1 animals and in at least two of the four day 4 animals are indicated with bold, underlined text.
doi:10.1371/journal.ppat.0030112.g005
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Induction of this gene after SARS-CoV infection is quite
interesting because cathepsin L is an endosomal protease that
is necessary for SARS-CoV to infect a cell [35].

Remarkably, SARS-CoV infection in macaques leads to a
strong transcription of IFNs. Not only IFN-a, IFN-b, and IFN-
k (all type I IFNs), but also IFN-c, a type II IFN, were all highly
up-regulated, especially on day 1 after infection. The
expression of IFN-b, which strongly correlated to the amount
of virus present, continued throughout day 4 and was
confirmed using immunohistochemistry; IFN-b–positive cells
could be detected in the lungs of the SARS-CoV–infected
macaques. The induction of IFN-b in these SARS-CoV–
infected macaques is surprising, because several reports have
shown that SARS-CoV inhibits or delays type I IFN
production in a number of cell types [14–18,20,22]. For
example, SARS-CoV blocks a step in the activation of IRF-3, a

transcription factor that is required for IFN-b induction [21].
In addition, the SARS-CoV proteins ORF3B, ORF6, and
nucleocapsid have been shown to function as IFN antagonists,
as has the SARS-CoV nsp1 gene that prevents the production
of Sendai virus–induced IFN-b in 293 cells [26,40]. Interest-
ingly, it was recently shown that plasmacytoid dendritic cells
(pDCs) are able to produce IFN-a and IFN-b after SARS-CoV
infection, while conventional DCs did not produce these type
I IFNs [41]. pDCs are known for their ability to produce very
high amounts of IFN-a and IFN-b and are considered first-
line sentinels in immune surveillance in the lung [42–46]. We
speculate that the IFN-b–producing cells detected in the
lungs of SARS-CoV–infected macaques are pDCs. Future
studies may address the nature of these IFN-producing cells
once technical difficulties in detecting pDCs in macaque
tissues have been tackled. These studies may also shed light on
whether decreasing numbers of pDCs observed in clinical
blood samples from human SARS patients are caused by
sequestering of pDCs by the lungs, destruction of pDCs by
SARS-CoV, or destruction or suppression of pDCs by steroid
treatment [47].
When IFNs are produced, they bind to their receptors on

the cell membrane, after which STAT1, a key member of the
JAK/STAT pathway, is phosphorylated and subsequently
translocated to the nucleus, followed by the production of a
wide range of IFN-stimulated genes. In vitro, SARS-CoV
inhibited translocation of STAT1 to the nucleus, and
phosphorylation of STAT1 was strongly reduced. However,
the inhibition of STAT1 phosphorylation was not absolute
because cells with low levels of phosphorylated STAT1 in
their cytoplasm were also detected. In accordance with our
data, Kopecky-Bromberg et al. recently showed that the
SARS-CoV protein ORF6 is able to inhibit STAT1 trans-
location [26]. This strategy is not unique to SARS. Other
viruses have been shown to be able to block signaling of IFNs
by affecting phosphorylation and/or translocation of the
STAT proteins. For example, measles virus V protein inhibits
translocation of STAT1, but does not affect phosphorylation,
whereas measles virus P protein blocks both of these
processes [48]. Other paramyxoviruses, like Rinderpest virus,
Nipah virus, Hendra virus, and mumps virus, as well as
flaviviruses like West Nile virus and Japanese encephalitis
virus, are able to block activation of STAT1 and STAT2 [49–
52]. Inhibition of STAT1 phosphorylation is not always
complete. For example, Sendai virus suppresses tyrosine
phosphorylation of STAT1 during the early stages of
infection, but this block becomes leaky after a couple of
hours with phosphorylated STAT1 accumulating in the
cytoplasm [53].
In contrast to these in vitro data, we observed phosphory-

lated STAT1 in the nuclei of numerous cells in the lungs of
SARS-CoV–infected macaques, indicating that these cells had
been activated by the IFNs produced in the lung. However,
phosphorylated STAT1 was not detected in SARS-CoV–
infected cells. The observations made in this study indicate
that SARS-CoV–infected macaques produce IFNs in response
to virus infection and are further capable of activating the
STAT1 pathway in cells surrounding the SARS-CoV–infected
cells.
The importance of IFNs in controlling SARS-CoV infection

has been suggested in several animal studies. Mice clear
SARS-CoV in the absence of NK cells, T cells, or B cells,

Figure 6. Confirmation of Microarray Results with RT-PCR and

Correlation of Induced Genes with Presence of SARS-CoV

Quantitative RT-PCR for IL-6, IL-8, CXCL10 (IP-10), and IFN-b was
performed on all separate lung samples. Expression levels of these
genes were plotted against the presence of SARS-CoV in these samples
(as detected by RT-PCR). Correlation coefficients were determined using
Spearman’s correlation test.
doi:10.1371/journal.ppat.0030112.g006
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suggesting that innate immune responses are sufficient to
limit SARS-CoV infection in these animals [23]. Indeed,
STAT1 knock out mice, which are resistant to the effects of
IFNs, to some extent show a worsening of pulmonary disease
and an increase in viral replication in the lungs compared to
normal mice after infection with SARS-CoV [54]. Although
IFN treatment was not conducted in SARS-CoV infection
mouse studies, prophylactic treatment of macaques with
pegylated IFN-a protects type 1 pneumocytes from infection
with SARS-CoV [31]. In addition, potent antiviral activity is
observed in vitro when cells are treated with IFNs before they
are infected with SARS-CoV [27,29,30]. Although we cannot
determine the effect of neutralizing IFN-b in SARS-CoV–
infected animals, based on the experiments utilizing re-
combinant IFNs in these animals, we postulate that type I
IFNs are partly responsible for the relatively mild clinical
symptoms that are seen in SARS-CoV–infected macaques. In
addition, a recent study again demonstrated the importance
of IFNs in viral infections, as macaques infected with the
highly pathogenic and fatal 1918 influenza virus showed

limited induction of type I IFNs (only IFNA4 reached fold
changes . 5) and delayed induction of ISGs, while macaques
infected with the low-pathogenic K173 influenza virus
showed a strong induction of these antiviral molecules early
during infection [55]. Notably, IFN-b was not up-regulated
(absolute fold change , 2) in any of the influenza virus–
infected animals, even in those animals that recovered, unlike
SARS-CoV–infected macaques that showed a very strong
presence of IFN-b.
In conclusion, our study demonstrates that cynomolgus

macaques can be infected with SARS-CoV, as indicated by
presence of viral mRNA at different locations throughout the
lung at day 1 and day 4, with gross pathology becoming
noticeable at day 4. Furthermore, we show that infection of
cynomolgus macaques with SARS-CoV leads to a strong
immune response, including the induction of various
cytokines and chemokines, resembling the host response seen
in human SARS patients. Strikingly, despite the fact that
SARS-CoV infection blocks the production of IFNs in vitro,
type I IFNs are strongly induced in the lungs of SARS-CoV–

Figure 7. Detection of IFN-b and Phosphorylated STAT1 in Lung of SARS-CoV–Infected Macaques Using Immunohistochemistry

(A) Lack of IFN-b expression in lungs of mock-infected macaques (magnification 403) and (B, C) expression of IFN-b (red) in lungs of SARS-CoV–infected
macaques at day 1 post infection (403 [B] and 1003 [C], arrowheads). (D) Lack of phosphorylated STAT1 in lungs of mock-infected macaques (403) and
(E) abundant presence of phosphorylated STAT1 (brown) in lungs of SARS-CoV–infected macaques at day 1 post infection (403, arrowheads). (F) No
detection of phosphorylated STAT1 (brown) in SARS-CoV–infected cells (red) (403, arrowheads).
doi:10.1371/journal.ppat.0030112.g007

Figure 8. Inhibition of STAT1 Phosphorylation and Nuclear Translocation in SARS-CoV–Infected MA104 Cells

MA104 cells were infected with SARS-CoV for 24 h and then either fixed directly (left panel) or treated with type I IFN and then fixed. Subsequently, cells
were stained for phosphorylated STAT1 and SARS-CoV. The far right panel shows a merge of the two middle panels, showing an inhibition of STAT1
phosphorylation and translocation in SARS-CoV–infected cells.
doi:10.1371/journal.ppat.0030112.g008
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infected macaques. The production of IFN early during
infection leads to widespread activation of STAT1 and the
production of ISGs. This suggests that, although SARS-CoV
blocks IFN signaling in infected cells, locally produced IFNs
are capable of activating non-infected cells and possibly can
prevent infection of these cells. Thus, SARS-CoV infection in
macaques leads to the differential activation of both
pathogenic and antiviral signaling pathways in vivo, and the
outcome may be determined by the relative contribution of
these signaling pathways.

Materials and Methods

SARS-CoV infection. Six cynomolgus macaques (Macaca fascicularis)
were infected intratracheally with 1 3 106 TCID50 SARS-CoV (HKU-
39849) as described earlier [31]. Virus stocks were generated in Vero
E6 cells that were defective in IFN production. Two animals were
euthanized on day 1 after infection and four animals were euthanized
on day 4. In addition, four animals were mock (PBS) infected and
euthanized on day 4, serving as a negative control group. One lung
from each monkey was fixed in 10% formalin for histopathology and
immunohistochemistry while the other was used for real-time PCR
and microarrays. Lung samples were randomly excised from three
different lung areas (cranial, medial, caudal) and stored in RNAlater
(Ambion, http://www.ambion.com/). Sixteen pieces of lung were taken
from the SARS-CoV–infected animals, two to three pieces of lung per
animal. Twelve pieces of lung were taken from the mock-infected
animals, three pieces of lung per animal. Individual lung samples in
RNAlater were transferred to TRIZOL Reagent (Invitrogen, http://
www.invitrogen.com/), homogenized using Polytron PT2100 tissue
grinders (Kinematica, http://www.kinematica.ch), and then processed
to extract RNA. All experiments were executed under a biosafety
level 3, and approval for animal experiments was obtained from the
Institutional Animal Welfare Committee.

Oligonucleotide microarray analysis. Infected macaque lung
samples were co-hybridized with a reference mock-infected macaque
lung sample on macaque oligonucleotide arrays containing 131 viral
probes, corresponding to 26 viruses, and 22,559 rhesus probes,
corresponding to ;18,000 rhesus genes. The reference mock-infected
sample was created by pooling equal mass quantities of total RNA
extracted from the 12 individual lung pieces from mock-infected
animals. An Agilent 2100 bioanalyzer was used to check the purity of
the total RNA prior to cRNA probe production with the Agilent Low
RNA Input Fluorescent Linear Amplification kit (Agilent Technolo-
gies, http://www.agilent.com/). Arrays were scanned with an Agilent
DNA microarray scanner, and image analysis was performed using
Agilent Feature Extractor Software (Agilent Technologies). Each
microarray experiment was done with two technical replicates using
dye reversal [56]. All data were entered into a custom-designed
database (Expression Array Manager) and analyzed with Resolver 4.0
(Rosetta Biosoftware, http://www.rosettabio.com/) and Spotfire Deci-
sionSite for Functional Genomics (Spotfire, http://www.spotfire.com/).

In our data analysis, genes were selected to be included for
transcriptional profile based on two criteria: a greater than 99.99%
probability of being differentially expressed (p � 0.0001) and an
expression level change of 2-fold or greater. Ingenuity Pathway
Analysis (Ingenuity Systems, http://www.ingenuity.com/) was used to
functionally annotate genes according to biological processes and
canonical pathways. In accordance with proposed MIAME standards,
primary data are available in the public domain through Expression
Array Manager at http://expression.microslu.washington.edu/
expression/index.html [57].

Quantitative real-time RT-PCR. RT-PCR was performed to detect
SARS-CoV mRNA and to validate cellular gene expression changes as
detected with microarrays. Each reaction was run in triplicate using
Taqman 2x PCR Universal Master Mix (Applied Biosystems, http://
www.appliedbiosystems.com/) with primers and probe specific for the
SARS-CoV nucleoprotein gene [7], or for macaque cellular genes
(sequences shown in Table 1). Differences in gene expression are
represented as the fold change in gene expression relative to a
calibrator and normalized to a reference, using the 2�DDCt method
[58]. GAPDH (glyceraldehydes-3-phosphate dehydrogenase) or 18S
rRNA were used as endogenous controls to normalize quantification
of the target gene. The samples from the mock-infected macaques
were used as a calibrator.

Immunohistochemistry. Formalin-fixed, paraffin-embedded lung
samples from SARS-CoV–infected and mock-infected macaques were
stained for SARS-CoV, phosphorylated STAT1, and IFN-b using
mouse-anti-SARS-nucleocapsid (Clone Ncap4, mouse IgG2b; Imge-
nex, http://www.imgenex.com/), mouse-anti-phospho-STAT1 (Clone
ST1P-11A5, mouse IgG2a-j; Zymed Laboratories, http://www.
invitrogen.com/), and rabbit-anti -IFN-b (Chemicon, http://www.
chemicon.com/), respectively. After deparaffinization, antigen re-
trieval was performed using a citrate buffer for the SARS-CoV and
STAT1 staining. No antigen retrieval was performed when staining
for IFN-b. Goat-anti-mouse IgG2a HRP, goat-anti-mouse IgG2b AP
(Southern Biotech, http://www.southernbiotech.com/), and anti-rabbit
IgG-HRP (DAKO, http://www.dako.com/) were used as secondary
antibodies. Signals were developed with Fast Red and DAB (Sigma,
http://www.sigmaaldrich.com/) and counterstained with Mayer’s hem-
atoxylin.

In vitro SARS-CoV and STAT1 staining. MA104 cells (African
green monkey foetal kidney cells, ECACC) were cultured in Eagle’s
Minimal Essential Medium (EMEM; Cambrex, http://www.cambrex.
com/) supplemented with 2 mM glutamine, 1% non-essential amino
acids and 10% foetal bovine serum. Cells were seeded in 96-well
plates and infected with SARS-CoV (MOI 0.5), and 24 h after
infection, selected wells were treated with universal type I IFN (5,000
U/ml, Sigma) for 30 min at 37 8C. Subsequently, cells were fixed with
10% neutral-buffered formalin and treated with 70% ethanol. SARS-
CoV–infected cells were visualized using purified human IgG from a
convalescent SARS patient (CSL), followed by staining with an
antibody to human IgG, linked to Alexa Fluor 594 (Invitrogen).
Phosphorylated STAT1 was visualized using mouse-anti-phospho-
STAT1 (Zymed), followed by staining with a FITC-linked antibody to
mouse IgG.

Supporting Information

Figure S1. Heat Map of Common Response Genes That Are Observed
in All Animals

Depicted are all genes that adhere to an absolute fold change . 2 and
p , 0.0001 in all animals.

Found at doi:10.1371/journal.ppat.0030112.sg001 (2.2 MB TIF).

Figure S2. Full Summary of Highly Differentially Expressed Genes

(A) Genes with an absolute fold change . 5 and p , 0.0001 in both
day 1 animals.
(B) Genes with an absolute fold change . 5 and p , 0.0001 in two of
the four day 4 animals.
(C) Genes with an absolute fold change . 5 and p , 0.0001 in both
day 1 animals and in at least two of the four day 4 animals. Genes that
were used for the heat map in Figure 4 are highlighted in grey.

Found at doi:10.1371/journal.ppat.0030112.sg002 (5.8 MB TIF).
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