Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Circumscription of the genus Lepra, a recently resurrected genus to accommodate the “Variolaria”-group of Pertusaria sensu lato (Pertusariales, Ascomycota)

  • Xinli Wei ,

    Roles Formal analysis, Writing – review & editing

    weixl@im.ac.cn

    Affiliation State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

    ORCID http://orcid.org/0000-0001-5470-9590

  • Imke Schmitt,

    Roles Methodology, Writing – review & editing

    Affiliations Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, Frankfurt am Main, Germany, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Frankfurt am Main, Germany

  • Brendan Hodkinson,

    Roles Writing – review & editing

    Affiliation Squamules Unlimited, Henrico, VA, United States of America

  • Adam Flakus,

    Roles Writing – review & editing

    Affiliation Laboratory of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, Poland

  • Martin Kukwa,

    Roles Writing – review & editing

    Affiliation Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, WitaStwosza 59, Gdańsk, Poland

  • Pradeep K. Divakar,

    Roles Writing – review & editing

    Affiliation Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, Madrid, Spain

  • Paul M. Kirika,

    Roles Writing – review & editing

    Affiliation Botany Department, NationalMuseums of Kenya, Nairobi, Kenya

  • Jürgen Otte,

    Roles Methodology

    Affiliation Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, Frankfurt am Main, Germany

  • Anjuli Meiser,

    Roles Methodology

    Affiliation Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, Frankfurt am Main, Germany

  • H. Thorsten Lumbsch

    Roles Conceptualization, Investigation, Writing – original draft

    Affiliation Science & Education, The Field Museum, Chicago, Illinois, United States of America

Circumscription of the genus Lepra, a recently resurrected genus to accommodate the “Variolaria”-group of Pertusaria sensu lato (Pertusariales, Ascomycota)

  • Xinli Wei, 
  • Imke Schmitt, 
  • Brendan Hodkinson, 
  • Adam Flakus, 
  • Martin Kukwa, 
  • Pradeep K. Divakar, 
  • Paul M. Kirika, 
  • Jürgen Otte, 
  • Anjuli Meiser, 
  • H. Thorsten Lumbsch
PLOS
x

Abstract

Pertusarialean lichens include more than 300 species belonging to several independent phylogenetic lineages. Only some of these phylogenetic clades have been comprehensively sampled for molecular data, and formally described as genera. Here we present a taxonomic treatment of a group of pertusarialean lichens formerly known as “Pertusaria amara-group”, “Monomurata-group”, or “Variolaria-group”, which includes widespread and well-known taxa such as P. amara, P. albescens, or P. ophthalmiza. We generated a 6-locus data set with 79 OTUs representing 75 species. The distinction of the Variolaria clade is supported and consequently, the resurrection of the genus Lepra is followed. Thirty-five new combinations into Lepra are proposed and the new species Lepra austropacifica is described from mangroves in the South Pacific. Lepra is circumscribed to include species with disciform ascomata, a weakly to non-amyloid hymenial gel, strongly amyloid asci without clear apical amyloid structures, containing 1 or 2, single-layered, thin-walled ascospores. Chlorinated xanthones are not present, but thamnolic and picrolichenic acids occur frequently, as well as orcinol depsides. Seventy-one species are accepted in the genus. Although the distinction of the genus from Pertusaria is strongly supported, the relationships of Lepra remain unresolved and the genus is tentatively placed in Pertusariales incertae sedis.

Introduction

Molecular data had a major impact on our understanding of the evolution and phylogenetic relationships of lichen-forming fungi, and this resulted in a dramatic change of the classification over the last decades [17]. Pertusarialean fungi, traditionally placed in the family Pertusariaceae, mirror these changes. Over twenty years ago one of us (HTL) became interested in this group of fungi since the delimitation of genera, especially between the two major genera Ochrolechia and Pertusaria, was unclear. At that point morphological and chemical characters suggested a complex pattern but did not allow for a clear understanding of the phylogenetic relationships in this group of lichen-forming fungi [810].

Subsequent phylogenetic studies based on molecular data have shown that the group is polyphyletic and that the issues of distinguishing the main genera in the group, Ochrolechia and Pertusaria, were partly due to the fact that the large genus Pertusaria was highly polyphyletic [1119]. These studies mainly included non-tropical species. Using a combination of morphological and chemical characters, the four major clades found within Pertusaria s. lat. can be characterized phenotypically [12, 16]. Two of the three clades, which are different from Pertusaria s. str., were subsequently recognized at generic level: Gyalectaria to accommodate species with gyalectoid ascomata forming a sister-group relationship to Coccotrema [12], and Varicellaria to accommodate species containing lecanoric acid as major extrolite, having disciform ascomata, strongly amyloid asci and non-amyloid hymenial gel, 1-2-spored asci with 1-layered, thick-walled ascospores [13]. However, the largest of the clades distantly related to Pertusaria, the Variolaria group [16] has not yet been treated in more detail by us.

Recently, a phylogenetic study of the group confirmed that the Variolaria group is distinct from Pertusaria and a new genus, Marfloraea was described to accommodate thirteen species of the group [19]. Subsequently, Hafellner [20] provided a detailed discussion of the taxonomy and nomenclature of the Variolaria group and showed that the description of this new genus was superfluous since several names are available for the group. He resurrected the genus Lepra with Marfloraea as synonym. This interpretation was followed in Buaruang et al. [21] and Lendemer & Harris [22]. These recent publications prompted us to address the circumscription of the genus Lepra using a data set of six loci, including four nuclear protein-coding genes and two ribosomal genes–nuclear large subunit (nuLSU) and mitochondrial small subunit (mtSSU) DNA. In addition to a larger sampling of molecular markers, we have also extended our taxon sampling to include additional, mainly tropical species to better understand the delimitation of this genus.

Materials and methods

Ethics statements

None of the collecting locations of the specimens used in this study are in natural conservation areas and hence no specific permissions were required for collecting samples. Our field studies did not involve any endangered or protected species.

Taxon sampling

Forty-eight specimens of Lepra were included in the study (S1 Table). In addition sequences of the related genera Ochrolechia and Varicellaria, three species of Megasporaceae, and Pertusaria s. str. were included. Based on previous studies [12, 13,15], samples of Pertusaria s. str. were chosen as outgroup.

DNA amplification and sequencing

Total genomic DNA was extracted from thallus fragments following the manufacturers’ instructions using the DNeasy Plant Mini Kit (Qiagen). We generated sequences of six loci, including nuclear large subunit (nuLSU), mitochondrial small subunit (mtSSU), and protein-coding loci, including the largest subunit of the RNA polymerase II gene (RPB1), the minichromosome maintenance complex component 7 (MCM7), elongation factor 1-α (EF1) and ribosome maturation factor TSR1, since they have been shown to be phylogenetically informative in molecular studies of fungi at this phylogenetic level [13, 15, 16, 2326]. The PCR reactions were performed and primers were used as described previously [12, 24,26]. PCR products were sequenced using an ABI PRISM™ 3730 DNA Analyzer (Applied Biosystems). The sequences were assembled using SeqMan 7.1.0 (Lasergene) and conflicts edited manually.

Sequence alignments and phylogenetic analyses

Sequences were aligned using ClustalW [27] in BioEdit 7.2.5 [28]. The program Gblocks v0.91b [29, 30] was used to remove regions of alignment uncertainty, using options for a “less stringent” selection on the Gblocks web server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html). To test for phylogenetic congruence among loci, well-supported clades in single-gene ML trees were compared and assessed among individual topologies [31]. Each locus was subjected to a maximum likelihood (ML) analysis and clade support was tested using 1000 bootstrapping pseudoreplicates with RAxML-HPC BlackBox 8.2.6 [32] on the Cipres Science Gateway (http://www.phylo.org). Results were visualized with FigTree 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Individual single locus topologies were assessed for well-supported (>75%) conflict compared to the other single locus ML trees and combined if no conflict was observed [31, 33]. Since no conflicts were detected in the single-gene trees, a concatenated analysis was performed. Phylogenetic analyses of the concatenated dataset were performed using RAxML-HPC BlackBox 8.2.6[32] and MrBayes 3.2.6 [34, 35] on the Cipres Science Gateway (http://www.phylo.org; Miller et al. 2010). The model for each of the six single genes being used in the phylogenetic analysis was estimated using jModelTest-2.1.9[36, 37]. In the ML analysis, the GTR+G+I model was used as the substitution model with 1000 bootstrapping pseudoreplicates. The data was partitioned according to the different genes. For RPB1, MCM7, EF1 and TSR1 data were also partitioned by codon position. Two parallel Markov chain Monte Carlo (MCMC) runs were performed each using 8,000,000 generations and sampling every 1,000 steps. A 50% majority rule consensus tree was generated from the combined sampled trees of both runs after discarding the first 25% as burn-in. Chain mixing and convergence were evaluated in Tracer v1.5 considering effective sample size (ESS) values >200 as a good indicator. The tree files were visualized with FigTree 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an ISSN or ISBN will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic publication of a PLOS article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

In addition, new names contained in this work have been submitted to MycoBank from where they will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix http://www.mycobank.org/MB/. The online version of this work is archived and available from the following digital repositories: PubMed Central, LOCKSS.

Results and discussion

A total of 262 sequences of 6 gene loci were newly generated for this study, including 45 EF1α, 47 nuLSU, 43 MCM7, 48 mtSSU, 46 RPB1 and 33 TSR1 sequences. These were deposited in GenBank under accession numbers MF109133-MF109227, MF189726-MF189859and MF279153-MF279187 (S1 Table). In total, sequences of 177 samples were included in the study. The datasets used for this study were deposited in TreeBase (ID#20828). Single-locus maximum likelihood (ML) topologies are shown in the supplementary material (S1S6 Figs). Since the ML and Bayesian trees of the concatenated, 6-locus data set (4325bp; nuLSU: 730bp, mtSSU: 741bp, RPB1: 598bp, MCM7: 554bp, EF1α: 980bp, TSR1: 722bp) were similar in their topology, only the ML trees with the posterior probabilities of the Bayesian analysis added is shown in Fig 1.

thumbnail
Fig 1. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on a concatenated 6-locus data matrix. The numbers above each node represent bootstrap support and posterior probability values, respectively, only values higher than 50% shown. Strongly supported nodes in bold. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.g001

Our extended analysis including additional species and based on a six-locus dataset largely confirmed that the Variolaria group is distinct from Pertusaria s. str. and from the other two major clades that are now accepted as Gyalectaria and Varicellaria, respectively [12, 13]. As pointed out by Hafellner [20] the name Lepra is the oldest available name for this clade and is accepted here. Below we list all species that are currently included in this genus. The circumscription of Lepra largely agrees with the characterization of the Variolaria group described earlier [16]. The genus includes species with disciform ascomata, a weakly to non-amyloid hymenial gel, strongly amyloid asci without clear apical amyloid structures, single-layered, thin-walled ascospores. However, we here extend it to include species with single- and 2-spored asci, whereas we originally only included species with single-spored asci. Chlorinated xanthones are not present in species of Lepra, but thamnolic and picrolichenic acids occur in the genus, as well as orcinol depsides. Thamnolic acid is not restricted to this genus in the Pertusariales and additional studies are necessary to evaluate whether picrolichenic acid occurs outside Lepra. Species with 8-spored asci containing picrolichenic acid, such as P. truncata [38, 39], need further studies and are ad interim left in Pertusaria until we have a better understanding on the phylogenetic importance of depsones.

Our extended sampling with six loci did not result in a better support for the relationships of the different clades in Pertusariales and the sister-group relationship to a clade including Ochrolechia and Megasporaceae lacked support. Although the clade of Varicellaria, Megasporaceae, Ochrolechia, and Lepra was strongly supported as is each of these groups, the relationships among these four clades lacked support. Hence we propose to classify Lepra in Pertusariales inc. sed. until additional data become available with which the classification at family level in the order can be addressed.

In the phylogenetic tree (Fig 1), species of Lepra form a strongly supported monophyletic clade. Within this clade L. ophthalmiza and L. panyrga form a strongly supported early diverging monophyletic lineage.

Remarkably, several species, as currently circumscribed, were not monophyletic in our study and for most samples we have not drawn taxonomic consequences, since more material will be necessary to address species delimitation. The interspecific relationships within the latter group lack support. The phylogenetic relationships in the L. ophthalmiza/L. panyrga clade are strongly supported and indicate that L. ophthalmiza as currently circumscribed is polyphyletic–North American samples form a strongly supported sister-group relationship to L. panyrga, and these form a strongly supported sister-group relationship to the European L. ophthalmiza sample, whereas a specimen from Kenya forms a well-supported sister group to this clade. In the major clade of Lepra species for which more than one sample was included mostly form strongly supported monophyletic groups, with few exceptions, including L. amara. Samples identified as L. amara s. lat. based on morphology and chemistry fell into different clades with Japanese specimens being only distantly related to L. amara s.str. In addition L. mammosa nested within L. amara s. str., indicating that the species delimitation in this group requires further studies. The Japanese specimens tentatively identified as L. aff. amara have1-spored asci and contain dihydropertusaric, neodihydromurolic, isomuronic acids, and are with or without picrolichenic acid. Additional material will be necessary to elucidate the identity of these specimens but they probably represent an undescribed species. Furthermore, L. scaberula and L. subventosa require additional studies to better understand their circumscription. Samples of the former from the South Pacific (S1 Table) are described here as a new species, L. austropacifica. In the saxicolous L. subventosa, specimens from India, Kenya, Bolivia, and Australia clustered together, but differed in their extrolites. The Indian specimen contained lichexanthone and lecanoric acid, whereas the Kenyan material contained planaic and 4-O-demethylplanaic acids. The Australian specimen contains lichexanthone, picrolichenic acid, and thamnolic acid and agrees with Lepra subventosa s. str., whereas the Bolivian material contained lichexanthone, barbatic acid, and hypothamnolic acid.

Our study also showed that Pertusaria copiosa specimens clustered with Lepra commutata. Hence the former is below reduced to synonymy with L. commutata. This synonymy has also been proposed earlier based on phenotypical characters [40] and is confirmed here. Also Archer and Elix [40] placed P. coccopoda and P. moreliensis into synonymy of Lepra xantholeucoides. Our data show that P. kinigiensis, which differs from L. xantholeucoides in lacking lichexanthone but is otherwise very similar, is an additional synonym.

Taxonomy

Lepra Scop.

Intr. Hist. Nat.: 79 (1777)

Type: Lichen albescens Huds. [neotype, designated by Dibben (1980: 38)] = Lepra albescens (Huds.) Hafellner.

= Variolaria Pers., Ann. Bot. Usteri 7: 23 (1794), non Bull., Hist. Champ. Fr. 1: 181 (1791)

Type species: Variolaria discoidea Pers. = Lepra albescens (Huds.) Hafellner.

The name Variolaria is currently rejected against Pertusaria. However, the type species is not congeneric with Pertusaria as confirmed in this study. The name, however, as pointed out by Kondratyuk et al. (2015) and Hafellner [20], is not available for the Variolaria clade since it is a younger homonym of Variolaria Bull. (Art. 53.1), and hence illegitimate.

= Leproncus Ventenat, Tabl. Règne.Vég. 2: 32 (1799)

Type species: Lichen albescens Huds. [neotype, designated by Dibben (1980: 38)] = Lepra albescens (Huds.) Hafellner.

= Isidium (Ach.) Ach., Method. Lich.: xxxiii, 136 (1803) ≡Lichen subsect. IsidiumAch., K. Vetensk.-Acad. NyaHandl.15: 247 (1794)

Type species: Isidium corallinum (L.) Ach.≡Lepra corallina (L.) Hafellner.

= Pertusaria sect. Lecanorastrum Müll. Arg., Flora 67: 268 (1884)

Type species: Pertusaria commutata Müll. Arg. (lectotype, selected here) ≡Lepra commutata (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch

= Pertusaria subg. Monomurata Archer, Biblioth. Lichenol. 53: 6 (1993)

Type species: Pertusaria commutata Müll. Arg. ≡Lepra commutata (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch.

= Pertusaria sect. Digitatae Archer, Biblioth. Lichenol. 53: 7 (1993)

Type species: Pertusaria gymnospora Kantvilas ≡Lepra gymnospora (Kantvilas) I. Schmitt, Hodkinson & Lumbsch.

= Marfloraea S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 103 (2015)

Type species: Marfloraea amara (Ach.) S.Y. Kondr., L. Lökös & Hur. ≡Lepra amara (Ach.) Hafellner.

Nomenclatural notes.–The nomenclature of Lepra and its synonyms have been discussed in detail by Hafellner [20] who showed that Lepra Scop. [41] is the oldest available name for the Variolaria clade. Although this generic name was originally published without mentioning of a single species included in the genus, the selection by Dibben (1980: 38) of Pertusaria albescensas the type of the genus was effectively a neotypification.

Lepra acroscyphoides (Sipman)I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820747) Basionym: Pertusaria acroscyphoides Sipman, Willdenowia 16: 281 (1986).

Lepra albescens (Huds.) Hafellner, Stapfia 104: 171 (2016) ≡Lichen albescens Huds., Fl. Angl. p. 445 (1762) ≡Pertusaria albescens (Huds.) M. Choisy & Werner, Cavanillesia 5: 165 (1932). ≡Marfloraea albescens (Huds.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra alterimosa (Darb.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820748) Basionym: Pertusaria alterimosa Darb., Wiss. Erg. Schwed. Südp. Exped. IV, 11: 7 (1912).

Lepra amara (Ach.) Hafellner, Stapfia 104: 171 (2016) ≡Variolaria amara Ach., K. Vetensk.-Acad. NyaHandl. 30: 163 (1809) ≡Pertusaria amara (Ach.) Nyl., Bull. Soc. Linn. Normandie, ser. 2, 6: 288 (1872) ≡Marfloraea amara (Ach.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra amaroides (H. Magn.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820749). Basionym: Pertusaria amaroides H. Magn., Acta HortiGothob. 18: 214 (1950).

Lepra amnicola (Elix & A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820750). Basionym: Pertusaria amnicola Elix & A.W. Archer, Mycotaxon 64: 18 (1997).

Lepra andersoniae (Lendemer) Lendemer & R.C. Harris, Bryologist 120: 186(2017). Basionym: Pertusaria andersoniae Lendemer (as “andersonii”), Opusc. Philolich. 6: 55 (2009).

Lepra aspergilla (Ach.) Hafellner, Stapfia 104: 171 (2016) ≡Lichen aspergillus Ach., Lich. Suec. Prodr.: 1798 (1799) ≡Pertusaria aspergilla (Ach.) J.R. Laundon, Taxon 41: 745 (1992) ≡Marfloraea aspergilla (Ach.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra barbatica (A.W. Archer & Elix) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820752). Basionym: Pertusaria barbatica A.W. Archer & Elix, in Archer, BiblthcaLichenol. 69: 178 (1997).

Lepra borealis (Erichsen) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820753). Basionym: Pertusaria borealis Erichsen, Annls. Mycol., 37: 354 (1939).

Lepra buloloensis (A.W. Archer) I. Schmitt & Lumbsch, MycoKeys 23: 82 (2017) ≡Pertusaria buloloensis A.W. Archer, Mycotaxon 56: 388 (1995).

Lepra caucasica (Erichsen) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria caucasica Erichsen, Fedd. Rep. 35: 379 (1934).

Lepra clarkeana (A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820754). Basionym: Pertusaria clarkeana A.W. Archer, Mycotaxon 53: 280 (1995) = Pertusaria confusa A.W. Archer, Mycotaxon 41: 224 (1991), non P. confusa Bory, Mém. Soc. Linn. Paris 4: 595 (1826).

Lepra commutata (Müll. Arg) Lendemer & R.C. Harris, Bryologist 120: 186 (2017). Basionym: Pertusaria commutata Müll. Arg., Flora 67: 269 (1884). Syn.: Pertusaria copiosa Erichsen, Ann. Mycol. 39: 391 (1941).

Lepra corallina (L.) Hafellner, Stapfia 104: 172 (2016) ≡Lichen corallina L., Mant. Pl. 1: 13 (1767). ≡Variolaria corallina (L.)Ach., K. Vetensk.-Acad. Nyl Handl. 30: 161 (1809) ≡Pertusaria corallina (L.) Arn., Flora 49: 658 (1861) ≡Marfloraea corallina (L.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra corallophora (Vain.) Hafellner, Stapfia 104: 173 (2016) ≡Pertusaria corallophora Vain., Résult. Vot. Belg. Lich.: 22 (1903) ≡Marfloraea corallophora (Vain.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra dactylina (Ach.) Hafellner, Stapfia 104: 172 (2016) ≡Lichen dactylinus Ach., Lich. suec. prodr.: 89 (1798) ≡Isidium dactylinum (Ach.) Ach., Method. Lich.: 137 (1803) ≡Pertusaria dactylina (Ach.) Nyl., Acta Soc. Sci. fenn. 7: 447 (1863).

Lepra erythrella (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820756). Basionym: Pertusaria erythrella Müll. Arg., Bull. Herb. Boissier 1: 41 (1893).≡Marfloraea erythrella (Müll. Arg.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra excludens (Nyl.) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria excludens Nyl., Flora 68: 296 (1885) ≡Marfloraea excludens (Nyl.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra flavovelata (Elix & A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820757). Basionym: Pertusaria flavovelata Elix & A.W. Archer, Mycotaxon 53: 276 (1995).

Lepra floridana (Dibben) Lendemer & R.C. Harris, Bryologist 120: 186 (2017). Basionym: Pertusaria floridana Dibben, Publ. Biol. Geol., Milw. Publ. Mus. 5: 55 (1980).

Lepra graeca (Erichsen) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria graeca Erichsen, Rabenh. Krypt. Fl. ed. 2, 9, 5. Abt., 1: 526 (1936).

Lepra gymnospora (Kantvilas) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820759). Basionym: Pertusaria gymnospora Kantvilas, Lichenologist 22: 292 (1990).

Lepra lacerans (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820760). Basionym: Pertusaria lacerans Müll. Arg., Flora 67: 270 (1884).

Lepra leonina (Stizenb.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820761). Basionym: Pertusaria leonina Stizenb., Ber. Tätigk. St. Gall. naturw. Ges.: 242 (1890).

Lepra leucosora (Nyl.) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria leucosora Nyl., Flora 60: 223 (1877).

Lepra leucosorodes (Nyl.) I. Schmitt, Hodkinson & Lumbsch comb. nov. (MB 820762). Basionym: Pertusaria leucosorodes Nyl., Acta Soc. Sci. fenn. 26 (10): 16 (1900).

Lepra macloviana (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820763). Basionym: Pertusaria macloviana Müll. Arg., Flora 67: 271 (1884).

Lepra mammosa (Harm.) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria mammosa Harm., Lich. De France 5: 1141 (1913) ≡Marfloraea mammosa (Harm.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra melanochlora (DC.) Hafellner, Stapfia 104: 172 (2016) ≡Isidium melanochlorum DC., in Lamarck & de Candolle, Fl. franç., edn. 3, 2: 326(1805) ≡Pertusaria melanochlora (DC.) Nyl., Bull. Soc. linn. Normandie, sér.2, 6: 289 (1872).

Lepra miscella (A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820764). Basionym: Pertusaria miscella A.W. Archer, Mycotaxon 41: 232 (1991).

Lepra monogona (Nyl.) Hafellner, Stapfia 104: 173 (2016) ≡Pertusaria monogona Nyl., Bull. Soc. linn. Normandie, sér. 2, 6: 289 (1872).

Lepra multipuncta (Turner) Hafellner, Stapfia 104: 173 (2016) ≡Variolaria multipuncta Turner, Trans. Linn. Soc. London 9: 137 (1806) ≡Pertusaria multipuncta (Turner) Nyl., Lich. Scand.: 179 (1861).

Lepra multipunctoides (Dibben) Lendemer & R.C. Harris, Bryologist 120: 187 (2017). Basionym: Pertusaria multipunctoides Dibben, Publ. Biol. Geol., Milw. Publ. Mus 5: 59 (1980) ≡Variolaria multipunctoides (Dibben) Lendemer, Hodkinson & R.C. Harris, Mems. NY Bot. Garden 104: 88 (2013).

Lepra nerrigensis (A.W. Archer & Elix) I. Schmitt, A.W. Archer & Lumbsch, comb. nov. (MB 820766). Basionym: Pertusaria nerrigensis A.W. Archer & Elix, in Archer, Bibl. Lichenol. 69: 195 (1997).

Lepra novae-zelandiae (Szatala) I. Schmitt, A.W. Archer & Lumbsch, comb.nov. (MB 820767). Basionym: Pertusaria novae-zelandiae Szatala, Borbásia 1: 60 (1939).

Lepra ocellata (Körb.) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria ocellata Körb., Denkschr. Schles. Ges. Vaterl. Cultur: 235 (1853) ≡Variolaria ocellata (Körb.) Darb., Bot. Jahrb. Syst. 22: 627 (1897).

Lepra ophthalmiza (Nyl.) Hafellner, Stapfia 104: 173 (2016) ≡Pertusaria multipuncta var. ophthalmiza Nyl., Lich. Scand.: 180. (1861) ≡Pertusaria ophthalmiza (Nyl.) Nyl., Flora 48: 354 (1865) ≡Variolaria ophthalmiza (Nyl.) Darb. in Engler, Bot. Jahrb. 22: 628 (1897) ≡Marfloraea ophthalmiza (Nyl.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra ornatula (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820768). Basionym: Pertusaria ornatula Müll. Arg., Flora 67: 270 (1884).

Lepra panyrga (Ach.) Hafellner,Stapfia 104: 173 (2016) ≡Urceolaria panyrga Ach., Method. Lich.: 146 (1803) ≡Pertusaria panyrga (Ach.) A. Massal., Framm. Lich.: 53 (1855) ≡Marfloraea panyrga (Ach.) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 105 (2015).

Lepra paratropica (Q. Ren) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820769). Basionym: Pertusaria paratropica Q. Ren, Telopea 16: 134 (2014).

Lepra patellifera (A.W. Archer) I. Schmitt & Lumbsch, MycoKeys 23: 82 (2017) ≡Pertusaria patellifera A.W. Archer, Mycotaxon 41: 237 (1991).

Lepra pseudolactea (Erichsen) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria pseudolectea Erichsen, Ann. Mycol. 39: 144 (1941).

Lepra pulvinata (Erichsen) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria graeca Erichsen, Rabenh. Krypt. Fl. ed. 2, 9, 5. Abt., 1: 573 (1936).

Lepra pustulata (Brodo & W.L. Culb.) Lendemer & R.C. Harris, Bryologist 120: 187 (2017). Basionym: Haematomma pustulatum Brodo & W.L. Culb., Bryologist 89: 203 (1987) ≡Loxospora pustulata (Brodo & W.L. Culb.) R.C. Harris in Egan, Bryologist 93: 217 (1990) ≡Variolaria pustulata (Brodo & W. L. Culb.) Lendemer, Hodkinson & R.C. Harris, Mems. NY Bot. Garden 104: 88 (2013).

Lepra rugifera (Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820771). Basionym: Pertusaria rugifera Müll. Arg., Miss. Sci. Cap Horn, Lich.: 163 (1888).

Lepra scaberula (A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820772). Basionym: Pertusaria scaberula A.W. Archer, Mycotaxon 41: 240 (1991) ≡Marfloraea scaberula (A.W. Archer) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 106 (2015).

Lepra schaereri (Hafellner) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria schaereri Hafellner, Stapfia 76: 155 (2001).

Lepra scutellifera (A.W. Archer & Elix) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820773). Basionym: Pertusaria scutellifera A.W. Archer & Elix, Mycotaxon 50: 208 (1994).

Lepra sejilaensis (Q. Ren) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820774). Basionym: Pertusaria sejilaensis Q. Ren, Telopea 16: 137 (2014).

Lepra slesvicensis (Erichsen) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria slesvicensis Erichsen, Fedd. Rep. 35: 391 (1934).

Lepra sphaerophora (Oshio) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820775). Basionym: Pertusaria sphaerophora Oshio, J. Sci. Hiroshima Univ., ser B, div. 2, 12: 96 (1968).

Lepra stalactiza (Nyl.) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria stalactiza Nyl., Flora 57: 311 (1874).

Lepra subcomposita (Oshio) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820776). Basionym: Pertusaria subcomposita Oshio, J. Sci. Hiroshima Univ., ser. B, div. 2, 12: 95 (1968).

Lepra subventosa (Malme) I. Schmitt & Lumbsch, MycoKeys 23: 82 (2017) ≡Pertusaria subventosa Malme, Ark. Bot. 28A: 7 (1936) ≡Marfloraea subventosa (Malme) S.Y. Kondr., L. Lökös & Hur, in Kondratyuk et al., Stud. Bot. Hungar. 46: 106 (2015).

Lepra subviolacea (Q. Ren) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820777). Basionym: Pertusaria subviolacea Q. Ren, Telopea 16: 138 (2014).

Leprasuperans(Müll. Arg.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820778). Basionym: Pertusaria superans Müll. Arg., Flora 67: 209 (1928).

Lepra teneriffensis (Vain.) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria teneriffensis Vain., Kgl. Danske Vidensk. Selsk. Skr., Naturvid. Math. Afd. 8, 6 (3): 394 (1924).

Lepra trachythallina (Erichsen) Lendemer & R.C. Harris, Bryologist 120: 187 (2017). Basionym: Pertusaria trachythallina Erichsen in Degelius, Ark. Bot. 30A: 36 (1940) ≡Variolaria trachythallina (Erichsen) Lendemer, R.C. Harris & Hodkinson, Mems. NY Bot. Garden 104: 88 (2013).

Lepra tropica (Vain.)Lendemer & R.C. Harris, Bryologist 120: 188 (2017). Basionym: Pertusaria tropica Vain. in Hiern., Cat. Welwitsch. Afric. Pl. 2: 404 (1901).

Lepra tuberculata (Erichsen) Hafellner, Stapfia 104: 172 (2016) ≡Pertusaria globulifera var. tuberculata Erichsen, Verh. Bot. Ver. Prov. Brandenb. 71: 114 (1929) ≡Pertusaria tuberculata (Erichsen) Erichsen, Flechtenfl. Nordwestd.: 264 (1957).

Lepra variabilis (Elix & A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820781). Basionym: Pertusaria variabilis Elix & A.W. Archer, Telopea 112: 270 (2008).

Lepra variolosa (Kremp.) I. Schmitt, A.W. Archer & Lumbsch, comb. nov. (MB 820782). Basionym: Pertusaria subvaginata f. variolosa Kremp., Flora 49: 218 (1896). Pertusaria variolosa (Kremp.)Vain., Acta Soc Fauna Flora Fenn. 7 (1): 106 (1890).

Lepra ventosa (Malme) Lendemer & R.C. Harris, Bryologist 120: 175 (2017). Basionym: Pertusaria ventosa Malme, Ark. Bot. 28A: 7 (1936).

Lepra verdonii (A.W. Archer) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820784). Basionym: Pertusaria verdonii A.W. Archer, Proc. Linn. Soc. NSW 113: 68 (1992).

Lepra violacea (Oshio) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820785). Basionym: Pertusaria violacea Oshio, J. Sci. Hiroshima Univ., ser B, div. 2, 12: 92 (1968).

Lepra waghornei (Hult.) Lendemer & R.C. Harris, Bryologist 120: 175 (2017). Basionym: Pertusaria waghornei Hult., Hedwigia, 35: 191 (1893) ≡Variolaria waghornei (Hult) Darb. in Engler, Bot. Jahrb. 22: 628 (1897).

Lepra wawreana (A. Massal.) I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820787). Basionym: Pertusaria wawreana A. Massal., Mem. Imp. RealeIst. Veneto 10: 78 (1861).

Lepra wirthii (Elix & A.W. Archer)I. Schmitt, Hodkinson & Lumbsch, comb. nov. (MB 820788). Basionym: Pertusaria wirthii Elix & A.W. Archer, Telopea 15: 116 (2013).

Lepra xantholeuca (Müll. Arg.) I. Schmitt, A.W. Archer & Lumbsch, comb. nov. (MB 820789). Basionym: Pertusaria xantholeuca Müll. Arg., Proc. R. Soc. Edinb. 11: 402 (1882).

Lepra xantholeucoides (Müll. Arg.) I. Schmitt, A.W. Archer & Lumbsch, comb. nov. (MB 820790). Basionym: Pertusaria xantholeucoides Müll. Arg., Nuovo Giorn. Bot. Ital. 21: 357 (1889). Syn.: Pertusaria coccopoda Vain., Ann. Acad. Fenn., ser. A 6 (7): 32 (1915). Pertusaria kinigiensis A.W. Archer et al., Nova Hedwigia 88: 315 (2009). Pertusaria moreliensis B. de Lesd., Lich. Mexique: 18 (1914).

New species

Lepra austropacifica I. Schmitt & Lumbsch, sp. nov. [urn:lsid:mycobank.org:names:820791] (Fig 2)

thumbnail
Fig 2. Morphology of the new species Lepra austropacifica, habit of the holotype.

Scale = 1mm.

https://doi.org/10.1371/journal.pone.0180284.g002

Type: NEW CALEDONIA. Prov. Nord: Hienghene, Mon Paik, ca. 2km E of Hienghene, mangrove forest, 20°41’S, 164°57’E, 1 m alt., on bark, 10 August 2012, K. Papong 8106 & H.T. Lumbsch (holotype IRD; isotypes F & MSUT).

Diagnosis. Phenotypically similar to Lepra scaberula but differing in DNA sequence data.

Description. Thallus corticolous, crustose, verrucose to verruculose, thin, whitish to greyish white; margin indistinct; prothallus not visible; sorediate, lacking isidia. Soralia roundish, 0.5–1.5 mm diam., hemispherical, remaining distinct, with granular soredia, yellowish white to whitish grey. Apothecia and pycnidia not seen. Containing lichexanthone and thamnolic acid.

Etymology. Referring to the locality in the South Pacific.

Ecology and distribution. So far this corticolous species is only known from the South Pacific where it was found in mangrove forests and secondary forests at low elevations.

Additional specimens examined. NEW CALEDONIA. Prov. Nord: Hienghene, Mon Paik, ca. 2kmE of Hienghene, mangrove forest, 20°41’S, 164°57’E, 1 m alt., on bark, 10 August 2012, K. Papong & H.T. Lumbsch 8099 (IRD); FIJI. VitiLevu: Suva area, Namosi Road, secondary forest along roadside, 18°03’S178°10’E, on fallen tree, October 2011, H.T. Lumbsch 20507d (F, SUVA).

Notes. The new species is very similar to Lepra scaberula and agrees with it in secondary chemistry. However, molecular data support its distinction. Separation of this sterile, cryptic species from L. scaberula without molecular data will be difficult.

Supporting information

S1 Fig. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on nuLSU DNA sequences. The numbers at each node represent bootstrap support value, and numbers lower than 50 not shown. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.s001

(TIF)

S2 Fig. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on mtSSU sequences. The numbers at each node represent bootstrap support value, and numbers lower than 50 not shown. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.s002

(TIF)

S3 Fig. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on RPB1 sequences. The numbers at each node represent bootstrap support value, and numbers lower than 50 not shown. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.s003

(TIF)

S4 Fig. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on MCM7 concatenated sequences. The numbers at each node represent bootstrap support value, and numbers lower than 50 not shown. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.s004

(TIF)

S5 Fig. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on EF1α sequences. The numbers at each node represent bootstrap support value, and numbers lower than 50 not shown. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.s005

(TIF)

S6 Fig. Phylogenetic relationships of Lepra and allied genera.

This is a RAxML tree based on TSR1sequences. The numbers at each node represent bootstrap support value, and numbers lower than 50 not shown. Scale = 0.03 substitution per site.

https://doi.org/10.1371/journal.pone.0180284.s006

(TIF)

Acknowledgments

XLW thanks the Chinese Academy of Sciences for supporting her visiting scholarship for a research stay at the Field Museum (Chicago). Fieldwork in the South Pacific was organized by Matt von Konrat (Chicago) and is gratefully acknowledged. The Presidents of the Assemblées of Provinces Nord and Province Sud provided access and permits in New Caledonia. Logistics and support in New Caledonia were kindly arranged by Louis Thouvenot. For the fieldwork in Fiji we gratefully acknowledge the assistance and logistical support provided by the Suva Herbarium, and especially Marika Tuiwawa and Alifereti Naikatini.The Herbario Nacional de Bolivia (Instituto de Ecología, Universidad Mayor de San Andrés) is gratefully acknowledged for their generous cooperation. AF received support from the W. Szafer Institute of Botany, Polish Academy of Sciences. We are very grateful to Alan Archer (Sydney) for support, help with literature, and constructive criticism of our manuscript.

References

  1. 1. Printzen C. Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships. In: Lüttge U, Beyschlag W, Büdel B, Francis D, editors. Progress in Botany Progress in Botany. 712010. p. 233–275. 10.1007/978-3-642-02167-1_10
  2. 2. DePriest PT. Early molecular investigations of lichen-forming symbionts: 1986–2001. Annual Review of Microbiology. 2004;58:273–301. pmid:15487939
  3. 3. Jaklitsch WM, Baral HO, Lücking R, Lumbsch HT. Ascomycota. In: Frey W, editor. Syllabus of Plant Families—Adolf Engler’s Syllabus der Pflanzenfamilien. 1/2. 13 ed. Stuttgart: Gebr. Borntraeger Verlagsbuchhandlung; 2016. p. 1–150.
  4. 4. Lumbsch HT. Recent trends in phylogeny and classification of lichen-forming ascomycetes. In: Ganguli BN, Deshmukh SK, editors. Fungi Multifaceted Microbes. New Delhi: Anamaya Publishers; 2006. p. 153–168.
  5. 5. Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, et al. Multigene phylogenetic synthesis for 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families of the class Lecanoromycetes (Ascomycota). Molecular Phylogenetics and Evolution. 2014;79:132–168. PMID: 24747130
  6. 6. Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia. 2006;98(6):1088–103. ISI:000245858800024 pmid:17486983
  7. 7. Lücking R, Hodkinson BP, Leavitt SD. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–Approaching one thousand genera. Bryologist. 2016;119(4):361–416.
  8. 8. Schmitz K, Lumbsch H, Feige G. Systematic studies in the Pertusariales II. The generic concept in the Pertusariaceae (lichenized Ascomycotina). Acta Botanica Fennica. 1994;150:153–60.
  9. 9. Lumbsch HT, Feige GB, Schmitz KE. Systematic studies in the Pertusariales I. Megasporaceae, a new family of lichenized Ascomycetes. Journal of the Hattori Botanical Laboratory. 1994;75:295–304. PMID: 11847
  10. 10. Lumbsch HT, Dickhäuser A, Feige GB. Systematic studies in the Pertusariales III. Taxonomic position of Thamnochrolechia (lichenized Ascomycetes). Bibliotheca Lichenologica. 1995;57:355–61. PMID: 11836.
  11. 11. Schmitt I, del Prado R, Grube M, Lumbsch HT. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution. 2009;52(1):34–44. pmid:19328858
  12. 12. Schmitt I, Fankhauser JD, Sweeney K, Spribille T, Kalb K, Lumbsch HT. Gyalectoid Pertusaria species form a sister-clade to Coccotrema (Ostropomycetidae, Ascomycota). Mycology. 2010;1:75–83.
  13. 13. Schmitt I, Otte J, Lücking R, Lumbsch HT. A new circumscription of the genus Varicellaria (Pertusariales, Lecanoromycetes). MycoKeys. 2012;4:23–36.
  14. 14. Lumbsch HT, Schmitt I, Barker D, Pagel M. Evolution of micromorphological and chemical characters in the lichen-forming fungal family Pertusariaceae. Biological Journal of the Linnean Society. 2006;89(4):615–26.
  15. 15. Schmitt I, Yamamoto Y, Lumbsch HT. Phylogeny of Pertusariales (Ascomycotina): Resurrection of Ochrolechiaceae and new circumscription of Megasporaceae. Journal of the Hattori Botanical Laboratory. 2006;75:753–64.
  16. 16. Schmitt I, Lumbsch HT. Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Molecular Phylogenetics and Evolution. 2004;33(1):43–55. pmid:15324838
  17. 17. Lumbsch HT, Schmitt I. Molecular data shake the Pertusariaceae tree into order. Lichenology. 2002;1:37–43. PMID: 28964.
  18. 18. Lumbsch HT, Schmitt I. Molecular data suggest that the lichen genus Pertusaria is not monophyletic. Lichenologist. 2001;33:161–70.
  19. 19. Kondratyuk SY, Lökös L, Kim JA, Kondratyuk AS, Jeong MH, Jang SH, et al. New members of the Pertusariales (Ascomycota) proved by combined phylogenetic analysis. Studia Botanica Hungarica. 2015;46(2):95–110.
  20. 20. Hafellner J, Türk R. Die lichenisierten Pilze Österreichs—eine neue Checkliste dere bisher nachgewiesenen Taxa mit Angaben zu Verbreitung und Substratökologie. Stapfia. 2016;104:1–216.
  21. 21. Buaruang K, Boonpragob K, Mongkolsuk P, Sangvichien E, Vongshewarat W, Polyiam K, et al. A new checklist of lichenized fungi occurring in Thailand. MycoKeys. 2017;22:in press.
  22. 22. Lendemer JC, Harris RC. Nomenclatural changes for North American members of the Variolaria-group necessitated by the recognition of Lepra (Pertusariales). Bryologist. 2017;120(2):182–189.
  23. 23. Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota). Molecular Phylogenetics and Evolution. 2007;44(1):412–26. pmid:17207641
  24. 24. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. 2006;443(7113):818–22. pmid:17051209
  25. 25. Matheny PB, Liu YJ, Ammirati JF, Hall BD. Using RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). American Journal of Botany. 2002;89:688–98. pmid:21665669
  26. 26. Schmitt I, Crespo A, Divakar PK, Fankhauser J, Herman-Sackett E, Nelsen MP, et al. New primers for single-copy protein-coding genes for fungal systematics. Persoonia—Molecular Phylogeny and Evolution of Fungi 2009;23:35–40. pmid:20198159
  27. 27. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 1994;22:4673–80. pmid:7984417
  28. 28. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–8.
  29. 29. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution. 2000;17(4):540–52. pmid:10742046
  30. 30. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology. 2007;56(4):564–77. pmid:17654362
  31. 31. Prieto M, Wedin M. Dating the Diversification of the Major Lineages of Ascomycota (Fungi). Plos One. 2013;8(6):e65576. pmid:23799026
  32. 32. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. pmid:24451623
  33. 33. Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Systematic Biology. 2004;53(1):25–37. pmid:14965898
  34. 34. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5. pmid:11524383
  35. 35. Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4. pmid:12912839
  36. 36. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology. 2003;52(5):696–704. pmid:14530136
  37. 37. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9(8):772. pmid:22847109
  38. 38. Elix JA, Calanasan CA, Archer AW. Subpicrolichenic acid and superpicrolichenic acid, two new depsones from Pertusaria lichens. Australian Journal of Chemistry. 1991;44:1487–93.
  39. 39. Elix JA, Venables DA, Archer AW. Further new depsones from the lichen Pertusaria truncata. Australian Journal of Chemistry. 1994;47:1345–53.
  40. 40. Archer AW, Elix JA. A preliminary world-wide key to the lichen genus Pertusaria 2010.
  41. 41. Scopoli GA. Prague: Gerle. 1777.