Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

GenoType MTBDRplus Assay for Rapid Detection of Multidrug Resistance in Mycobacterium tuberculosis: A Meta-Analysis

  • Yuanyuan Bai,

    Affiliation Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China

  • Yueling Wang,

    Affiliation Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China

  • Chunhong Shao,

    Affiliation Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China

  • Yingying Hao,

    Affiliation Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China

  • Yan Jin

    slbyy84@163.com

    Affiliation Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China

GenoType MTBDRplus Assay for Rapid Detection of Multidrug Resistance in Mycobacterium tuberculosis: A Meta-Analysis

  • Yuanyuan Bai, 
  • Yueling Wang, 
  • Chunhong Shao, 
  • Yingying Hao, 
  • Yan Jin
PLOS
x

Abstract

Background

There is an urgent demand for rapid and accurate drug-susceptibility testing for the detection of multidrug-resistant tuberculosis. The GenoType MTBDRplus assay is a promising molecular kit designed for rapid identification of resistance to first-line anti-tuberculosis drugs, isoniazid and rifampicin. The aim of this meta-analysis was to evaluate the diagnostic accuracy of GenoType MTBDRplus in detecting drug resistance to isoniazid and rifampicin in comparison with the conventional drug susceptibility tests.

Methods

We searched PubMed, EMBASE, and Cochrane Library databases to identify studies according to predetermined criteria. A total of 40 studies were included in the meta-analysis. QUADAS-2 was used to assess the quality of included studies with RevMan 5.2. STATA 13.0 software was used to analyze the tests for sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic curves. Heterogeneity in accuracy measures was tested with Spearman correlation coefficient and Chi-square.

Results

Patient selection bias was observed in most studies. The pooled sensitivity (95% confidence intervals were 0.91 (0.88–0.94) for isoniazid, 0.96 (0.95–0.97) for rifampicin, and 0.91(0.86–0.94) for multidrug-resistance. The pooled specificity (95% CI) was 0.99 (0.98–0.99) for isoniazid, 0.98 (0.97–0.99) for rifampicin and 0.99 (0.99–1.00) for multidrug-resistance, respectively. The area under the summary receiver operating characteristic curves ranged from 0.99 to 1.00.

Conclusion

This meta-analysis determined that GenoType MTBDRplus had good accuracy for rapid detection of drug resistance to isoniazid and/or rifampicin of M. tuberculosis. MTBDRplus method might be a good alternative to conventional drug susceptibility tests in clinical practice.

Introduction

Tuberculosis (TB) is one of the most serious infectious diseases and a main cause of morbidity and mortality in developing countries [1]. The World Health Organization (WHO) estimated that approximately 450,000 people developed multidrug-resistant TB (MDR-TB), and 170,000 MDR-TB-related deaths occurred in 2012 worldwide [2]. MDR-TB which is defined as resistance in vitro to first-line drugs, rifampicin (RIF) and isoniazid (INH), has posed a great challenge to the successful control of TB in the world [3, 4]. Treatment of MDR-TB is costly, complicated, with less effective therapies and is associated with treatment failures, relapses, and poor clinical outcomes [5, 6].

Conventional phenotypic drug susceptibility testing (DST) has been recommended as the gold standard by WHO, including tests that are performed on solid media (proportion method (PM) on Lowenstein-Jensen (L-J) or Middlebrook 7H10/7H11 agar) and liquid systems (BACTEC 460 and BACTEC MGIT 960) [7]. However, conventional methods have some limitations. Solid media-based DST have a long turnaround time, which can take longer than 2 months, which may result in delayed proper treatment, increasing risk of treatment failure, and continuing transmission of drug-resistance [8]. Liquid systems-based DST are sensitive and faster than solid media-based DST (they take up to 25–45 days), but are more costly; due to the increased technical complexity, there is a lack of appropriately-trained technicians [9]. Therefore, there is an urgent need for the development of rapid and accurate DST for MDR-TB which is able to avoid clinical deterioration, improve treatment regimen, and interrupt further transmissions.

The technological advancement of molecular biotechnologies has been of interest for DSTs that target MDR-TB. The WHO endorsed the use of molecular line-probe assays (LiPAs) for MDR-TB screening in 2008 [10]. The GenoType MTBDRplus assay (Hain Lifescience, Nehren, Germany) is a commercially available LiPA that combines detection of M. tuberculosis complex with prediction of resistance to RIF and INH, including mutations in the 81-bp hotspot region of rpoB, at codon 315 of the katG gene and in the inhA promoter region [11]. This assay is comprised of DNA extraction, multiplex polymerase chain reaction (PCR), reverse hybridization, and resistance gene mutations detection, all of which can be completed within 8 hours. Two previously published meta-analyses found that GenoType MTBDRplus assay had good diagnostic accuracy compared to conventional DST [12, 13]; however, those analyses were limited by the small number of included studies and significant unexplained heterogeneity in accuracy measures. One of those studies only evaluated the assay on clinical specimens, therefore could not fully assess the clinical application of MTBDRplus assay [13].

Several previous studies have examined the performance of the GenoType MTBDRplus assay when testing for RIF and INH resistance based on the related genes; however, the sensitivity and specificity results have been inconsistent. In the present study, a new meta-analysis was performed to comprehensively evaluate the overall diagnostic accuracy of the GenoType MTBDRplus assay in detecting drug resistance of RIF and INH compared with conventional DST.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in our study. We registered the review in PROSPERO (crd.york.ac.uk CRD42015027271).

Literature Search

Original articles published in English up to the end of July 2015 were searched in PubMed, EMBASE, and Cochrane Library databases by two investigators (Y. Bai and Y. Jin). The search terms used were as follows: (Tuberculosis OR Mycobacterium tuberculosis) AND (Hain Life Science OR line probe assay OR GenoType MTBDR OR molecular diagnostic techniques). Conference abstracts were included when sufficient data were reported. Reference lists from included studies were also searched.

Study Criteria

We included studies that evaluated GenoType MTBDRplus for detection of drug resistance of M. tuberculosis to rifampicin (RIF) and/or isoniazid (INH). Included studies should have compared the GenoType MTBDRplus with one or more reference standard methods that were recommended by the WHO (including L-J PM, Middlebrook 7H10/7H11 agar, BACTEC 460, and BACTEC MGIT 960). The study report must have had extractable data to fill the 4 cells of a 2 × 2 table for diagnostic tests (true resistant-TR, false resistant-FR, false susceptible-FS, and true susceptible-TS).

Relevant publications were excluded if they were duplicated articles, letters without original data, case reports, editorials, and reviews. Studies with fewer than 10 samples were also excluded to reduce selection bias.

Data Extraction

The final set of articles was independently assessed by two investigators (Y. Bai and Y. Jin). The full-text of each study was carefully read according to the inclusion criteria to assess whether it should be included. Disagreements were resolved by consensus. Information was extracted on the first author, publication year, country where the study was conducted, specimen type, sample size, gold standard DST used, the number of TR, the number of FR, the number of FS, and the number of TS to each drug. Sensitivity was defined as the proportion of isolates correctly determined as resistant by use of the GenoType MTBDRplus compared with gold standard. Specificity was defined as the proportion of isolates correctly determined susceptible by use of the GenoType MTBDRplus compared with gold standard.

Quality of Study Reports

We applied the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) to assess the quality of included studies (http://www.bris.ac.uk/quadas/), an updated version of the original software. QUADAS-2 is used in systematic reviews to evaluate the risk of bias and applicability of diagnostic accuracy studies, and consists of four key domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed for risk of bias and the first three are also evaluated for applicability. Signaling questions were included to assist in judgments about the risk of bias [14]. If the answers to all signaling questions for a domain were “yes,” the risk of bias is judged as “low;” if any signaling question in a domain was “no,” risk of bias is judged as “high.” The unclear bias should only be used if insufficient information was supplied [14]. Applicability was judged as low, high, or unclear with the similar criteria.

Statistical Analysis

Accuracy Estimates.

Meta-analyses were performed using two software programs: STATA 13.0 (Stata Corporation, Texas, USA) and Cochrane RevMan 5.2. Sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR), forest plots and summary receiver operating characteristic (SROC) curves were analyzed with the STATA 13.0 software, based on the random model effect. Quality of studies was assessed with RevMan 5.2. The SROC curve was used to evaluate the effect of the assay. The area under the curve (AUC) displayed the overall diagnostic accuracy and range between 0 and 1, with higher values indicating better test performance [15].

Heterogeneity.

Heterogeneity refers to a high degree of variability in accuracy estimates across studies and is often concerned in meta-analyses. We used chi-square test and I2 (P < 0.05 and I2 > 50% indicated significant heterogeneity) to identify heterogeneity [16]. The Spearman correlation coefficient between the logit of sensitivity and logit of 1-specificity was used to assess the threshold/cut off effect, which is a possible cause of variations in sensitivity and specificity among the included studies [15]. Heterogeneity due to factors other than threshold/cut-off effect was tested by visual inspection of the forest plots. The further reasons for heterogeneity of the data were addressed by performing subgroup analyses with the GenoType MTBDRplus performed directly on clinical specimens or indirectly on clinical isolates, in either solid or liquid medium.

Results

Characteristics of Selected Studies

A flow chart of the study selection process is shown in Fig 1. A total of 1282 potentially relevant citations were identified from all searches. Finally, according to the inclusion and exclusion criteria, 33 eligible articles fulfilled the inclusion criteria and were included in the meta-analysis. The 20 full-text excluded articles were listed in S1 Table with the reasons for exclusion. Because diagnostic tests were performed in different sample types or acid fast bacillus (AFB) smear status occurred in the same article, 40 independent studies (including 7913 samples) were defined in the meta-analysis. Table 1 shows the characteristics of these included studies [1749]. Among the 40 studies, 23 studies tested clinical specimens (most were AFB smear positive), 14 tested clinical isolates, and the other 3 studies used both. DST was performed based on solid media (L-J PM, agar PM) and liquid systems (BACTEC MGIT 960, BACTEC 460TB). The reference method used was solid medium in 17 studies, liquid medium in another 17 studies, and both solid and liquid medium in 6 studies. Most of the studies were cross-sectional in design.

thumbnail
Fig 1. Flow chart of study selection.

Of 1282 citations identified, 1229 were excluded after reviewing titles and abstracts. Full-text review of the remaining 53 articles yielded 33 papers meeting eligibility criteria. Because several studies made more than one comparison, there were 40 unique studies.

http://dx.doi.org/10.1371/journal.pone.0150321.g001

Quality Assessment

A quality assessment of all of the included studies is illustrated in Fig 2. Most of the included studies were at either high risk or unclear risk bias in “patient selection” and “flow and timing” domains of QUARDAS-2 due to lack of detail regarding timing, inconsecutive, or nonrandom patient selection and blinding. A total of 13 (32.5%) studies were at low risk, 7 studies (17.5%) were of unclear risk, and 20 studies (50%) were at high risk for patient selection bias. A total of 24 studies (60%) were at high risk for flow and timing bias, resulting from the fact that not all selected patients were included in the diagnostic analysis and the patients did not receive the same gold standard DST. Most of the studies were at either low or unclear risk for index test and reference standard bias. Regarding applicability, half of the studies were at high risk for patient selection; however, all selected studies (n = 40, 100%) were at low risk of index test and the reference standard. In summary, patient selection was the most high-risk bias and high-risk applicability concerns.

thumbnail
Fig 2. Quality assessment of included studies.

Quality Assessment of Diagnostic Accuracy Studies version 2: risk of bias and applicability concerns summary of MTBDRplus for the detection of drug resistance.

http://dx.doi.org/10.1371/journal.pone.0150321.g002

Diagnostic Accuracy

Detection of INH resistance.

The pooled sensitivity and specificity for detection of resistance to INH were 0.91 (95% CI = 0.88–0.94) and 0.99 (95% CI = 0.98–0.99), respectively. The PLR and NLR were 85.03 (95% CI = 44.16–163.74) and 0.09 (95% CI = 0.08–0.12), respectively. The DOR was 958.40 (95% CI = 469.52–1956.34) and the AUC was 0.99 (95% CI = 0.98–1.00), indicating a high level of overall accuracy (Fig 3, see also Table 2).

thumbnail
Fig 3. Forest plots of the pooled sensitivity and specificity and SROC curve of MTBDRplus for detection of isoniazid drug susceptibility.

(A). Forest plots of the pooled sensitivity and specificity. Each solid square represents an individual study. Error bars represent 95% CI. Diamond indicates the pooled sensitivity and specificity for all of the studies. (B). SROC curve.

http://dx.doi.org/10.1371/journal.pone.0150321.g003

Detection of RIF resistance.

The pooled sensitivity and specificity for detection of resistance to RIF were 0.96 (95% CI = 0.95–0.97) and 0.98 (95% CI = 0.97–0.99), respectively. The PLR and NLR were 59.44 (95% CI = 35.51–99.51) and 0.04 (95% CI = 0.03–0.05), respectively. The DOR was 1635.08 (95% CI = 838.31–3196.78) and the AUC was 0.99 (95% CI = 0.98–1.00), indicating a high level of overall accuracy (Fig 4, see also Table 2).

thumbnail
Fig 4. Forest plots of the pooled sensitivity and specificity and SROC curve of MTBDRplus for detection of rifampicin drug susceptibility.

(A). Forest plots of the pooled sensitivity and specificity. Each solid square represents an individual study. Error bars represent 95% CI. Diamond indicates the pooled sensitivity and specificity for all of the studies. (B). SROC curve.

http://dx.doi.org/10.1371/journal.pone.0150321.g004

Detection of MDR.

The pooled sensitivity and specificity for detection of MDR were 0.91 (95% CI = 0.86–0.94) and 0.99 (95% CI = 0.99–1.00), respectively. The PLR and NLR were 173.38 (95% CI = 73.90–406.8) and 0.09 (95% CI = 0.06–0.15), respectively. The DOR was 1838.91(95% CI = 653.30–5176.16) and the AUC was 1.00 (95% CI = 0.99–1.00), indicating a good level of overall accuracy (Fig 5, see also Table 2).

thumbnail
Fig 5. Forest plots of the pooled sensitivity and specificity and SROC curve of MTBDRplus for detection of multidrug-resistant tuberculosis.

(A). Forest plots of the pooled sensitivity and specificity. Each solid square represents an individual study. Error bars represent 95% CI. Diamond indicates the pooled sensitivity and specificity for all of the studies. (B). SROC curve.

http://dx.doi.org/10.1371/journal.pone.0150321.g005

Heterogeneity

Significant heterogeneity was observed when we pooled sensitivity, specificity, PLR, NLR, and DOR of selected studies. The heterogeneity test results of sensitivity and specificity are illustrated in the forest plots (Figs 3, 4 and 5). The Spearman correlation coefficient between the logit of sensitivity and logit of 1-specificity was used to assess the threshold/cut-off effect. The Spearman correlation coefficient (p value) in detecting resistance to INH, RIF and MDR was 0.153 (p = 0.345), 0.017 (p = 0.915), -0.227 (p = 0.298), respectively. This indicated that the heterogeneity might not be due to threshold/cut-off effect. To assess for causes of variations other than threshold, we performed subgroup analysis with the GenoType MTBDRplus assay performed directly on clinical samples or indirectly on clinical isolates, in either solid or liquid medium.

Subgroup Analyses

According to the type of specimen as well as medium, 40 studies were included in the subgroup analyses. Pooled sensitivity, specificity, PLR, NLR, and DOR for INH, RIF, and MDR are presented in Tables 3 and 4. We found significant heterogeneity for most of these measures, except for only clinical isolates were pooled when using GenoType MTBDRplus to detect specificity of MDR (I2 = 45.5%, p = 0.06).

Discussion

Molecular drug susceptibility testing for M. tuberculosis has garnered strong research interest worldwide. To that end, we focused on the GenoType MTBDRplus assay which has been recommended by the WHO to rapidly screen patients at risk of MDR-TB [10]. MTBDRplus assay is now used routinely in many countries due to its shorter turnaround time, thus a more effective procedure. The direct use of the assay on clinical specimens is another key advantage, as this precludes waiting for cultures to grow. Different from other rapid molecular tests such as INNO-LiPA and GeneXpert, MTBDRplus assay not only detects RIF resistance, but also INH resistance. Although RIF resistance may be regarded as a surrogate for MDR to some extent, there are still some RIF-monoresistant TB strains that are not MDR. Thus, the inclusion of testing mutations that cause INH resistance is highly desirable, especially in settings with relatively low MDR-TB prevalence [50]. Furthermore, the MTBDRplus assay has been the most cost-effective rapid test for Asian populations in current practice [13], and its implementation to detect MDR-TB can improve clinical outcomes significantly in some settings [51]. Recently, studies focusing on the diagnostic accuracy of GenoType MTBDRplus were conducted in many settings, but with inconsistent results. The aim of this meta-analysis was to evaluate the diagnostic accuracy of GenoType MTBDRplus for direct detection of resistance to RIF and INH compared with conventional reference methods.

In the literature there are three meta-analyses in which the GenoType MTBDRplus assay has been assessed. The first analysis, performed in 2008, evaluated the performance of both the old GenoType MTBDR and GenoType MTBDRplus, with analysis of only five MTBDRplus studies for the determination of INH and RIF resistance [12]. The second analysis, published in 2009, evaluated the performance of four direct-testing methods, including GenoType MTBDRplus, also with analysis of only five studies for the determination of MDR [50]. The recently reported systematic review, published in 2015, focused on four main molecular diagnostic tests for antibiotic resistance in M. tuberculosis, including GenoType MTBDRplus, and only evaluated the assay on clinical specimens and could not perform subgroup analysis to investigate the potential causes of heterogeneity due to the small number included studies [13]. To the best of our knowledge, the present meta-analysis, with 40 studies included, is the first study that has comprehensively evaluated the overall diagnostic accuracy of the GenoType MTBDRplus assay in detecting drug resistance of RIF, INH, and MDR.

In our meta-analysis, GenoType MTBDRplus showed excellent pooled sensitivity and specificity for detection of resistance to INH (91%, 99%), RIF (96%, 98%), and MDR (91%, 99%), with lower and more inconsistent sensitivity than specificity. While specificity did not vary across subgroups, sensitivity was slightly higher when only DST of studies based on liquid medium was pooled (INH 92%, RIF 98%, MDR 94%). When compared with the previously published meta-analyses, the pooled sensitivity was also found to be more variable and lower than specificity, which varied from 84% to 96% for INH and 96% to 99% for RIF [12, 13, 52]. This may be partially attributed to the limitations of molecular methods for the detection of first line drug resistance, that 5% of RIF-resistant M. tuberculosis strains and 10–25% of low-level INH-resistant strains have no known resistance mutations [53, 54].

The DOR is defined as the ratio of the odds of the test being positive for a patient with or without disease [55], and is an indicator of diagnostic accuracy that combines the data from sensitivity and specificity into a single variate. The value of a DOR ranges from 0 to infinity, with higher values indicating higher accuracy. This meta-analysis showed that GenoType MTBDRplus had very high mean DOR and large AUC values, indicating a high value of overall accuracy for the detection of MDR. Because of the limitations of SROC and DOR in clinical practice, the likelihood ratios (LRs) are of more clinical significance [56]. A very high PLR and a very low NLR for the detection resistance of INH, RIF, and MDR in our study indicated an excellent ability to both confirm and exclude the presence of drug resistance. Although in the present analysis, indices such as AUC, DOR, PLR, and NLR showed good diagnostic accuracy of GenoType MTBDRplus assay, the confidence intervals for the PLR and the DOR were wide for all included studies due to high sample variation and there was significant heterogeneity in the measures.

The purpose of a meta-analysis is not only to compute a single summary measure, but also to explore the reasons for heterogeneity [57]. We found significant heterogeneity for sensitivity, specificity, PLR, NLR, and DOR among the studies analyzed, except for only clinical isolates were pooled when using GenoType MTBDRplus to detect specificity of MDR (I2 = 45.5%, p = 0.06). The Spearman correlation coefficient between the logit of sensitivity and logit of 1-specificity was not significant, indicating that the heterogeneity was not caused by threshold/cut-off effect. Thus, subgroup analyses were performed to test for causes of variations other than threshold effect. The results suggested that the sample type could partly explain the heterogeneity. Even so, the considerable heterogeneity in the results remained unexplained, which may be caused by variations in the study, patient selection, sample collection method (consecutive or random collection of samples), and/or geographic and genetic variations in the distribution of drug-resistant strains of M. tuberculosis [58, 59].

Our meta-analysis had several strengths. First, we performed a standard protocol to carry out the meta-analysis, including a comprehensive search strategy [60]. Second, two reviewers independently carried out various stages of the process, including article selection, data extraction, and quality assessment, and disagreements were resolved by consensus. Third, we used rigorous statistical methods for data analysis, including SROC analyses, quality assessment relying on QUADAS-2, as methods for exploring heterogeneity. Moreover, the present meta-analysis updates previous estimates on the performance of the MTBDRplus test for identifying resistance of first-line anti-TB drugs. Compared with the recently published comprehensive systematic review [13], our study showed similar pooled specificity, but higher pooled sensitivity for detecting both RIF and INH resistance (97% versus 94.6%; and 90% versus 83.4%, respectively) directly on clinical specimens. The DOR, as an indicator of diagnostic accuracy, was also much higher in the current study than previously shown for detecting RIF resistance (1105.23 versus 666). The better diagnostic accuracy found in our study may provide more powerful evidence for routine clinical application of GenoType MTBDRplus assay.

However, our meta-analysis also had several limitations. First, sampling methods, blinding strategies and population (e.g. severity of disease or treatment status) were unclear in most of the included studies. Inappropriate sampling methods can generate selection bias which may result in high levels of sample variation and wide confidence intervals. The lack of blinding when interpreting index and reference test results may result in overestimating accuracy [61]. Second, an obvious limitation was the lack of data on cost-effectiveness, feasibility, patient management and treatment outcomes, and how much value they contributed to existing diagnostic and treatment regimens beyond conventional DST methods. Third, the present authors only included studies published in English, and some studies missing data in 2 by 2 tables were excluded since the authors could not be contacted. As currently available statistical approaches for publication bias are not recommended for diagnostic meta-analysis, we did not use funnel plots and regression tests to assess publication bias [62], and it is therefore difficult to rule out potential publication bias in our meta-analysis.

Furthermore, there were not enough studies in the literature for us to acquire adequate data to stratify by smear status, as smear-negative patients would be most likely to benefit from using molecular methods. Until now, it seems there is still a great challenge to rapidly and reliably identify M. tuberculosis in smear-negative samples, especially in human immunodeficiency virus (HIV)-infected patients. M. tuberculosis is the most prevalent opportunistic infection and cause of the death for HIV-infected patients, whose smear-positivity of M. tuberculosis can be as low as 20% [63]. To overcome this limitation, the revised version 2.0 of MTBDRplus was released in 2011 with reported improved diagnostic accuracy in detecting M. tuberculosis and their resistance status against RIF and INH in AFB-negative specimens [31, 64], further supporting the ability to use this assay in smear-negative samples.

In general, although GenoType MTBDRplus test showed good accuracy for INH, RIF, and MDR drug resistance detection in this meta-analysis, some important issues remain to be addressed. In recent years, several studies showed that RIF resistance can be regarded as a proxy for MDR in different settings [65, 66]. Arentz et al. performed a systematic review to evaluate six different WHO-endorsed rapid tests for RIF resistance detection [67], and determined that these tests for RIF resistance can accurately predict MDR-TB in areas with high prevalence, but not in areas with low prevalence of RIF resistance. Compared with other tests, GenoType MTBDRplus had the lowest PPV at prevalence rates of 15% and 3% for RIF resistance which meant the higher false positive rates for detecting RIF resistance and MDR-TB. However, these results relied on an assumption that RIF resistance was strongly correlated with MDR. In fact, this correlation may vary in different settings [50]. Future studies should focus on the diagnostic accuracy of rapid tests in areas with different prevalence rates of RIF resistance in order to determine the threshold that constitutes RIF resistance is as a sufficient marker for MDR-TB.

In addition to rapid detection of MDR-TB, there is also an urgent need for rapid and accurate tests for extensively drug-resistant tuberculosis (XDR-TB). As a serious threat to public health, XDR-TB is caused by strains of M. tuberculosis that are resistant to INH, RIF, and any of the fluoroquinolones (FLQs) and at least one second-line injectable agent (SLIDs; i.e. amikacin, kanamycin or capreomycin) [68]. XDR-TB has now been detected in more than 90 countries and nearly 10% of MDR-TB cases are also XDR-TB cases [2]. A recently published systematic review found GenoType MTBDRsl, the only commercially-available molecular routine test to detect second-line anti-TB drug resistance, had good accuracy for detecting drug resistance to FLQs, amikacin and capreomycin, but may not be an appropriate choice for kanamycin and ethambutol due to poor sensitivity [69]. Future studies that test the accuracy of the MTBDRsl in different laboratory settings are necessary. Furthermore, differences should be accounted for geographical regions, special patient populations (for example, pediatric or HIV/TB co-infected patients), and should also assess the effect of MTBDRsl implementation on cost-effectiveness and clinical outcomes. Future molecular tests for XDR-TB should have additional genetic targets beyond gyrA, rrs and embB. Rapid and accurate detection of MDR-TB and XDR-TB is important in improving patient care and decreasing transmission.

In conclusion, the present meta-analysis showed that GenoType MTBDRplus assay had good accuracy for detecting drug resistance to INH, RIF, and MDR of M. tuberculosis, suggesting that it has good utility as a rapid screening molecular tool. Further studies are needed to compare the accuracy of the MTBDRplus assay in smear-positive versus smear-negative specimens and pulmonary versus extra-pulmonary cases, and to evaluate the utility of this assay in HIV/TB co-infection. MTBDRplus assay might be a good alternative to conventional drug susceptibility tests in clinical practice.

Supporting Information

S1 File. PRISMA Checklist.

doi:10.1371/journal.pone.0150321.s001

(DOC)

S1 Table. The 20 full-text excluded studies with the reasons for exclusion.

doi:10.1371/journal.pone.0150321.s002

(DOC)

Author Contributions

Conceived and designed the experiments: BYY JY. Performed the experiments: BYY. Analyzed the data: WYL SCH. Contributed reagents/materials/analysis tools: HYY. Wrote the paper: BYY JY.

References

  1. 1. World Health Organization. Global tuberculosis control 2008: surveillance, planning, financing. WHO/HTM/TB/2008.393. World Health Organization, Geneva, Switzerland. 2008.
  2. 2. World Health Organization. Global tuberculosis report 2013. WHO/HTM/TB/2013.11. World Health Organization, Geneva, Switzerland. 2013.
  3. 3. Espinal MA, Laszlo A, Simonsen L, Boulahbal F, Kim SJ, Reniero A, et al. Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med. 2001; 344(17):1294–303. pmid:11320389
  4. 4. World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. WHO/HTM/TB/2011.6. World Health Organization, Geneva, Switzerland. 2011.
  5. 5. Orenstein EW, Basu S, Shah NS, Andrews JR, Friedland GH, Moll AP, et al. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis. 2009; 9(3):153–616. doi: 10.1016/S1473-3099(09)70041-6. pmid:19246019
  6. 6. Johnston JC, Shahidi NC, Sadatsafavi M, Fitzgerald JM. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One. 2009; 4(9):e6914. doi: 10.1371/journal.pone.0006914. pmid:19742330
  7. 7. Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J. 2005; 25(3):564–9. pmid:15738303
  8. 8. Espinal MA, Kim SJ, Suarez PG, Kam KM, Khomenko AG, Migliori GB, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000; 283(19): 2537–45. pmid:10815117
  9. 9. Affolabi D, Odoun M, Sanoussi N, Martin A, Palomino JC, Kestens L, et al. Rapid and inexpensive detection of multidrug-resistant Mycobacterium tuberculosis with the nitrate reductase assay using liquid medium and direct application to sputum samples. J Clin Microbiol. 2008; 46(10):3243–5. doi: 10.1128/JCM.00083-08. pmid:18753346
  10. 10. World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Policy statement Geneva: World Health Organization. 2008.
  11. 11. Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S. Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2005; 43(8):3699–3703. pmid:16081898
  12. 12. Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008; 32(5):1165–74. doi: 10.1183/09031936.00061808. pmid:18614561
  13. 13. Drobniewski F, Cooke M, Jordan J, Casali N, Mugwagwa T, Broda A, et al. Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol Assess. 2015; 19(34):1–188. doi: 10.3310/hta19340. pmid:25952553
  14. 14. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8):529–36. doi: 10.7326/0003-4819-155-8-201110180-00009. pmid:22007046
  15. 15. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med.1993; 12(14):1293–316. pmid:8210827
  16. 16. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11):1539–58. pmid:12111919
  17. 17. Hillemann D, Rüsch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2007; 45(8):2635–40. pmid:17537937
  18. 18. Barnard M, Albert H, Coetzee G, O'Brien R, Bosman ME. Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am J Respir Crit Care Med. 2008; 177(7):787–92. doi: 10.1164/rccm.200709-1436OC. pmid:18202343
  19. 19. Causse M, Ruiz P, Gutierrez JB, Zerolo J, Casal M. Evaluation of new GenoType MTBDRplus for detection of resistance in cultures and direct specimens of Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2008; 12(12):1456–60. pmid:19017457
  20. 20. Lacoma A, Garcia-Sierra N, Prat C, Ruiz-Manzano J, Haba L, Rosés S, et al. GenoType MTBDRplus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol. 2008; 46(11):3660–7. doi: 10.1128/JCM.00618-08. pmid:18784319
  21. 21. Huang WL, Chen HY, Kuo YM, Jou R. Performance assessment of the GenoType MTBDRplus test and DNA sequencing in detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2009; 47(8):2520–4. doi: 10.1128/JCM.02499-08. pmid:19494067
  22. 22. Macedo R, Amorim A, Pereira E. Multidrug-resistant tuberculosis: rapid molecular detection with MTBDRplus assay in clinical samples. Rev Port Pneumol. 2009; 15(3):353–65. pmid:19401789
  23. 23. Nikolayevskyy V, Balabanova Y, Simak T, Malomanova N, Fedorin I, Drobniewski F. Performance of the Genotype MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation. BMC Clin Pathol. 2009; 9: 2. doi: 10.1186/1472-6890-9-2. pmid:19284561
  24. 24. Albert H, Bwanga F, Mukkada S, Nyesiga B, Ademun JP, Lukyamuzi G, et al. Rapid screening of MDR-TB using molecular Line Probe Assay is feasible in Uganda. BMC Infect Dis. 2010; 26(10):41.
  25. 25. Anek-Vorapong R, Sinthuwattanawibool C, Podewils LJ, McCarthy K, Ngamlert K, Promsarin B, et al. Validation of the GenoType MTBDRplus assay for detection of MDR-TB in a public health laboratory in Thailand. BMC Infect Dis. 2010; 20(10):123.
  26. 26. Huyen MN, Tiemersma EW, Lan NT, Cobelens FG, Dung NH, Sy DN, et al. Validation of the GenoType MTBDRplus assay for diagnosis of multidrug resistant tuberculosis in South Vietnam. BMC Infect Dis. 2010; 10:149. doi: 10.1186/1471-2334-10-149. pmid:20525271
  27. 27. Dubois Cauwelaert N, Ramarokoto H, Ravololonandriana P, Richard V, Rasolofo V. DNA extracted from stained sputum smears can be used in the MTBDRplus assay. J Clin Microbiol. 2011; 49(10):3600–3. doi: 10.1128/JCM.00745-11. pmid:21832013
  28. 28. Khadka JB, Rai SK, Shrestha S, Maharjan B, Bhatta DR, Ghimire P. Study of rifampicin and isoniazid resistance mutation genes of M. tuberculosis isolates in Nepal. Nepal Med Coll J. 2011; 13(3):147–51. pmid:22808802
  29. 29. Rigouts L, Hoza AS, De Rijk P, Torrea G, Chonde TM, Basra D, et al. Evaluation of the Genotype MTBDRplus assay as a tool for drug resistance surveys. Int J Tuberc Lung Dis. 2011; 15(7):959–65. doi: 10.5588/ijtld.10.0515. pmid:21682972
  30. 30. Imperiale BR, Zumárraga MJ, Weltman G, Zudiker R, Cataldi AA, Morcillo NS. First evaluation in Argentina of the GenoType MTBDRplus assay for multidrug-resistant Mycobacterium tuberculosis detection from clinical isolates and specimens. Rev Argent Microbiol. 2012; 44(4):283–9. pmid:23267627
  31. 31. Crudu V, Stratan E, Romancenco E, Allerheiligen V, Hillemann A, Moraru N. First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J Clin Microbiol. 2012; 50(4):1264–9. doi: 10.1128/JCM.05903-11. pmid:22301019
  32. 32. Dorman SE, Chihota VN, Lewis JJ, van der Meulen M, Mathema B, Beylis N, et al. Genotype MTBDRplus for direct detection of Mycobacterium tuberculosis and drug resistance in strains from gold miners in South Africa. J Clin Microbiol. 2012; 50(4):1189–94. doi: 10.1128/JCM.05723-11. pmid:22238443
  33. 33. Farooqi JQ, Khan E, Alam SM, Ali A, Hasan Z, Hasan R. Line probe assay for detection of rifampicin and isoniazid resistant tuberculosis in Pakistan. J Pak Med Assoc. 2012; 62(8):767–72. pmid:23862246
  34. 34. Jin J, Zhang Y, Fan X, Diao N, Shao L, Wang F, et al. Evaluation of the GenoType MTBDRplus assay and identification of a rare mutation for improving MDR-TB detection. Int J Tuberc Lung Dis.2012; 16(4):521–6. doi: 10.5588/ijtld.11.0269. pmid:22325117
  35. 35. Mironova S, Pimkina E, Kontsevaya I, Nikolayevskyy V, Balabanova Y, Skenders G, et al. Performance of the GenoType MTBDRPlus assay in routine settings: a multicenter study. Eur J Clin Microbiol Infect Dis. 2012; 31(7):1381–7. doi: 10.1007/s10096-011-1453-1. pmid:22037774
  36. 36. Raveendran R, Wattal C, Oberoi JK, Goel N, Datta S, Prasad KJ. Utility of GenoType MTBDRplus assay in rapid diagnosis of multidrug resistant tuberculosis at a tertiary care centre in India. Indian J Med Microbiol. 2012; 30(1):58–63. doi: 10.4103/0255-0857.93034. pmid:22361762
  37. 37. Tessema B, Beer J, Emmrich F, Sack U, Rodloff AC. Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among Mycobacterium tuberculosis isolates from Ethiopia. BMC Infect Dis. 2012; 12:37. doi: 10.1186/1471-2334-12-37. pmid:22325147
  38. 38. Tukvadze N, Kempker RR, Kalandadze I, Kurbatova E, Leonard MK, Apsindzelashvili R, et al. Use of a molecular diagnostic test in AFB smear positive tuberculosis suspects greatly reduces time to detection of multidrug resistant tuberculosis. PLoS One. 2012; 7(2):e31563. doi: 10.1371/journal.pone.0031563. pmid:22347495
  39. 39. Ferro BE, García PK, Nieto LM, van Soolingen D. Predictive value of molecular drug resistance testing of Mycobacterium tuberculosis isolates in Valle del Cauca, Colombia. J Clin Microbiol. 2013; 51(7):2220–4. doi: 10.1128/JCM.00429-13. pmid:23658272
  40. 40. Lyu J, Kim MN, Song JW, Choi CM, Oh YM, Lee SD, et al. GenoType MTBDRplus assay detection of drug-resistant tuberculosis in routine practice in Korea. Int J Tuberc Lung Dis. 2013; 17(1):120–4. doi: 10.5588/ijtld.12.0197. pmid:23232012
  41. 41. Maschmann Rde A, Sá Spies F, Nunes Lde S, Ribeiro AW, Machado TR, Zaha A, et al. Performance of the GenoType MTBDRplus assay directly on sputum specimens from Brazilian patients with tuberculosis treatment failure or relapse. J Clin Microbiol. 2013; 51(5):1606–8. doi: 10.1128/JCM.00364-13. pmid:23467605
  42. 42. Yadav RN, Singh BK, Sharma SK, Sharma R, Soneja M, Sreenivas V, et al. Comparative evaluation of GenoType MTBDRplus line probe assay with solid culture method in early diagnosis of multidrug resistant tuberculosis (MDR-TB) at a tertiary care centre in India. PLoS One. 2013; 8(9):e72036. doi: 10.1371/journal.pone.0072036. pmid:24039735
  43. 43. Aurin TH, Munshi SK, Kamal SM, Rahman MM, Hossain MS, Marma T, et al. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB) in Bangladesh. PLoS One. 2014; 9(6):e99810. doi: 10.1371/journal.pone.0099810. pmid:24932706
  44. 44. Chen C, Kong W, Zhu L, Zhou Y, Peng H, Shao Y, et al. Evaluation of the GenoType() MTBDRplus line probe assay on sputum-positive samples in routine settings in China. Int J Tuberc Lung Dis. 2014; 18(9):1034–9. doi: 10.5588/ijtld.13.0857. pmid:25189549
  45. 45. Huang WL, Hsu ZJ, Chang TC, Jou R. Rapid and accurate detection of rifampin and isoniazid-resistant Mycobacterium tuberculosis using an oligonucleotide array. Clin Microbiol Infect. 2014; 20(9):O542–9. doi: 10.1111/1469-0691.12517. pmid:24372766
  46. 46. Kumar P, Balooni V, Sharma BK, Kapil V, Sachdeva KS, Singh S. High degree of multi-drug resistance and hetero-resistance in pulmonary TB patients from Punjab state of India. Tuberculosis (Edinb). 2014; 94(1):73–80.
  47. 47. Luetkemeyer AF, Kendall MA, Wu X, Lourenço MC, Jentsch U, Swindells S, et al. Evaluation of two line probe assays for rapid detection of Mycobacterium tuberculosis, tuberculosis (TB) drug resistance, and non-TB Mycobacteria in HIV-infected individuals with suspected TB. J Clin Microbiol. 2014; 52(4):1052–9. doi: 10.1128/JCM.02639-13. pmid:24430455
  48. 48. Raizada N, Sachdeva KS, Chauhan DS, Malhotra B, Reddy K, Dave PV, et al. A multi-site validation in India of the line probe assay for the rapid diagnosis of multi-drug resistant tuberculosis directly from sputum specimens. PLoS One. 2014; 9(2):e88626. doi: 10.1371/journal.pone.0088626. pmid:24586360
  49. 49. Gupta R, Thakur R, Gupta P, Jalan N, Kushwaha S, Gupta M, et al. Evaluation of GenoType MTBDRplus Line Probe Assay for Early Detection of Drug Resistance in Tuberculous Meningitis Patients in India. J Glob Infect Dis. 2015; 7(1):5–10. doi: 10.4103/0974-777X.150882. pmid:25722613
  50. 50. Smith SE, Kurbatova EV, Cavanaugh JS, Cegielski JP. Global isoniazid resistance patterns in rifampin-resistant and rifampin-susceptible tuberculosis. Int J Tuberc Lung Dis. 2012; 16(2):203–5. doi: 10.5588/ijtld.11.0445. pmid:22136739
  51. 51. Kipiani M, Mirtskhulava V, Tukvadze N, Magee M, Blumberg HM, Kempker RR. Significant clinical impact of a rapid molecular diagnostic test (Genotype MTBDRplus assay) to detect multidrug-resistant tuberculosis. Clin Infect Dis. 2014; 59(11):1559–66. doi: 10.1093/cid/ciu631. pmid:25091301
  52. 52. Bwanga F, Hoffner S, Haile M, Joloba ML. Direct susceptibility testing for multi drug resistant tuberculosis: a meta-analysis. BMC Infect Dis. 2009; 9:67. doi: 10.1186/1471-2334-9-67. pmid:19457256
  53. 53. Musser JM. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995; 8(4):496–514. pmid:8665467
  54. 54. Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2006; 50(8):2640–9. pmid:16870753
  55. 55. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003; 56(11):1129–35. pmid:14615004
  56. 56. Gallagher EJ. Clinical utility of likelihood ratios. Ann Emerg Med. 1998; 31(3):391–7. pmid:9506499
  57. 57. Petitti DB. Approaches to heterogeneity in meta-analysis. Stat Med. 2001; 20(23):3625–33. pmid:11746342
  58. 58. Guo Q, Zheng RJ, Zhu CT, Zou LL, Xiu JF, Li J, et al. Pyrosequencing for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2013; 17(8):1008–13. doi: 10.5588/ijtld.12.0519. pmid:23541177
  59. 59. Lijmer JG, Bossuyt PM, Heisterkamp SH. Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med. 2002; 21(11):1525–37. pmid:12111918
  60. 60. Humphrey PR. Systematic reviews of diagnostic test evaluations: what's behind the scenes? ACP J Club. 2004; 141(3):A14. pmid:15518440
  61. 61. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH, et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA. 1999; 282(11):1061–6. pmid:10493205
  62. 62. Tatsioni A, Zarin DA, Aronson N, Samson DJ, Flamm CR, Schmid C, et al. Challenges in systematic reviews of diagnostic technologies. Ann Intern Med. 2005; 142(12 Pt2):1048–55.
  63. 63. Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet. 2007; 369(9578):2042–9. pmid:17574096
  64. 64. Barnard M, Gey van Pittius NC, van Helden PD, Bosman M, Coetzee G, Warren RM. The diagnostic performance of the GenoType MTBDRplus version 2 line probe assay is equivalent to that of the Xpert MTB/RIF assay. J Clin Microbiol. 2012; 50(11):3712–6. doi: 10.1128/JCM.01958-12. pmid:22972826
  65. 65. Traore H, Fissette K, Bastian I, Devleeschouwer M, Portaels F. Detection of rifampicin resistance in Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. Int J Tuberc Lung Dis. 2000; 4(5):481–4. pmid:10815743
  66. 66. Chang KC, Yew WW, Zhang Y. A systematic review of rapid drug susceptibility tests for multidrug-resistant tuberculosis using rifampin resistance as a surrogate. Expert Opin Med Diagn. 2009; 3(2):99–122. doi: 10.1517/17530050802665694. pmid:23485158
  67. 67. Arentz M, Sorensen B, Horne DJ, Walson JL. Systematic review of the performance of rapid rifampicin resistance testing for drug-resistant tuberculosis. PLoS One. 2013; 8(10):e76533. doi: 10.1371/journal.pone.0076533. pmid:24098523
  68. 68. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 2010; 375(9728).
  69. 69. Feng Y, Liu S, Wang Q, Wang L, Tang S, Wang J, et al. Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a meta-analysis. PLoS One. 2013; 8(2):e55292. doi: 10.1371/journal.pone.0055292. pmid:23383320