Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Synchronization of Developmental Processes and Defense Signaling by Growth Regulating Transcription Factors

  • Jinyi Liu,

    Affiliation Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America

  • J. Hollis Rice,

    Affiliation Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America

  • Nana Chen,

    Affiliation Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America

  • Thomas J. Baum,

    Affiliation Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America

  • Tarek Hewezi

    thewezi@utk.edu

    Affiliation Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America

Synchronization of Developmental Processes and Defense Signaling by Growth Regulating Transcription Factors

  • Jinyi Liu, 
  • J. Hollis Rice, 
  • Nana Chen, 
  • Thomas J. Baum, 
  • Tarek Hewezi
PLOS
x

Abstract

Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

Introduction

Plants have evolved complex regulatory mechanisms to defend themselves against a wide range of biotic and abiotic stress factors. In response to pathogen infection plant cells promptly activate defense signaling, which requires considerable metabolic activity, to cope with the infection at the expense of growth-related cellular functions. Accordingly, mutant plants with constitutively activated defense responses frequently exhibit stunted growth and delayed development [1]. The growth-defense trade-off is a well-known phenomenon but the underling molecular mechanisms are elusive. In other words, the cellular factors mediating the overlaps between defense signaling and developmental pathways are unknown. In this context, growth-regulating transcription factors (GRFs) represent exciting targets to investigate the molecular mechanisms that coordinate developmental cell biology changes and defense dynamics. GRFs genes were identified in the genomes of all seed plants examined so far [2][5]. The GRF genes constitute a small gene family containing 9 members in Arabidopsis thaliana [3], 12 members in rice (Oryza sativa) [4] and 14 members in maize (Zea mays) [5]. The GRF gene family is defined by the presence of QLQ and WRC domains in the N-terminal region [3]. The QLQ domain of GRFs is involved in protein–protein interactions. The WRC domain of the GRFs contains a nuclear localization signal and a DNA-binding motif, which mediates their binding to specific cis-acting elements in the promoters of the target genes thereby regulating their expression [6]. It has been shown that Arabidopsis GRF1 and GRF2 act as transcriptional activators and the transactivation activity is mediated by the C-terminal region, which does not contain QLQ or WRC motifs, and through the association with the co-activator GRF-Interacting Factor (GIF) [6]. More recently, Arabidopsis GRF7 was reported to function as transcriptional repressor of osmotic stress–responsive genes by binding to the cis-element TGTCAGG [7]. However, the transcriptional repression activity of GRF7 requires the QLQ or WRC motifs. Taken together, these data suggest that GRF proteins can function as transcriptional activators and/or transcriptional repressor, and QLQ-binding cofactors are most likely the major determinants of the transactivation or repression activity.

Several GRF genes contain binding sites for microRNA396 (miR396) and thus are post-transcriptionally regulated by the activity of miR396. The induction of miR396 is frequently associated with significant decrease in GRF expression levels. Reduction of the expression of GRF genes by overexpressing miR396 suggested a role of GRFs in the development of leaves, and roots [8][11]. For example, miR396 accumulates preferentially in the distal part of young developing leaves and diminishes cell proliferation by inhibiting the activity of GRF2 thereby defining the ultimate number of cells in leaves [9]. Consistent with this finding, a role of GRFs in the establishment of leaf polarity was demonstrated [10]. In addition, the implication of GRFs in coordinating plant response to biotic stress has been recently suggested.

The expression of miR396-regulated GRF genes has been shown to be altered in response to various abiotic stress treatments including drought, salinity, low temperature, and UV-B radiation [12], [13]. Consistent with a functional role of miR396/GRFs in abiotic stress responses, GRF7 was recently demonstrated to function as a repressor of a wide range of osmotic stress-responsive genes, presumably to prevent growth inhibition under normal conditions [7]. The implication of the miR396/GRFs regulatory system in biotic stress response has been recently reported. For example, miR396 and/or GRFs were shown to accumulate in plants treated with the Pseudomonas syringae DC3000 hrcC2 [14] and flg22 [15]. In addition, we recently discovered key functional roles of miR396-targeted GRF1 and GRF3 in reprogramming of root cells during cyst nematode parasitism [11], [16]. We demonstrated that GRF1 and GRF3 are post-transcriptionally regulated by miR396 during cyst nematode infection and that gene expression change of miR396 or its targets GRF1 and GRF3 significantly reduced plant susceptibility to nematode infection [16]. More importantly, we found that miR396/GRF1-GRF3 controls about 50% of the gene expression changes described in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots [16]. Collectively, these data point to roles of GRFs in controlling the overlaps between defense signaling and developmental pathways. In this study, we identified a large number of putative targets of GRF1 and GRF3 by comparing gene expression change in transgenic plants overexpressing miRNA396-resitanat version of GRF1 (rGRF1) or rGRF3 with those of the grf1/grf2/grf3 triple mutant. Functional classification of the putative targets revealed that GRF1/3 are involved in a wide range of developmental processes and defense responses. Also, we demonstrate that GRF1/3 control the expression of other miRNA targets and may contribute to the negative regulation of their targets through association with other transcription factors. Together, our data shed lights into possible molecular mechanisms by which GRF1 and GRF3 control various developmental events and coordinate their interactions with defense responses.

Materials and Methods

Identification of putative targets of GRF1 and GRF3

To identify putative target genes of GRF1 and GRF3 we analyzed our recently published microarray data set (accession number GSE31593 in Gene Expression Omnibus at the National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/geo/) [16]. In brief, we used Arabidopsis Affymetrix ATH1 GeneChips to compare the mRNA profiles of the grf1/grf2/grf3 triple mutant and transgenic plants overexpressing miRNA396-resitanat version of GRF1 (rGRF1) or rGRF3 with those of the corresponding wild-type (Colombia-0 [Col-0] or Wassilewskija [WS]). The experiment was conducted in a completely randomized design with three independent biological replications for each of the plant types, Col-0, WS, grf1/grf2/grf3, rGRF1, and rGRF3. A linear model analysis of the normalized expression values was conducted for each gene across the five genetic materials and the differential expression between Col-0 and rGRF1 or rGRF3 and between WS and the triple mutant was determined using a false discovery rate of less than 5% and P value <0.05 as described in [16]. Genes showing significant reciprocal expression patterns between overexpression lines and grf1/grf2/grf3 mutant were chosen as putative targets.

Biological pathway identification

Biological pathway search for the putative targets of GRF1 and GRF3 was performed using NCBI/BioSystems database (http://www.ncbi.nlm.nih.gov/biosystems), which contains records from several databases including KEGG, WikiPathways, BioCyc, Reactome, the National Cancer Institute's Pathway Interaction Database and Gene Ontology (GO). We conducted the analysis to include only Arabidopsis-specific pathways. The statistical significance of gene set enrichment in each pathway was determined using Chi-square test (P<0.05).

Cluster analysis and identification of tissue-specific genes

To identify tissue-specific expression of the putative targets of GRF1 and GRF3, we analyzed microarray data from the AtGenExpress expression atlas (http://www.weigelworld.org/resources/microarray/AtGenExpress) [17] and the Arabidopsis eFP Browser (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi) [18]. The AtGenExpress expression atlas contains gene expression data for 79 samples covering several tissues and developmental stages, while the Arabidopsis eFP Browser contains gene expression data for more than 1000 microarray data sets. The signal intensity of each probe was retrieved and logarithmically transformed (base 10) and then used to generate the heat map using MeV (Multiple Experiment Viewer) software, version 4.9 (http://www.tm4.org/mev.html).

Cis-element identification in the promoter region of GRF1/3 regulated genes

The promoter region, 1,500 bp upstream of the translation initiation codon, of all GRF1/3 putative targets were retrieved from TAIR (http://www.arabidopsis.org/tools/bulk/sequences/index.jsp) and used to search for known transcription factor cis-regulatory elements using PLANTPAN software [19]. The frequency of each cis-regulatory element was determined in the positively and negatively regulated subsets of GRF1 and GRF3 putative targets. Statistical significance of the differences in the frequency of cis elements between the positively and negatively regulated targets was determined using χ2 test.

RNA isolation and qRT-PCR analysis

For quantification of the expression levels of GRF1 and GRF3 in the cytokinin mutants, Wild-type Arabidopsis (ecotypes Col-0), the ahk2 ahk3 double mutant [20] ahp1,2,3 triple mutant [21], type-A arr3,4,5,6 quadruple mutant [22], and type-B arr1,12 double mutant [23] were grown on MS medium at 26°C under 16-h-light/8-h-dark conditions. Two-week-old plants were collected for RNA isolation using the method described in [24]. DNase treatment of total RNA was performed using DNase I (Invitrogen). Twenty nanograms of DNase-treated RNA were used for cDNA synthesis and PCR amplification using the Verso SYBR Green One-Step qRT-PCR Kit (Thermo Scientific) according to the manufacturer's protocol. The PCR reactions were run in an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems) using the following program: 50°C for 15 min, 95°C for 15 min, and 40 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 20 s. After PCR amplification, the reactions were subjected to a temperature ramp to generate the dissociation curve to detect the nonspecific amplification products. The dissociation program was 95°C for 15 s, 50°C for 15 s, followed by a slow ramp from 50°C to 95°C. The constitutively expressed gene Actin8 (AT1G49240) was used as an internal control to normalize gene expression levels. Quantification of the relative changes in gene expression was performed using the 2−ΔΔCT method [25].

For quantification of the expression level of miR169, miR172, miR393, miR395, miR844, miR846, and miR857 in the P35S:rGRF1 and P35S:rGRF3 transgenic plants [16], total RNA was extracted from two-week-old plants with TRIzol reagent (Invitrogen) according to the manufacturer's instructions. Total RNA (5 µg) was polyadenylated and reverse transcribed using the Mir-X miRNA First-Strand Synthesis Kit (Clontech) according the manufacturer's protocol. The synthesized cDNAs then were diluted to a concentration equivalent to 40 ng total RNA µL−1 and used as a template in qPCR reactions to quantify mature miRNA expression. PCR was performed using a universal reverse primer (mRQ; supplied with the Mir-X miRNA First-Strand Synthesis Kit), complementary to the poly(T) and the mature miRNA sequences as forward primers. The miRNA-specific forward primers were extended by two A residues on the 3′ end to ensure the binding to the poly(T) region of the mature miRNA cDNA and to evade its hybridization on the miRNA precursor cDNA, as recently described [16]. The PCR reactions were run using the following program: 95°C for 3 min, and 40 cycles of 95°C for 30 s, and 60°C for 30 s. The U6 small nuclear RNA was used as an internal control to normalize the expression levels of mature miRNAs. Quantification of the relative changes in gene expression was performed as described above. Gene-specific primers used in the qPCR analysis are provided in Table S1.

Root Length Measurements

Seeds of the transgenic lines overexpressing rGRF1 (line 6–8) or rGRF3 (line 11–15) described in [16], as well as wild-type Col-0 were planted vertically on modified Knop's medium supplemented or not with 100 nM N6-benzyladenine (BA, a cytokinin), on 4-well culture plates (BD Biosciences). The root length of at least 30 plants per line was measured as the distance between the crown and the tip of the main root in three independent experiments. Statistically significant differences between the transgenic lines and Col-0 lines were determined by unadjusted paired t tests (P<0.01).

Results

Identification of potential targets of GRF1 and GRF3 using microarray analysis

Because both GRF1 and GRF3 function as transcription factors, identifying their direct or indirect target genes will elucidate the pathways in which these transcription factors function. Recently, we used Arabidopsis Affymetrix ATH1 GeneChips to compare the mRNA profiles of root tissues of the grf1/grf2/grf3 triple mutant and transgenic plants overexpressing miRNA396-resistanat version of GRF1 (rGRF1) or rGRF3 with those of the corresponding wild-type (Col-0 or Ws). We identified 3,944, 2,293 and 2,410 genes as differentially expressed in the grf1/grf2/grf3 triple mutant, rGRF1 and rGRF3 plants, respectively, at a false discovery rate (FDR) of <5% and a P value of <0.05 [16]. In order to mine these expression data for the most likely GRF-dependent target gene candidates, we hypothesized that bona fide target genes of GRF1 and GRF3 likely would exhibit opposite expression patterns in the grf1/grf2/grf3 triple mutant and rGRF1 or rGRF3 overexpression plants. To this end, we compared the expression patterns of the 1,135 overlapping genes between the grf1/grf2/grf3 triple mutant and rGRF1 and identified 1,098 genes as having opposite expression patterns in both lines (Figure 1A and Table S2). Of these 1,098 genes, 507 genes were found to be upregulated in rGRF1 and downregulated in the grf1/grf2/grf3 triple mutant, and 591 genes were upregulated in the grf1/grf2/grf3 mutant and downregulated in rGRF1 (Figure 1A and Table S2). Similarly, we compared the expression patterns of the 796 overlapping genes between grf1/grf2/grf3 triple mutant and rGR31. We identified 600 genes as having opposite expression patterns in both lines, and of these, 299 genes were found to be upregulated in rGRF3 and downregulated in the grf1/grf2/grf3 triple mutant; 301 genes were upregulated in the grf1/grf2/grf3 triple mutant and downregulated in rGRF3 (Figure 1B and Table S3). We considered these 1,098 and 600 genes as putative candidate targets of GRF1 and GRF3, respectively. When we compared these two groups of genes, we identified a set of 264 genes as common putative targets of GRF1 and GRF3, leaving a unique set of 1434 genes as putative targets of GRF1 or GRF3 (Table S4). Of these 1434 potential targets, 682 are positively regulated and 752 are negatively regulated by GRF1 or GRF3, suggesting that GRF1/3 positively and negatively regulate target genes to similar extent.

thumbnail
Figure 1. Identification of potential target genes of GRF1 and GRF3.

Venn diagram comparing the overlapping differentially expressed genes between rGRF1 and grf1/grf2/grf3 (A) or rGRF3 and grf1/grf2/grf3 (B). A. Identification of potential target genes of GRF1. Out of the 1,135 overlapping genes between grf1/grf2/grf3 triple mutant and rGRF1, 1,098 genes were identified as having opposite expression patterns in both lines from which 507 genes were found to be upregulated in rGRF1 and downregulated in grf1/grf2/grf3 triple mutant, and 591 genes were upregulated in the grf1/grf2/grf3 mutant and downregulated in rGRF1. B. Identification of potential target genes of GRF3. Out of the 796 overlapping genes between grf1/grf2/grf3 triple mutant and rGRF3, 600 genes were identified as having opposite expression patterns in both lines from which 299 genes were found to be upregulated in rGRF3 and downregulated in grf1/grf2/grf3 triple mutant, and 301 genes were upregulated in the grf1/grf2/grf3 mutant and downregulated in rGRF3. Numbers in the areas highlighted in red indicate differentially expressed genes that exhibit opposite expression whereas overlapping areas highlighted in blue indicate the number of the differentially expressed genes that exhibited similar expression.

https://doi.org/10.1371/journal.pone.0098477.g001

Mapping the putative targets of GRF1 and GRF3 to biological pathways reveals their function diversity

In order to identify specific biological pathways in which the putative targets of GRF1 or GRF3 are involved we subjected the 1434 genes to a comprehensive analysis using NCBI/Biosystem database [26]. We successfully mapped 383 genes for 161 organism specific pathways (Table S5). In Figure 2, we included only pathways that are represented by at least 5 genes and significantly enriched in the putative targets gene list compared with the genome. Genes related to flavonoid biosynthesis, degradation of aromatic compounds and capsaicin biosynthesis constitute half of the genes involved in these pathways. Also, genes involved in the biosynthesis of other secondary metabolites such as phenylpropanoid, stilbenoids, terpenoid and cyanoamino acid were also enriched in the putative targets gene list. Putative targets involved in the biosynthesis of lignin and various amino acids constitute a significant portion of these pathways. Furthermore, putative targets of GRF1 or GRF3 involved in the metabolism of glutathione, nitrogen, or sulfur are enriched in these pathways. This analysis clearly indicates the implication of these targets in a wide range of biological processes, specifically the biosynthesis of amino acid and secondary metabolites.

thumbnail
Figure 2. Mapping putative target genes of GRF1 and GRF3 to biological pathways.

The 1434 putative target genes of GRF1/3 were subjected to NCBI/Biosystem database to identify specific biological pathways. Out of the 1434 genes, 383 were mapped to 161 organism specific pathways. We included only pathways that are represented by at least 5 genes and significantly enriched in the putative targets gene list compared with the genome. The complete description of the 161 pathways is provided in Table S5.

https://doi.org/10.1371/journal.pone.0098477.g002

GRF1 and GRF3 may regulate common targets in a tissue-specific fashion

To test whether the putative targets of GRF1 or GRF3 are associated with tissue specific expression patterns, the expression profiles of the 1434 putative targets were scanned across the AtGenExpress expression atlas [17], which contains 79 samples covering several tissues and developmental stages, from embryogenesis to senescence. Out of 1434 genes, we identified 130 and 13 specifically expressed in root and seed tissues, respectively. After this initial screen, the specific expression patterns of these genes were further verified by exploring a larger microarray database, the Arabidopsis eFP Browser [18], which contains more than 1000 microarray data sets. The second analysis yielded 25 and 10 genes as root and seed-specific genes, respectively (Figure 3 and Table S6). Of the 25 root-specific genes, 6 are common putative targets of both GRF1 and GRF3. Similarly, 2 genes were identified as common targets of both GRF1 and GRF3 out of the 10 seed-specific genes (Figure 3). These data suggest that GRF1 and GRF3 may regulate common targets in a tissue-specific fashion.

thumbnail
Figure 3. Hierarchical cluster analysis representation of root and seed-specific genes that are putative targets of GRF1 and/or GRF3.

The absolute values of gene expression were logarithmically scaled (base 10) and used to generate the heat map using MeV (Multiple Experiment Viewer) software, version 4.9. Genes are represented in lines and different tissues/organs are represented in column. Red and green correspond to transcriptional upregulation and downregulation relative to the average expression level over all tissues included, respectively. Gene IDs highlighted in black, red or blue color indicate putative targets of GRF1, GRF3 or both, respectively.

https://doi.org/10.1371/journal.pone.0098477.g003

GRF1 and GRF3 regulate the expression of other miRNA targets

To test whether GRF1 or GRF3 regulate other miRNA target genes, we scanned the entire set of the differentially expressed genes in rGRF1 (2,293 genes) or rGRF3 (2,410 genes) against all known Arabidopsis miRNAs target genes (205 genes). Interestingly, among the 2,293 genes regulated in rGRF1, we identified 19 genes that are post-transcriptionally regulated by 12 different miRNA gene families (Table S7). Also, among the 2,410 genes regulated in rGRF3, we identified 19 genes that are targets of 13 different miRNA gene families (Table S7). However, when these comparisons were narrowed to include only the putative direct targets of GRF1 (1,098 genes) or GRF3 (600 genes), we identified 15 genes that are targets of 7 miRNA gene families including miR169, miR172, miR393, miR395, miR844, miR846, and miR857 (Table 1). Interestingly, all targets of miR169 (7 genes) are negatively regulated by GRF1 and/or GRF3. This cross regulation seems to be organized in a coordinated manner since three out of the seven targets are co-regulated by both GRF1 and GRF3. Also, we found that GRF1 and GRF3 regulate the expression of miRNA targets in both directions. For example, targets of miR172, miR393, miR846 are positively regulated by GRF1 and/or GRF3. In contrast, targets of miR169, miR395 and miR857 are negatively regulated by GRF1 and/or GRF3.

thumbnail
Table 1. Putative targets of GRF1 or GRF3 that are post-transcriptionally regulated by miRNAs.

https://doi.org/10.1371/journal.pone.0098477.t001

Recent studies have shown that miRNA expression can be positively or negatively regulated by their targets through negative or positive feedback regulation loops [11], [27][31]. Therefore, we tested whether overexpression of rGRF1 or rGRF3 affected the expression of 7 miRNA genes (miR169, miR172, miR393, miR395, miR844, miR846, and miR857) whose targets were found to be regulated by GRF1 and/or GRF3. We used qPCR to quantify the abundance of mature miRNAs in the transgenic plants overexpressing rGRF1 or rGRF3 relative to wild-type Col-0. The expression levels of miR169 and miR393 were found to be downregulated both in rGRF1 and rGRF3 overexpression plants (Figure 4). In contrast, miR844, miR846 and miR857 showed predominant upregulation in the transgenic plants overexpression rGRF3, and to lesser extent in the transgenic plants overexpression rGRF1 (Figure 4). miR172 and miR395 showed little or no changes in the transgenic plants (Figure 4). These data clearly demonstrate that GRF1 and GRF3 can contribute to the negative or positive regulation of other miRNA genes through altering the expression of their targets.

thumbnail
Figure 4. Overexpression of rGRF1 or rGRF3 alters the expression of other miRNAs.

The expression levels of mature miR169, miR172, miR393, miR395, miR844, miR846, and miR857 were quantified in transgenic plants constitutively expressing the miR396-resistant forms of GRF1 and GRF3 (P35S:rGRF1 and P35S:rGRF3) using qPCR. The expression levels of mature miRNAs were normalized using U6 snRNA as an internal control. The relative fold-change values represent changes of mature miRNA expression levels in the transgenic plants relative to the wild-type control. Data are averages of three biological samples ± SE.

https://doi.org/10.1371/journal.pone.0098477.g004

Because we previously found that GRF1 and GRF3 change their expression in the syncytium induced by H. schachtii [16], it was of interest to test whether the 15 miRNA targets regulated by GRF1 and/or GRF3 are differentially expressed in the syncytium. Interestingly, these entire target genes were found to be differentially expressed in the syncytium induced by H. schachtii according to microarray analysis reported by [32]. However, when these 15 target genes were compared with those reported to be differentially expressed in the giant cells induced by the root-knot nematode Meloidogyne incognita [33], none of these genes were found to be overlapped. These data suggest that the regulation of miRNA targets by GRF1/3 is specific to the syncytial cells.

GRF1 and GRF3 regulate cytokinin-responsive genes

Our examination of the GRF-regulated targets for genes involved in hormone biosynthesis pathways led to the identification of a set of genes that are involved in the biosynthesis of cytokinin (6 genes), brassinosteroid (2 genes), auxin (2 genes), gibberellin (2 genes) salicylic acid (2 genes), ethylene (1 gene), and jasmonic acid (1 gene) (Figure 5). The abundance of cytokinin biosynthesis genes in this gene set prompted us to speculate that cytokinin-responsive genes could be also regulated by GRF1/3. To test this hypothesis, the 2,293 genes regulated by GRF1 were compared with the golden list of the cytokinin-responsive genes [34]. Out of the 226 cytokinin-responsive genes, 61 were identified as overlapping with GRF1-regulated genes. Similarly, 43 of the cytokinin-responsive genes overlapped with GRF3-regulated genes. After eliminating duplicates, a total of 92 (41%) cytokinin-responsive genes were identified as overlapping with the GRF1/3-regulated genes (Table S8). When these analyses were conducted to include only the potential targets of GRF1/3 (1434 genes), we identified 48 (21%) of the cytokinin-responsive genes as overlapping (Table 2). These data suggest that GRF1 and GRF3 play major role in controlling gene expression changes of cytokinin-responsive genes.

thumbnail
Figure 5. Putative targets of GRF1/3 are involved in hormone biosynthesis pathways.

Sixteen potential targets of GRF1/3 are implicated in the biosynthesis of various hormone pathways with cytokinin biosynthesis genes being the most abundant.

https://doi.org/10.1371/journal.pone.0098477.g005

thumbnail
Table 2. Cytokinin-responsive genes that are identified as putative targets of GRF1 or GRF3.

https://doi.org/10.1371/journal.pone.0098477.t002

In plants, cytokinin is perceived through a multi-step phosphorelay pathway. Based on the current model in Arabidopsis, three histidine Kinases, AHK2, AHK3 and AHK4 have been identified as transmembrane cytokinin receptors. These receptors transfer the signal via Arabidopsis histidine phosphotransfer proteins (AHPs) to the nucleus, activating two types of primary Arabidopsis response regulators (ARRs), known as type-A and type-B response regulators [35]. To provide direct evidence for the connection between GRF1/3 and cytokinin signaling, we measured the expression levels of GRF1 and GRF3, using qPCR, in several cytokinin signaling mutants including the ahk2 ahk3 double mutant, ahp1,2,3 triple mutant, type-A arr3,4,5,6 quadruple mutant and type-B arr1,12 double mutant. Data from three biological replicates revealed that the expression levels of GRF1 and GRF3 are significantly changed in the ahk2 ahk3 double mutant, showing at least twofold down-regulation in the mutant relative to wild-type plants (Figure 6A and B). In contrast, the expression levels of GRF1 and GRF3 were not significantly altered in the ahp1,2,3, type-A arr3,4,5,6 or type-B arr1,12 mutant lines (Figure 6A and B). These data support a role for GRF1 and GRF3 in the regulation of cytokinin receptors.

thumbnail
Figure 6. GRF1 and GRF3 regulate cytokinin signaling.

A and B, GRF1 and GRF3 may contribute to the activity of cytokinin receptors. The expression levels of GRF1 (A) and GRF3 (B) were quantified by qPCR in various cytokinin signaling mutants including the ahk2 ahk3 double mutant, ahp1,2,3 triple mutant, type-A arr3,4,5,6 quadruple mutant and type-B arr1,12 double mutant. GRF1 and GRF3 showed significant downregulation in the ahk2 ahk3 double mutant. The expression levels of GRF1 and GRF3 were normalized using actin8 as an internal control. The relative fold-change values represent changes of GRF expression levels in the mutant lines relative to the wild-type (Col-0). Data are averages of three biological samples ± SE. C, Exogenous application of cytokinin rescued the short-root phenotype of rGRF1 and rGRF3 overexpression lines. Homozygous T3 lines overexpressing rGRF1 (line 6–8), or rGRF3 (line 11–15) as well as the wild-type Col-0 were grown vertically on modified Knop's medium supplemented or not with 100 nM BA and root lengths were measured 9 and 15 days after planting. Root length values are averages of at least 30 plants ± SE. Mean values significantly different from that of the wild type as determined by unadjusted paired t tests (P<0.01) are denoted by an asterisk.

https://doi.org/10.1371/journal.pone.0098477.g006

One of the main morphological defects in the transgenic plants overexpressing rGRF1 or rGRF3 is the short-root phenotype [16]. Because cytokinin regulates the root meristem activity, root size and overall root length [36], therefore, it was of interest to examine whether the short-root phenotype in the rGRF1 and rGRF3 is mediated by cytokinin. To this end, homozygous T3 plants overexpressing rGRF1 (line 6–8), or rGRF3 (line 11–15) as well as the wild-type (Col-0) were grown vertically on modified Knop's medium supplemented or not with cytokinin in the form of benzyladenine (BA) at the concentration of 100 nM. Without exogenous application of cytokinin, the transgenic plants overexpressing rGRF1 or rGRF3 developed statistically significant shorter roots than the wild-type Col-0 at 9 days after planting (Figure 6C), confirming our previously published data [16]. Because exogenous application of cytokinin reduces root size and growth, we decided to compare the root length of the transgenic plants overexpressing rGRF1 or rGRF3 with Col-0 at 9 and 15 days after planting on modified Knop's medium supplemented with 100 nM BA. Interestingly, at both time points, the root lengths of the transgenic plants were found to be very similar to that of the Col-0 and no statistically significant differences were detected (Figure 6C). These results provide further support that GRF1 and GRF3 play key role in regulating gene expression changes of cytokinin-responsive genes.

Several transcription factor gene families are putative targets of GRF1/3

Careful examination of the potential targets of GRF1/3 revealed that high number of these targets code for transcription factors (Figure 7A). Transcription factors of the MYB, ERF NAC, bHLH and NF-YA gene families are highly represented. Interestingly, we identified four bZIP/TGA transcription factor genes (TGA1, 3, 4 and 7) that are specifically regulated by GRF1. These genes are members of clade I (TGA1 [At5g65210] and TGA4 [At5g10030]) and clade III (TGA3 [At1g22070] and TGA7 [At1g77920]). Functional characterization of clade I and III TGA factors has established an essential role in the regulation of pathogenesis-related genes and disease resistance [37][39]. In addition, we identified several MYB transcription factors as potential targets of GRF1 (MYB58 [AT1G16490], MYB63 [AT1G79180] and MYB43 [AT5G16600]), which are involved in the regulation of secondary cell wall formation [40], [41]. Consistent with this finding, genes with cell-wall related functions constitute 10 and 15% of the differentially expressed genes identified in the transgenic plants overexpression GRF1 or GRF3, respectively. Another interesting finding that may connect the function of GRF1 and GRF3 to a wide range of developmental processes and biotic stress tolerance is that several ethylene-responsive element-binding factors (ERFs) were identified as putative targets of GRF1 and GRF3. ERFs impact a number of developmental processes and are also function in plant adaptation to biotic and abiotic stresses [42][44].

thumbnail
Figure 7. GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors.

A. Histogram showing the number of genes in different transcription factor families that are identified as putative targets of GRF1 or GRF3. B. The frequency of various transcription factor cis elements was quantified in the promoters (1,500 bp upstream of the translation start codon) of upregulated putative targets of GRF1, GRF3 or both versus downregulated genes using PlantPan software [19]. For each cis element (x axis), the differences in the frequency between upregulated and downregulated targets (y axis) were calculated and used in the plot.

https://doi.org/10.1371/journal.pone.0098477.g007

GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors

Because GRF1/3 contain the QLQ protein/protein interaction domain, we hypothesized that other transcription factors may form a complex with GRF1/3 and facilitate the binding of GRF1/3 to specific binding motifs in the promoter of their putative targets. Therefore, we searched for known cis-elements that would be involved in the transcriptional regulation of all putative target genes of GRF1 and GRF3 in a 1.5 kb promoter region upstream of the translation start codon using PlantPan software [19]. We identified 382 and 361 cis elements in the promoters of the putative targets of GRF1 and GRF3, respectively (Table S9). Interestingly, when these cis elements were compared to identify common elements, the majority of these elements (357) were found to be common in the promoters of the putative targets of GRF1 and GRF3. These data suggest that both GRF1 and GRF3 may employ similar mechanisms in regulating the expression of their targets, consistent with the redundant function of these two transcription factors. In addition, we tested the distribution and frequency of these cis elements in the positively and negatively regulated targets of GRF1 (834 genes), GRF3 (336 genes) and both (264 genes). While these cis elements are equally distributed between up and downregulated genes, their frequency is much higher in the downregulated genes (Figure 7B), suggesting that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors.

Discussion

Despite the efforts to assign the biological processes regulated by GRFs during plant development, very limited number of target genes have been identified and characterized to date [6], [7]. One of the most common approaches to identify target genes of the transcription factors involves comparison of the genome-wide transcript profiles of transgenic plants overexpressing transcription factors and the corresponding wild types allowing the identification of genes that are significantly altered as a result of the increased expression of the transcription factors [45], [46]. An alternative approach relies on the comparison between the transcriptome of mutants and wild-type plants [47][49]. In the current study, we combined both approaches to identify potential target genes of GRF1 and GRF3. We retained only genes showing opposite expression between grf1/grf2/grf3 triple mutant and rGRF1 or rGRF3 in order to exclude genes whose expression is altered as artifactual effects of the ectopic overexpression and do not reflect authentic roles of the overexpressed transcription factors. Using this approach we identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. These numbers are relatively low compared with the total number of genes regulated by GRF1 (1,098 genes out of 2293, 47.9%) or GRF3 (600 genes out of 2410, 24.9%), suggesting that the greater part of these genes are indirectly regulated. The indirect regulation of downstream genes could be through the transcription control mediated by transcription factors or proteins with binding activity among those directly regulated by GRF1 or GRF3. Consistent with this interpretation, genes coding for transcription factors or proteins with binding activity represent up to 39% of the GRF1- potential direct target genes and up to 35% of the GRF3- potential direct targets. The enrichment of transcription factors belonging to Myb, ERF, NAC, bHLH, NY-YA, and C2H2 transcription factor family proteins in GRF1 or GRF3- potential direct target genes suggests key roles of these transcription factors in initiating transcriptional cascades, thereby extending the effects of GRF1 or GRF3 on downstream signaling pathways.

Transcription factors can positively or negatively regulate the expression of their target genes [50]. Our data point to the possibility that GRF1/3 may function as transcriptional repressors since more than half of the GRF1/3 targets are negatively regulated. Initially, members of the GRF gene family have been shown to function as transcriptional activators and this transactivation function involves the C-terminal region [6]. More recently, GRF7 was found to function as transcriptional repressor through its N-terminal QLQ and WRC motifs [7]. Because GRF proteins contain the QLQ protein–protein interaction domain, it is possible that GRF1/3 contribute to the negative regulation of their targets through their association with other transcription factors. This hypothesis is developed based on our data showing that the frequency of known cis elements is more abundant in the negatively regulated targets relative to the upregulated targets (Figure 7B). However, we don't rule out the possibility that GRF1/3 may function as transcriptional repressors through their biding to specific cis motifs.

Functional classification of the potential targets of GRF1/3 placed these two transcription factors as molecular links connecting defense signaling to plant growth and developmental pathways. Previously, we reported a key role for GRF1/3 in plant response to nematode infection [16]. In the current analysis, the anticipated roles of GRF1/3 in defense responses is further illuminated by identifying crucial factors that are involved in defense response and disease resistance. Four bZIP/TGA transcription factors genes (TGA1, 3, 4 and 7) were identified as potential targets of GRF1. TGA1 and TGA4, which belong to clade I are positively regulated, whereas TGA3 and TGA7, which belong to clade III are negatively regulated by GRF1. Characterization of Arabidopsis T-DNA insertion mutants indicated that clade I TGA factors contribute to basal disease resistance and this contribution is most likely independent of NPR1 [39], [51], [52]. In contrast, NPR1 stimulates the DNA binding of the clade III factors (TGA3 and TGA7) to the promoter of PR1 in a SA-dependent manner [39], [53][56]. It seems that GRF1 regulates the synergistic interactions between clade I and III TGA factors during plant response to pathogen infection by oppositely regulating the expression of genes belonging to both groups. Similar to clade I, clade III factor TGA3 is required for basal resistance [51] as well as for a novel form of cytokinin-induced resistance against virulent P. syringae [57]. Cytokinin-induced resistance may be an additional mechanism by which GRF1/3 control pathogen infection. Consistent with this speculation we found that GRF1/3 regulate 92 genes (41%) of the cytokinin-responsive genes from which 48 genes (21%) were identified as putative targets. Our data suggest that the potent control of GRF1/3 over cytokinin-responsive genes could be through targeting these genes directly as well as genes involved in cytokinin biosynthesis and signaling pathways. This suggestion was further supported by our data showing a significant down regulation of GRF1 and GRF3 in the cytokinin receptor ahk2 ahk3 double mutant and that exogenous application of cytokinin rescued the short-root phenotype of the transgenic plants overexpressing rGRF1 or rGRF3 (Figure 6). Cytokinins are fundamental hormones for the proper growth and development of the plants [58] and also play critical roles in plant-pathogen interaction as many plant pathogens secrete cytokinins or promote cytokinin accumulation in host plants [57], [59][61]. We conclude that targeting cytokinin-responsive and/or biosynthesis genes by GRF1/3 seems to be one of the main mechanisms employed by these two transcription factors to synchronize developmental processes and defense responses during pathogen infection.

Another interesting finding that could explain the coordination between developmental processes and defense responses mediated by GRF1/3 is that several ethylene-responsive element-binding factors (ERFs) are identified as putative targets of GRF1/3. ERFs constitute a plant-specific transcriptional factor superfamily of 147 members in Arabidopsis [62], influence a number of developmental processes, and are also involved in plant response to biotic stress [63][65]. It might be relevant to mention that several ERFs we identified as putative targets of GRF1/3 are implicated in defense responses. For example ERF5 (AT5G47230) plays vital role in phytotoxin-triggered programmed cell death [65] and in regulating both stress tolerance and leaf growth inhibition [66]. In addition, ERF2 (At5g47220) induces high levels of defense gene expression and enhances plant resistance to Fusarium oxysporum when overexpressed in Arabidopsis [67], [68]. Furthermore, four ERFs (AT1G28370, AT2G33710, AT3G50260 and AT5G47220) identified as potential targets of GRF1/3 were found to be highly upregulated in response to chitin, a plant-defense elicitor [69]. These transcription factors may regulate gene expression downstream of chitin-activated defense signaling pathways in association with GRF1/3. Interestingly, WRKY33 was identified as potential direct target of GRF1 and GRF3. WRKY33 is a pathogen-inducible transcription factor, functions downstream of MPK3/MPK6 in controlling the accumulation of camalexin, the major phytoalexin in Arabidopsis. WRKY33 binds directly to the promoter of PAD3, which catalyzes the last conversion step of camalexin pathway [70], [71]. It is intriguing to find that out of the ten genes known to be involved in the camalexin biosynthetic process, 5 were identified as putative targets of GRF1/3 including MKK9, MPK3, PAD3 and NAC domain-containing protein 42 in addition to WRKY33. These data suggest that GRF1/3 may contribute significantly to the regulation of camalexin biosynthetic genes and hence defense responses.

Plants respond to invading pathogens by activating various metabolic pathways including induction of an array of secondary metabolites with antimicrobial properties as an integral part of plant disease resistance [72], [73]. Regulating the activity of various secondary metabolite pathways appears to be another way by which GRF1/3 regulate defense responses. Our analysis revealed that several genes involved in the biosynthesis of several secondary metabolites including capsaicin, phenylpropanoid, stilbenoids, terpenoid and cyanoamino acid constitute a significant portion of the GRF1/3 putative targets. Unlike primary metabolites, secondary metabolites are not directly involved in the normal growth, development, or reproduction of the plants. However, they frequently play an important role in plant immunity by controlling the entry and/or development of the pathogens into plant cells and tissues as these metabolites can be secreted and delivered directly at the plant-pathogen interface [73], [74]. For example, stilbenoids can function as antimicrobial compounds and accumulate as phytoalexins following pathogen infection [73]. Constitutive expression of a grapevine stilbene-synthase gene in alfalfa resulted in increased plant resistance to the leaf spot pathogen Phoma medicaginis [75]. Phenylpropanoids serve as precursors for several compounds essential for disease resistance and their association with active defense response are well-known [76][78]. Terpenoids are the biggest and most diverse class of phytochemicals and recent data demonstrate that their accumulation in plant tissues can modify plant interactions with various pathogens [79].

Molecular links between defense and developmental pathways are believed to mediate and control the cross talk between various signaling pathways. This was clearly demonstrated by our data showing that GRF1/3 regulate other miRNA target genes that are involved in various cellular processes including flowering, auxin signaling, and copper and sulfate homeostasis (Table 1). Interestingly, this regulation was extended to include the expression of these miRNAs. As shown in Figure 4, the expression levels of seven miRNAs (miR169, miR172, miR393, miR395, miR844, miR846, and miR857) were altered in the transgenic plants overexpressing GRF1 or GRF3. It is unlikely that GRF1 and GRF3 directly impact the expression of these miRNAs. Most likely, the expression of these miRNAs are altered as a results of positive or negative feedback regulation loops between these miRNAs and their targets that are regulated by GRF1 and/or GRF3. This assigns new and unexpected roles for these transcription factors in regulating the crosstalk between miRNA signaling networks. Our finding that GRF1 and GRF3 regulate the expression of all targets of miR169 (7 genes) from which 3 are co-regulated by both GRF1 and GRF3 suggests that the cross regulation is organized in a coordinated manner. Thus, GRF1/3 may fine tune the expression levels of co-regulated genes and members of multigene families with concomitant biological functions. Consistent with this hypothesis, several genes involved in flowering control (AT3G20910, AT5G12840, AT1G72830, AT1G17590, AT3G05690 and AT3G54990) and negatively regulated by miR169 or miR172 [31], [80], [81] were identified as putative targets of GRF1/3. Similarly, genes involved in auxin signaling such as auxin response factors, NAC domain-containing proteins, and auxin signaling F box protein1, which are negatively regulated by miR167, miR164 and miR393 [82][84], respectively, are also regulated by GRF1 or GRF3.

It is of interest to find that GRF1 and 3 regulate the expression of their putative targets in a tissue-specific manner. Identifying a subset of putative targets of GRF1/3 that are specifically expressed in roots is consistent with the abundant expression of GRF1/3 in various root-tissue types and that overexpression of GRF1 or GRF3 impacts root growth and development [16]. Also, several recent reports support a role of GRF family members in floral organ development [85][88]. Our identification of several seed-specific genes as putative targets of GRF1/3 in the current study could illuminate the molecular events controlled by GRFs and required for precise floral organ initiation and development.

In conclusion, our data provide new insights into the molecular events by which GRF1/3 directly or indirectly regulate a variety of biological processes to formulate a decisive coordination between plant growth and defense responses. While direct proof is lacking, GRF1/3 may function not only as transcriptional activators or transcriptional repressors but also oppositely regulate genes that share common function or even genes that belong to the same gene family. This bifunctional activity, which reveals an unexpected degree of complexity of GRF1/3 in the regulation of their targets, may count among the main characteristics of key genes linking plant growth and developmental pathways to defense signaling.

Supporting Information

Table S1.

Primer sequences used in this study.

https://doi.org/10.1371/journal.pone.0098477.s001

(XLSX)

Table S2.

List of 1,098 differentially expressed genes showing opposite expression in the grf1/grf2/grf3 triple mutant and rGRF1 lines.

https://doi.org/10.1371/journal.pone.0098477.s002

(XLSX)

Table S3.

List of 600 differentially expressed genes showing opposite expression in the grf1/grf2/grf3 triple mutant and rGRF3 lines.

https://doi.org/10.1371/journal.pone.0098477.s003

(XLSX)

Table S4.

List of 1,434 genes identified as unique putative target genes of GRF1 and GRF3.

https://doi.org/10.1371/journal.pone.0098477.s004

(XLSX)

Table S5.

Biological pathway description of 383 putative targets of GRF1 or GRF3.

https://doi.org/10.1371/journal.pone.0098477.s005

(XLSX)

Table S6.

Putative targets of GRF1 or GRF3 showing root and seed-specific expression.

https://doi.org/10.1371/journal.pone.0098477.s006

(XLSX)

Table S7.

List of miRNA target genes that are identified as differentially expressed in the rGRF1 or rGRF3 transgenic plants.

https://doi.org/10.1371/journal.pone.0098477.s007

(XLSX)

Table S8.

List of cytokinin-responsive genes that are identified as differentially expressed in the rGRF1 or rGRF3 transgenic plants.

https://doi.org/10.1371/journal.pone.0098477.s008

(XLSX)

Table S9.

List of the cis elements that are identified in the promoters of the putative targets of GRF1 and GRF3.

https://doi.org/10.1371/journal.pone.0098477.s009

(XLSX)

Acknowledgments

We thank Dr. Joseph J. Kieber at University of North Carolina for providing us with cytokinin signaling mutants.

Author Contributions

Conceived and designed the experiments: TH TJB. Performed the experiments: TH JL JHR. Analyzed the data: JL NC TJB TH. Wrote the paper: TH.

References

  1. 1. Heidel AJ, Clarke JD, Antonovics J, Dong X (2004) Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168: 2197–2206.
  2. 2. van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122: 695–704.
  3. 3. Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36: 94–104.
  4. 4. Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45: 897–904.
  5. 5. Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, et al. (2008) Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175: 809–817.
  6. 6. Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci U S A 101: 13374–13379.
  7. 7. Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, et al. (2012) Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24: 3393–3405.
  8. 8. Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136: 223–236.
  9. 9. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, et al. (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137: 103–112.
  10. 10. Wang L, Gu X, Xu D, Wang W, Wang H, et al. (2011) miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Eep Bot 62: 761–773.
  11. 11. Hewezi T, Baum TJ (2012) Complex feedback regulations govern the expression of miRNA396 and its GRF target genes. Plant Signal Behav 7: 749–751.
  12. 12. Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P (2013) Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in Arabidopsis Leaves. Plant Cell 25: 3570–3583.
  13. 13. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14: 836–843.
  14. 14. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, et al. (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PloS One 2: e219.
  15. 15. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, et al. (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152: 2222–2231.
  16. 16. Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159: 321–335.
  17. 17. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, et al. (2005) A gene expression map of Arabidopsis thaliana development. Nat genet 37: 501–506.
  18. 18. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, et al. (2007) An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PloS One 2: e718.
  19. 19. Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC genomics 9: 561.
  20. 20. Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, et al. (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101: 8821–8826.
  21. 21. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, et al. (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18: 3073–3087.
  22. 22. To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, et al. (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: 658–671.
  23. 23. Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, et al. (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17: 3007–3018.
  24. 24. Verwoerd TC, Dekker BMM, Hoekema A (1989) A Small-Scale Procedure for the Rapid Isolation of Plant Rnas. Nucleic Acids Res 17: 2362–2362.
  25. 25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402–408.
  26. 26. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, et al. (2010) The NCBI BioSystems database. Nucleic Acids Res 38: D492–496.
  27. 27. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, et al. (2009) Phenotypic Plasticity of Adventitious Rooting in Arabidopsis Is Controlled by Complex Regulation of AUXIN RESPONSE FACTOR Transcripts and MicroRNA Abundance. Plant Cell 21: 3119–3132.
  28. 28. Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. (2009) The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell 138: 750–759.
  29. 29. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, et al. (2010) miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. Plant Cell 22: 1104–1117.
  30. 30. Wang JW, Czech B, Weigel D (2009) miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell 138: 738–749.
  31. 31. Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, et al. (2010) Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor APETALA2. Plant Cell 22: 2156–2170.
  32. 32. Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, et al. (2009) The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J 57: 771–784.
  33. 33. Barcala M, Garcia A, Cabrera J, Casson S, Lindsey K, et al. (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 61: 698–712.
  34. 34. Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, et al. (2013) Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol 162: 272–294.
  35. 35. Hwang I, Sheen J, Muller B (2012) Cytokinin Signaling Networks. Annu Rev Plant Biol 63: 353–380.
  36. 36. Ioio RD, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, et al. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17: 678–682.
  37. 37. Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144: 336–346.
  38. 38. Wang L, Fobert PR (2013) Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes. PloS One 8: e77378.
  39. 39. Shearer HL, Cheng YT, Wang L, Liu J, Boyle P, et al. (2012) Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. Mol Plant Microbe Interact 25: 1459–1468.
  40. 40. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: 248–266.
  41. 41. Zhong R, Ye ZH (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53: 368–380.
  42. 42. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, et al. (1996) Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science 274: 1914–1917.
  43. 43. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268: 667–675.
  44. 44. Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, et al. (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323.
  45. 45. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, et al. (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19: 3549–3562.
  46. 46. Pu L, Li Q, Fan X, Yang W, Xue Y (2008) The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180: 811–820.
  47. 47. Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, et al. (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21: 1453–1472.
  48. 48. Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, et al. (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20: 752–767.
  49. 49. Oh E, Kang H, Yamaguchi S, Park J, Lee D, et al. (2009) Genome-Wide Analysis of Genes Targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during Seed Germination in Arabidopsis. Plant Cell 21: 403–419.
  50. 50. Morimoto RI (1992) Transcription factors: positive and negative regulators of cell growth and disease. Curr Opin Cell Biol 4: 480–487.
  51. 51. Kesarwani M, Yoo JM, Dong XN (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144: 336–346.
  52. 52. Lindermayr C, Sell S, Muller B, Leister D, Durnera J (2010) Redox Regulation of the NPR1-TGA1 System of Arabidopsis thaliana by Nitric Oxide. Plant Cell 22: 2894–2907.
  53. 53. Zhang YL, Fan WH, Kinkema M, Li X, Dong XN (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A 96: 6523–6528.
  54. 54. Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279–290.
  55. 55. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, et al. (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13: 191–202.
  56. 56. Rochon A, Boyle P, Wignes T, Fobert PR, Despres C (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell 18: 3670–3685.
  57. 57. Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, et al. (2010) The Cytokinin-Activated Transcription Factor ARR2 Promotes Plant Immunity via TGA3/NPR1-Dependent Salicylic Acid Signaling in Arabidopsis. Dev Cell 19: 284–295.
  58. 58. Choi J, Hwang I (2007) Cytokinin: Perception, signal transduction, and role in plant growth and development. J Plant Biol 50: 98–108.
  59. 59. Jameson PE, Zhang H, Lewis DH (2000) Cytokinins. Extraction, separation, and analysis. Methods Mol Biol 141: 101–121.
  60. 60. Pertry I, Vaclavikova K, Depuydt S, Galuszka P, Spichal L, et al. (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 106: 929–934.
  61. 61. Choi J, Choi D, Lee S, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16: 388–394.
  62. 62. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411–432.
  63. 63. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29: 23–32.
  64. 64. Lu X, Zhang L, Zhang FY, Jiang WM, Shen Q, et al. (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198: 1191–1202.
  65. 65. Mase K, Ishihama N, Mori H, Takahashi H, Kaminaka H, et al. (2013) Ethylene-Responsive AP2/ERF Transcription Factor MACD1 Participates in Phytotoxin-Triggered Programmed Cell Death. Mol Plant Microbe Interact 26: 868–879.
  66. 66. Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, et al. (2013) ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis. Plant Physiol 162: 319–332.
  67. 67. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, et al. (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139: 949–959.
  68. 68. Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132: 1020–1032.
  69. 69. Libault M, Wan JR, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact 20: 900–911.
  70. 70. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, et al. (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27: 2214–2221.
  71. 71. Mao GH, Meng XZ, Liu YD, Zheng ZY, Chen ZX, et al. (2011) Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 23: 1639–1653.
  72. 72. Hammerschmidt R (1999) PHYTOALEXINS: What have we learned after 60 years? Annu Rev Phytopathol 37: 285–306.
  73. 73. Dixon RA (2001) Natural products and plant disease resistance. Nature 411: 843–847.
  74. 74. Bednarek P (2012) Chemical warfare or modulators of defence responses - the function of secondary metabolites in plant immunity. Curr Opin Plant Biol 15: 407–414.
  75. 75. Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13: 551–562.
  76. 76. Nicholson RL, Hammerschmidt R (1992) Phenolic-Compounds and Their Role in Disease Resistance. Annu Rev Phytopathol 30: 369–389.
  77. 77. Noel JP, Austin MB, Bomati EK (2005) Structure-function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol 8: 249–253.
  78. 78. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72: 1–20.
  79. 79. Szucs I, Escobar M, Grodzinski B (2011) Emerging Roles for Plant Terpenoids. In: Moo-Young M, editor. Comprehensive biotechnology second edition: Agriculture and related biotechnologies. pp. 273–286.
  80. 80. Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62: 487–495.
  81. 81. Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M (2009) Repression of Flowering by the miR172 Target SMZ. Plos Biol 7: e1000148.
  82. 82. Raman S, Greb T, Peaucelle A, Blein T, Laufs P, et al. (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55: 65–76.
  83. 83. Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, et al. (2011) Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 77: 619–629.
  84. 84. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211–4218.
  85. 85. Yang FX, Liang G, Liu DM, Yu DQ (2009) Arabidopsis MiR396 Mediates the Development of Leaves and Flowers in Transgenic Tobacco. J Plant Biol 52: 475–481.
  86. 86. Wynn AN, Rueschhoff EE, Franks RG (2011) Transcriptomic Characterization of a Synergistic Genetic Interaction during Carpel Margin Meristem Development in Arabidopsis thaliana. PloS One 6: e26231.
  87. 87. Baucher M, Moussawi J, Vandeputte OM, Monteyne D, Mol A, et al. (2013) A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biol 15: 892–898.
  88. 88. Liang G, He H, Li Y, Wang F, Yu D (2013) Molecular mechanism of miR396 mediating pistil development in Arabidopsis thaliana. Plant Physiol 164: 249–258.