Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Lean Body Mass, Interleukin 18, and Metabolic Syndrome in Apparently Healthy Chinese

  • Liang Sun,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Frank B. Hu,

    Affiliation Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America

  • Zhijie Yu,

    Affiliations Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

  • Huaixing Li,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Huaiyu Liu,

    Affiliation Shanghai Luwan Center for Disease Control and Prevention, Shanghai, China

  • Xiangdong Wang,

    Affiliation Shanghai Zhabei Center for Disease Control and Prevention, Shanghai, China

  • Danxia Yu,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Hongyu Wu,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Geng Zhang,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Geng Zong,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Yong Liu,

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

  • Xu Lin

    xlin@sibs.ac.cn

    Affiliation Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China

Lean Body Mass, Interleukin 18, and Metabolic Syndrome in Apparently Healthy Chinese

  • Liang Sun, 
  • Frank B. Hu, 
  • Zhijie Yu, 
  • Huaixing Li, 
  • Huaiyu Liu, 
  • Xiangdong Wang, 
  • Danxia Yu, 
  • Hongyu Wu, 
  • Geng Zhang, 
  • Geng Zong
PLOS
x

Abstract

Objective

We aimed to investigate how lean body mass is related to circulating Interleukin 18 (IL-18) and its association with metabolic syndrome (MetS) among apparently healthy Chinese.

Methods

A population-based sample of 1059 Chinese men and women aged 35–54 years was used to measure plasma IL-18, glucose, insulin, lipid profile, inflammatory markers and high-molecular-weight (HMW)-adiponectin. Fat mass index (FMI) and lean mass index (LMI) were measured by dual-energy X-ray absorptiometry. MetS was defined by the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans.

Results

Circulating IL-18 was positively correlated with LMI after adjustment for FMI (correlation coefficient = 0.11, P<0.001). The association with the MetS (odds ratio 3.43, 95% confidence interval 2.01–5.85) was substantially higher in the highest than the lowest quartile of IL-18 after multiple adjustments including body mass index. In the stratified multivariable regression analyses, the positive association between IL-18 and MetS was independent of tertiles of FMI, inflammatory markers and HMW-adiponectin, but significantly interacted with tertile of LMI (P for interaction = 0.010).

Conclusion

Elevated plasma IL-18 was associated with higher MetS prevalence in apparently healthy Chinese, independent of traditional risk factors, FMI, inflammatory markers and HMW-adiponectin. More studies are needed to clarify the role of lean mass in IL-18 secretion and its associated cardio-metabolic disorders.

Introduction

Growing evidence suggests a pivotal role of chronic subclinical inflammation in the pathophysiology of cardio-metabolic disorders [1]. As an active endocrine organ, human adipose tissue secretes multiple pro-inflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (2), and IL-18 (3).

Discovered in 1989 as an interferon-γ–inducing factor (4), IL-18 is now recognized as a pleiotropic cytokine related with both innate and acquired immune responses (5). Synergistically with IL-12, IL-18 could induce interferon-γ production from T, B and natural killer cells (6). It also plays a crucial role in pro-inflammatory cascade by stimulating the production of TNF-α and IL-6 (4,7). Elevated IL-18 concentration provided additional information over C-reactive protein (CRP), IL-6 and fibrinogen in predicting cardiovascular mortality for patients with coronary artery disease (8) or incident of coronary events among healthy men (9). Exiting evidence also indicated that circulating IL-18 was positively associated with insulin resistance, metabolic syndrome (MetS) and type 2 diabetes (10–13), suggesting potential applications of IL-18 as an intervention target or prognostic biomarker. However, most studies to date were conducted in western populations and little is known about the effect of IL-18 on cardio-metabolic risk in Asians like Chinese who might have different metabolic susceptibility (14).

Although adipose tissue is believed as one of important sources for IL-18 (3), effects of different body compartments on this pro-inflammatory marker remain controversial. For instance, body mass index (BMI), waist circumference, waist-to-hip ratio, body fat mass and/or fat percentage (fat mass/total body weight) were correlated with levels of IL-18 in some (11,13,15,16), but not in other studies (9,10,12,17). Meanwhile, weight loss following lifestyle changes significantly reduced circulating IL-18 (18,19). Interestingly, one study from 144 healthy men reported that fat-free mass rather than fat mass was positively associated with serum IL-18 (10). Moreover, TNF-α infusion in men enhanced IL18 mRNA expression in muscles, but not in adipose tissues (20), implicating potential involvement of muscle mass in generating IL-18. However, few studies evaluated specific effects of different body compartments, distinguished by fat mass and lean mass, on relationship between circulating IL-18 and cardio-metabolic disorders. Therefore, we aimed firstly to investigate the relationships between different body compartments with plasma IL-18 and also its association with the MetS; secondly to evaluate to what extent the association was mediated by body-size adjusted lean mass or fat mass, as well as adipokine and inflammation in apparently healthy Chinese men and women.

Methods

Ethics Statement

The study was approved by the Institutional Review Board of the Institute for Nutritional Sciences and written informed consent was obtained from all participants.

Study population

The design and recruitment of the population-based case (BMI≥24.0 kg/m2) and control (18≤BMI<24.0 kg/m2) study were described in detail elsewhere [21]. Briefly, a total of 1059 (559 overweight/obese and 500 normal-weight) eligible participants aged 35–54 years were recruited from Shanghai, China. Information on demographic variables, health status and behaviors was obtained using a standardized questionnaire [21]. Following a home interview, all participants were asked to fast overnight before a physical examination. Body weight, height, waist circumference and blood pressure were measured using a standardized protocol [21]. Whole-body densitometry was conducted under a Hologic DXA (QDR-4500, Hologic, Waltham, MA, USA; software version 11.2.1).

Individuals without data of dual-energy X-ray absorptiometry (DXA) scan or IL-18 (100, 9.4%), or presumably having acute inflammation (CRP>10 mg/l, 18, 1.7%) were further excluded and final analyses included 941 participants.

Laboratory methods

Fasting peripheral venous EDTA blood samples were collected and centrifuged at 4°C. All plasma samples were stored at −80°C until analyses. The measurements of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, glucose, glycohaemoglobin (HbA1c), insulin, CRP, lipopolysaccharide binding protein (LBP), IL-6 and high-molecular-weight (HMW)-adiponectin were described previously [21]. The insulin resistance index (homeostatic model assessment of insulin resistance [HOMA-IR]) was calculated according to updated homeostasis model assessment methods (http://www.dtu.ox.ac.uk/).

Plasma IL-18 was analyzed by an ELISA kit from Medical Biological Laboratories (Naku-ku, Nagoya, Japan). The assay has a sensitivity of 12.5 pg/ml with a measurable concentration range of 25.6–1000 pg/ml. The intra-assay coefficients of variation (CV) were 9.9%, 10.8% and 5.0% at 69.7, 345.5 and 2765.5 pg/ml, respectively; while the inter-assay CVs were 6.3%, 5.2% and 10.1% at 160.1, 615.1 and 2621.1 pg/ml, respectively.

Definition of Metabolic Syndrome

MetS was defined based upon the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans [22] as presenting at least 3 of the following components: 1) Waist circumferences ≥90 cm in men or ≥80 cm in women; 2) Triglycerides ≥1.7 mmol/l; 3) HDL cholesterol <1.03 mmol/l for men or <1.30 mmol/l for women; 4) Blood pressure ≥130/85 mmHg, or current use of anti-hypertensive medications; and 5) Fasting plasma glucose ≥5.6 mmol/l.

Modified MetS was defined as having 2 or more components of MetS without central obesity.

Calculation of fat mass index and lean mass index

Using fat mass, fat-free mass and bone mass measured by DXA, fat mass index (FMI), and lean mass index (LMI) were calculated as follows and were normalized for body size [23]:

  1. FMI = fat mass/height2;
  2. LMI = lean mass/height2 = (fat-free mass−bone mineral content) /height2.

Statistical analyses

Log-transformations were performed for IL-18, triglycerides, insulin, HOMA-IR, CRP, IL-6, LBP, and HMW-adiponectin to approximate normality. Analysis of covariance for continuous variables and logistic regression models for categorical variables were applied for the comparison across IL-18 quartiles. Partial Spearman correlation coefficients between IL-18 and body composition, metabolic features and cytokines were calculated by adjustment for age, sex and BMI (not for body composition data). The correlations between IL-18 and FMI or LMI were further adjusted for LMI or FMI (mutually adjusted for each other).

Multivariate logistic regression models were applied to estimate the odds ratios (ORs) for MetS. Adjusted potential confounders included age, sex, lifestyle factors, education level, family history of chronic diseases and BMI, as well as CRP, IL-6, LBP, and HMW-adiponectin. In sex-stratified models, menopause status and hormone use were further controlled in women. The ORs for MetS according to joint classification of IL-18 and FMI, LMI and cytokines were also calculated. Data management and statistical analyses were performed using Stata 9.2 (Stata, College Station, TX). Statistical tests were two-sided and P value<0.05 was considered statistically significant.

Results

Baseline characteristics

Overweight/obese participants had significantly higher plasma IL-18 levels than their normal-weight counterparts (geometric mean 240.7 (95% confidence interval 232.8–248.8) pg/ml vs. 208.1 (200.7–215.9) pg/ml, respectively; P<0.001). Subjects with higher IL-18 concentrations were more likely to be males and alcohol drinkers, and had higher prevalence of MetS, elevated levels of BMI, waist circumference, blood pressure, glucose, HbA1c, insulin, HOMA-IR and triglycerides, and lower concentrations of HDL cholesterol (all P<0.05, Table 1). They also showed higher CRP, IL-6 and LBP, but lower HMW-adiponectin levels (all P<0.01, Table 1).

Association between IL-18 concentrations and body composition parameters

In the whole sample, plasma IL-18 was positively correlated with BMI, waist circumference, total body fat mass/percentage, total body lean mass, FMI and LMI after controlling for age and sex (all P<0.001, Table 2). Further controlling for FMI or LMI (mutually adjusted for each other) only abolished the significant correlations of IL-18 with FMI (r = 0.04, P>0.05), but not with LMI (r = 0.11, P<0.001).

thumbnail
Table 2. Partial spearman correlation coefficients between IL-18 and body composition, metabolic features and cytokinesa.

https://doi.org/10.1371/journal.pone.0018104.t002

IL-18 was also correlated with blood pressure, HDL cholesterol, triglycerides, insulin, HOMA-IR, inflammatory markers and HMW-adiponectin (all P<0.01, Table 2). The correlations of most metabolic traits were more pronounced in females and overweight/obese subjects than in their male and normal-weight counterparties.

Association between IL-18 concentrations and metabolic syndrome

Overall, the ORs for MetS increased progressively across the IL-18 quartiles (P<0.001 for trend, Table 3) after adjusting for age, sex, lifestyle factors, family history of chronic diseases and BMI. The ORs for MetS comparing the highest with the lowest IL-18 quartile were 3.43 (95% confidence interval 2.01–5.85) (model 2). Additionally controlling for inflammatory markers (CRP, IL-6, LBP) (model 3) and HMW-adiponectin (model 4), the ORs of MetS and its components (elevated blood pressure and low HDL cholesterol) were attenuated slightly, but remained significant. Men and women showed similar trends for the IL-18-MetS association (Table S1 and Table S2) without a significant interaction between IL-18 and sex (P for interaction >0.05 for all models).

thumbnail
Table 3. Odds ratios and 95% confidence interval for metabolic syndrome according to quartile of IL-18a.

https://doi.org/10.1371/journal.pone.0018104.t003

In the stratified multivariable regression analyses, the positive IL-18-MetS associations were independent of tertile of FMI, but significantly interacted with tertile of LMI (P for interaction = 0.232 and 0.010, respectively) (Figure 1, A–B). When further stratified by sex, significant interaction between IL-18 and LMI was only observed in women (P for interaction = 0.043) (Figure S1). Moreover, high IL-18 concentrations seemed to increase the ORs for MetS, regardless levels of CRP, IL-6, LBP and HMW-adiponectin (P for interaction = 0.878, 0.415, 0.555 and 0.922, respectively) (Figure 1, C–F).

thumbnail
Figure 1. Odds ratio for metabolic syndrome according to joint classification of IL-18 and FMI (A), LMI (B) and cytokines (C–F).

A to B: Modified metabolic syndrome was defined as having 2 or more components of metabolic syndrome without central obesity. Adjusted for age, sex, smoking, alcohol drinking, physical activity, education, family history of chronic diseases and LMI (A) or FMI (B). C to F: Adjusted for age, sex, smoking, alcohol drinking, physical activity, education, family histories of chronic diseases and BMI.

https://doi.org/10.1371/journal.pone.0018104.g001

Discussion

We found a strong association between elevated plasma IL-18 and the MetS prevalence, independent of lifestyle factors, BMI, adipokine and inflammatory markers in apparently healthy Chinese. These results suggested that IL-18-MetS association might not be exclusively mediated by excess adiposity or associated biomarkers, and lean mass might also play a potential role. To our best knowledge, this is the first study to elucidate the effects of body compartments, distinguished by FMI and LMI, on IL-18 and its association with the MetS in Chinese.

Unlike the findings from most previous studies, we observed that LMI, but not FMI was possitively correlated with plasma IL-18 (Table 2), suggesting lean mass as a potential source of IL-18. Meanwhile, we also found significantly higher IL-18 levels in overweight/obese individuals than in normal-weight counterparts, consistent with the findings of others [18]. Excess adipose tissue was viewed as a major source of circulating IL-18 in many studies when BMI, containing the fractions of both fat and fat-free compartments [24], was used in analyses. Thus the effect of fat mass on IL-18 generation might be confounded by lean mass or vice versa. Besides adipocytes [3], non-adipocytes in adipose tissue could also secrete IL-18 [25], while TNF-α infusion in men increased IL18 mRNA expression in muscles but not in adipose tissue [20]. Another plausible explanation for the discrepant results might be due to the fact that body composition was measured by bioelectrical impedance in some studies [10], [17] but by DXA in others [15], [16]. With more accurate measurement of DXA, particularly with large sample size like the Dallas Heart Study (n = 2231), both total of fat or lean mass was significantly correlated with circulating IL-18 [16]. However, the two compartments were not mutually adjusted for each other in that study, therefore it remains unclear to what degree the correlations were explained by fat or lean mass.

Our study provides evidence that elevated plasma IL-18 was a strong and independent risk factor of MetS (Table 3) and some of its components among Chinese, similar to the observation in a Caucasian population [11]. It was noteworthy that FMI, an indicator of adiposity, did not show much appreciable effect. On the contrary, the positive IL-18-MetS association was significantly interacted with tertile of LMI. In fact, lean mass or fat-free mass (combining both lean and bone masses) was previously suggested to be associated with MetS and its components. For example, obese women with MetS have more lean mass than those without MetS [26]. The results from a population-based study in Chinese showed that either fat or fat-free mass index was significantly and independently associated with MetS prevalence [23]. Moreover, metabolic inflexibility and insulin resistance in skeletal muscle are thought to be major contributors to metabolic disorders [27]. Skeletal muscle insulin resistance in young healthy subjects could promote atherogenic dyslipidemia at the early stage of MetS independent of intra-abdominal obesity and adipokines [28]. Obviously, whether mechanistic link exists between circulating IL-18 and skeletal muscle insulin resistance in pathogenesis of cardio-metabolic disorders needs to be elucidated further.

As a pro-inflammatory cytokine, IL-18 could stimulate the activation of NF-κB pathway and subsequently synthesize IL-6 and CRP [29]. However, even with significant correlation between these inflammatory markers and IL-18 levels in current study (Table 2), controlling for CRP and IL-6 did not substantially change the IL-18-MetS association, in agreement with previous studies [11], [12]. Thus, one possibility is that IL-18 might act through non-adiposity-related inflammatory pathways [13]. IL-18 is also a pleiotropic cytokine related with both innate and acquired immune responses [5] and one of its native stimuli is subclinical endotoxemia, indicated by low to moderately elevated circulating lipopolysaccharide (LPS) derived from gram-negative bacteria [7]. Recently, we found a positive association between elevated LBP and the MetS prevalence in this study population [21]. LBP plays an essential role in recognizing LPS and triggering the downstream inflammatory cascade. Therefore, it could be used as a biomarker reflecting innate immune response triggered by LPS [30]. However, the associations of MetS with LBP and IL-18 tended to be independent of each other in current analysis (Figure 1E). Thus, it appears that LPS-LBP induced innate immune response might not exert large impact on the association between IL-18 and the MetS prevalence.

Overall, the findings of our study have provided further insights into the sources of IL-18 as well as modifying factors, particularly the body-sized adjusted lean body mass, on the IL-18-MetS association. However, owing to the cross-sectional design, no causal relation could be established. The data were obtained from a case-control sample, which might limit the finding of our study to be generalized in general populations. Moreover, the measurement of body composition by DXA scan is unable to discriminate visceral adiposity and subcutaneous adiposity. Nonetheless, additional controlling for hepatic enzymes - markers of fatty liver, did not substantially change the results (data not shown). Furthermore, we could not rule out the possibility that the observed significant interaction between IL-18 and lean body mass on the MetS might be by chance because of multiple testing. Therefore, the findings for our study should be confirmed in prospective studies and also in different populations.

Our study suggests a strong positive association between circulating IL-18 levels and the MetS in apparently healthy Chinese, independent of obesity, fat mass index, adipokine and inflammation. More studies are needed to clarify the roles of lean mass in generating IL-18 and also its relationship with cardio-metabolic disorders.

Supporting Information

Figure S1.

Odds ratio for modified metabolic syndrome according to joint classification of IL-18 and FMI or LMI in men (A and B) and women (C and D). Adjusted for age, smoking, alcohol drinking, physical activity, education and family histories of chronic diseases and LMI (A and C) or FMI (B and D). Menopause status and hormone use were further adjusted for women.

https://doi.org/10.1371/journal.pone.0018104.s001

(TIF)

Table S1.

Odds ratios and 95% confidence interval for metabolic syndrome according to tertile of IL-18 in men (n = 345).

https://doi.org/10.1371/journal.pone.0018104.s002

(DOC)

Table S2.

Odds ratios and 95% confidence interval for metabolic syndrome according to tertile of IL-18 in women (n = 596).

https://doi.org/10.1371/journal.pone.0018104.s003

(DOC)

Acknowledgments

We are grateful to Xingwang Ye, An Pan, Ying Wu, Qibin Qi, Ling Lu, Chen Liu, Shaojie Ma and He Zheng for their kind help during data collection of this study.

Author Contributions

Conceived and designed the experiments: LS FBH ZY H. Li XL. Performed the experiments: LS ZY H. Li H. Liu XW DY HW G. Zhang G. Zong XL. Analyzed the data: LS FBH ZY XL. Wrote the paper: LS. Revised the manuscript: FBH ZY H. Li H. Liu XW DY HW G. Zhang G. Zong YL XL.

References

  1. 1. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25: 4–7.P. DandonaA. AljadaA. Bandyopadhyay2004Inflammation: the link between insulin resistance, obesity and diabetes.Trends Immunol2547
  2. 2. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840–846.SE KahnRL HullKM Utzschneider2006Mechanisms linking obesity to insulin resistance and type 2 diabetes.Nature444840846
  3. 3. Skurk T, Kolb H, Muller-Scholze S, Rohrig K, Hauner H, et al. (2005) The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol 152: 863–868.T. SkurkH. KolbS. Muller-ScholzeK. RohrigH. Hauner2005The proatherogenic cytokine interleukin-18 is secreted by human adipocytes.Eur J Endocrinol152863868
  4. 4. Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83: 447S–455S.CA Dinarello2006Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process.Am J Clin Nutr83447S455S
  5. 5. Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T, Nakanishi K (1998) Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70: 281–312.H. OkamuraH. TsutsuiS. KashiwamuraT. YoshimotoK. Nakanishi1998Interleukin-18: a novel cytokine that augments both innate and acquired immunity.Adv Immunol70281312
  6. 6. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12: 53–72.K. NakanishiT. YoshimotoH. TsutsuiH. Okamura2001Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu.Cytokine Growth Factor Rev125372
  7. 7. Gracie JA, Robertson SE, McInnes IB (2003) Interleukin-18. J Leukoc Biol 73: 213–224.JA GracieSE RobertsonIB McInnes2003Interleukin-18.J Leukoc Biol73213224
  8. 8. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, et al. (2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 106: 24–30.S. BlankenbergL. TiretC. BickelD. PeetzF. Cambien2002Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina.Circulation1062430
  9. 9. Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrieres J, et al. (2003) Interleukin-18 and the risk of coronary heart disease in European men - The Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 108: 2453–2459.S. BlankenbergG. LucP. DucimetiereD. ArveilerJ. Ferrieres2003Interleukin-18 and the risk of coronary heart disease in European men - The Prospective Epidemiological Study of Myocardial Infarction (PRIME).Circulation10824532459
  10. 10. Bosch M, Lopez-Bermejo A, Vendrell J, Musri M, Ricart W, et al. (2005) Circulating IL-18 concentration is associated with insulin sensitivity and glucose tolerance through increased fat-free mass. Diabetologia 48: 1841–1843.M. BoschA. Lopez-BermejoJ. VendrellM. MusriW. Ricart2005Circulating IL-18 concentration is associated with insulin sensitivity and glucose tolerance through increased fat-free mass.Diabetologia4818411843
  11. 11. Hung J, McQuillan BM, Chapman CM, Thompson PL, Beilby JP (2005) Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. Arterioscler Thromb Vasc Biol 25: 1268–1273.J. HungBM McQuillanCM ChapmanPL ThompsonJP Beilby2005Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance.Arterioscler Thromb Vasc Biol2512681273
  12. 12. Thorand B, Kolb H, Baumert J, Koenig W, Chambless L, et al. (2005) Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984–2002. Diabetes 54: 2932–2938.B. ThorandH. KolbJ. BaumertW. KoenigL. Chambless2005Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984–2002.Diabetes5429322938
  13. 13. Hivert MF, Sun Q, Shrader P, Mantzoros CS, Meigs JB, et al. (2009) Circulating IL-18 and the risk of type 2 diabetes in women. Diabetologia 52: 2101–2108.MF HivertQ. SunP. ShraderCS MantzorosJB Meigs2009Circulating IL-18 and the risk of type 2 diabetes in women.Diabetologia5221012108
  14. 14. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, et al. (2006) Epidemic obesity and type 2 diabetes in Asia. Lancet 368: 1681–1688.KH YoonJH LeeJW KimJH ChoYH Choi2006Epidemic obesity and type 2 diabetes in Asia.Lancet36816811688
  15. 15. Evans J, Collins M, Jennings C, van der Merwe L, Soderstrom I, et al. (2007) The association of interleukin-18 genotype and serum levels with metabolic risk factors for cardiovascular disease. Eur J Endocrinol 157: 633–640.J. EvansM. CollinsC. JenningsL. van der MerweI. Soderstrom2007The association of interleukin-18 genotype and serum levels with metabolic risk factors for cardiovascular disease.Eur J Endocrinol157633640
  16. 16. Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schonbeck U, et al. (2007) Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol 27: 2043–2049.A. ZirlikSM AbdullahN. GerdesL. MacFarlaneU. Schonbeck2007Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study.Arterioscler Thromb Vasc Biol2720432049
  17. 17. Herder C, Baumert J, Kolb H, Koenig W, Martin S, et al. (2006) Circulating levels of interleukin-18 independent of body fat and fat-free mass: results from the MONICA/KORA study. Diabetes Care 29: 174–175.C. HerderJ. BaumertH. KolbW. KoenigS. Martin2006Circulating levels of interleukin-18 independent of body fat and fat-free mass: results from the MONICA/KORA study.Diabetes Care29174175
  18. 18. Esposito K, Pontillo A, Ciotola M, Di Palo C, Grella E, et al. (2002) Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 87: 3864–3866.K. EspositoA. PontilloM. CiotolaC. Di PaloE. Grella2002Weight loss reduces interleukin-18 levels in obese women.J Clin Endocrinol Metab8738643866
  19. 19. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, et al. (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289: 1799–1804.K. EspositoA. PontilloC. Di PaloG. GiuglianoM. Masella2003Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial.JAMA28917991804
  20. 20. Krogh-Madsen R, Plomgaard P, Moller K, Mittendorfer B, Pedersen BK (2006) Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab 291: E108–E114.R. Krogh-MadsenP. PlomgaardK. MollerB. MittendorferBK Pedersen2006Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans.Am J Physiol Endocrinol Metab291E108E114
  21. 21. Sun L, Yu Z, Ye X, Zou S, Li H, et al. (2010) A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care 33: 1925–1932.L. SunZ. YuX. YeS. ZouH. Li2010A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese.Diabetes Care3319251932
  22. 22. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: Executive Summary. Circulation 112: E285–E290.SM GrundyJI CleemanSR DanielsKA DonatoRH Eckel2005Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: Executive Summary.Circulation112E285E290
  23. 23. Wang J, Rennie KL, Gu W, Li H, Yu Z, et al. (2009) Independent associations of body-size adjusted fat mass and fat-free mass with the metabolic syndrome in Chinese. Ann Hum Biol 36: 110–121.J. WangKL RennieW. GuH. LiZ. Yu2009Independent associations of body-size adjusted fat mass and fat-free mass with the metabolic syndrome in Chinese.Ann Hum Biol36110121
  24. 24. Wells JC (2001) A critique of the expression of paediatric body composition data. Arch Dis Child 85: 67–72.JC Wells2001A critique of the expression of paediatric body composition data.Arch Dis Child856772
  25. 25. Fain JN, Tichansky DS, Madan AK (2006) Most of the interleukin 1 receptor antagonist, cathepsin S, macrophage migration inhibitory factor, nerve growth factor, and interleukin 18 release by explants of human adipose tissue is by the non-fat cells, not by the adipocytes. Metabolism 55: 1113–1121.JN FainDS TichanskyAK Madan2006Most of the interleukin 1 receptor antagonist, cathepsin S, macrophage migration inhibitory factor, nerve growth factor, and interleukin 18 release by explants of human adipose tissue is by the non-fat cells, not by the adipocytes.Metabolism5511131121
  26. 26. You T, Ryan AS, Nicklas BJ (2004) The metabolic syndrome in obese postmenopausal women: relationship to body composition, visceral fat, and inflammation. J Clin Endocrinol Metab 89: 5517–5522.T. YouAS RyanBJ Nicklas2004The metabolic syndrome in obese postmenopausal women: relationship to body composition, visceral fat, and inflammation.J Clin Endocrinol Metab8955175522
  27. 27. Nistala R, Stump CS (2006) Skeletal muscle insulin resistance is fundamental to the cardiometabolic syndrome. J Cardiometab Syndr 1: 47–52.R. NistalaCS Stump2006Skeletal muscle insulin resistance is fundamental to the cardiometabolic syndrome.J Cardiometab Syndr14752
  28. 28. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, et al. (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 104: 12587–12594.KF PetersenS. DufourDB SavageS. BilzG. Solomon2007The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome.Proc Natl Acad Sci U S A1041258712594
  29. 29. Kojima H, Aizawa Y, Yanai Y, Nagaoka K, Takeuchi M, et al. (1999) An essential role for NF-kappa B in IL-18-induced IFN-gamma expression in KG-1 cells. J Immunol 162: 5063–5069.H. KojimaY. AizawaY. YanaiK. NagaokaM. Takeuchi1999An essential role for NF-kappa B in IL-18-induced IFN-gamma expression in KG-1 cells.J Immunol16250635069
  30. 30. Lepper PM, Schumann C, Triantafilou K, Rasche FM, Schuster T, et al. (2007) Association of lipopolysaccharide-binding protein and coronary artery disease in men. J Am Coll Cardiol 50: 25–31.PM LepperC. SchumannK. TriantafilouFM RascheT. Schuster2007Association of lipopolysaccharide-binding protein and coronary artery disease in men.J Am Coll Cardiol502531