Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Genome-Wide Association Study of Pancreatic Cancer in Japanese Population

  • Siew-Kee Low ,

    Contributed equally to this work with: Siew-Kee Low, Aya Kuchiba

    Affiliations Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan

  • Aya Kuchiba ,

    Contributed equally to this work with: Siew-Kee Low, Aya Kuchiba

    Affiliation Genetics Division, National Cancer Center Research Institute, Tokyo, Japan

  • Hitoshi Zembutsu,

    Affiliation Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan

  • Akira Saito,

    Affiliations Genetics Division, National Cancer Center Research Institute, Tokyo, Japan, Statistical Genetics Analysis Division, StaGen Co., Ltd., Tokyo, Japan

  • Atsushi Takahashi,

    Affiliation Laboratory for Statistical Analysis, Center for Genomic Medicine, RIKEN, Tokyo, Japan

  • Michiaki Kubo,

    Affiliation Laboratory for Genotyping Development, Center for Genomic Medicine, RIKEN, Kanagawa, Japan

  • Yataro Daigo,

    Affiliations Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan

  • Naoyuki Kamatani,

    Affiliation Laboratory for Statistical Analysis, Center for Genomic Medicine, RIKEN, Tokyo, Japan

  • Suenori Chiku,

    Affiliations Genetics Division, National Cancer Center Research Institute, Tokyo, Japan, Science Solutions Division, Mizuho Information and Research Institute, Inc., Tokyo, Japan

  • Hirohiko Totsuka,

    Affiliations Genetics Division, National Cancer Center Research Institute, Tokyo, Japan, Bioinfomatics Group, Research and Development Center, Hitachi Government and Public Corporation System Engineering Ltd., Tokyo, Japan

  • Sumiko Ohnami,

    Affiliation Genetics Division, National Cancer Center Research Institute, Tokyo, Japan

  • Hiroshi Hirose,

    Affiliation Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan

  • Kazuaki Shimada,

    Affiliation Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan

  • Takuji Okusaka,

    Affiliation Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, Japan

  • Teruhiko Yoshida ,

    yusuke@ims.u-tokyo.ac.jp (YN); tyoshida@ncc.go.jp (TY)

    Affiliation Genetics Division, National Cancer Center Research Institute, Tokyo, Japan

  • Yusuke Nakamura ,

    yusuke@ims.u-tokyo.ac.jp (YN); tyoshida@ncc.go.jp (TY)

    Affiliation Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan

  •  [ ... ],
  • Hiromi Sakamoto

    Affiliation Genetics Division, National Cancer Center Research Institute, Tokyo, Japan

  • [ view all ]
  • [ view less ]

Genome-Wide Association Study of Pancreatic Cancer in Japanese Population

  • Siew-Kee Low, 
  • Aya Kuchiba, 
  • Hitoshi Zembutsu, 
  • Akira Saito, 
  • Atsushi Takahashi, 
  • Michiaki Kubo, 
  • Yataro Daigo, 
  • Naoyuki Kamatani, 
  • Suenori Chiku, 
  • Hirohiko Totsuka
PLOS
x

Abstract

Pancreatic cancer shows very poor prognosis and is the fifth leading cause of cancer death in Japan. Previous studies indicated some genetic factors contributing to the development and progression of pancreatic cancer; however, there are limited reports for common genetic variants to be associated with this disease, especially in the Asian population. We have conducted a genome-wide association study (GWAS) using 991 invasive pancreatic ductal adenocarcinoma cases and 5,209 controls, and identified three loci showing significant association (P-value<5×10−7) with susceptibility to pancreatic cancer. The SNPs that showed significant association carried estimated odds ratios of 1.29, 1.32, and 3.73 with 95% confidence intervals of 1.17–1.43, 1.19–1.47, and 2.24–6.21; P-value of 3.30×10−7, 3.30×10−7, and 4.41×10−7; located on chromosomes 6p25.3, 12p11.21 and 7q36.2, respectively. These associated SNPs are located within linkage disequilibrium blocks containing genes that have been implicated some roles in the oncogenesis of pancreatic cancer.

Introduction

Pancreatic cancer is the fifth leading cause of cancer death with an estimated death of 24,634 patients in Japan in year 2007. Its 5-year survival rate is as low as 6.7% (http://www.fpcr.or.jp/publication/pdf/statistics2009/fig01.pdf and http://www.fpcr.or.jp/publication/pdf/statistics2009/fig20.pdf). Since no specific symptom is observed in the patients with pancreatic cancer at an early stage, most of the patients were diagnosed at their advanced stage with a very low possibility of cure for the disease [1], [2].

Previous reports indicated the involvement of both environmental and genetics factors in the etiology of this deleterious disease. Several case-control and cohort epidemiological studies have identified a number of possible risk factors such as smoking [3], diabetes [4], chronic pancreatitis [5], which are likely to predispose individual to the disease. In addition, familial aggregation of the disease has implied the possible involvement of genetic factors in pancreatic cancer [6]; approximately 10% of the patients were reported to have family history and individuals having first-degree relatives with pancreatic cancer revealed 2- to 4- fold higher risk of the disease [7][9]. These data indicated that genetic factors are likely to play some roles in the development of pancreatic cancer. In the last decade, the advancement of molecular biology improved the understanding of the pathogenesis of pancreatic cancer and characterized a number of genes that mutated in pancreatic cancers, such as somatic mutations in genes INK4A(CDKN2A), TP53, DPC4, BRCA1/2, STK11, APC, KRAS and ATM and PALB2 are found in pancreatic cancers [10][18].

Two recent GWAS studies for pancreatic cancer using Caucasian populations have identified associations with genome-wide significance on chromosomes 9p34.2 (ABO), 13q22.1, 1q32 (NR5A2) and 5p15.33 (CLPTM1L-TERT), and highlighted that accumulation of these common genetic risk variants with modest effects are likely to play an important role on this complex disease, either individually or in interaction with environmental factors [19][22]. As the ethnicity is one of the critical factors in the pathogenesis of the genetic diseases with complex gene-gene and gene-environmental interactions, we (Biobank Japan (BBJ) in The University of Tokyo and National Cancer Center (NCC) Japan) combined samples of 991 cases with pancreatic cancer and 5209 controls (Table S1), attempted to identify common genetic variations associated with susceptibility to pancreatic cancer in the Japanese population.

Results

After the standard quality control of the genotype results (Table S2), association analysis was performed for 420,236 SNPs using logistic regression analysis on the basis of allelic, dominant and recessive models after adjustment of age, sex and smoking status for each individual. The Q-Q plot for this GWAS based on allelic P-values by logistic regression revealed no significant population stratification with genomic inflation factor λ of 1.026 (Figure 1).

thumbnail
Figure 1. Q-Q plot for GWAS of pancreatic cancer in Japanese population.

This Q-Q plot is based on logistic regression allelic P-values after standard quality control. (genomic inflation factor λ = 1.026).

https://doi.org/10.1371/journal.pone.0011824.g001

We successfully identified three genomic regions, 6p25.3, 12p11.21 and 7q36.2, shown to be significantly associated (P-value<5.0×10−7) with increased risk of pancreatic cancer in Japanese population as indicated in the Manhattan plot in Figure 2 (referred to ref. 23).

thumbnail
Figure 2. Manhattan plot for GWAS of pancreatic cancer in Japanese population.

The plot is based on logistic regression model after correction of age, sex and smoking status. The Pmin indicates the minimum P-value from logistic regression analysis for three models: allelic, dominant and recessive. Red line indicates genome-wide significant level (P-value = 5×10−7).

https://doi.org/10.1371/journal.pone.0011824.g002

The most significantly-associated SNP, rs9502893 (P-value of 3.30×10−7, per-allele odds ratio (OR) of 1.29 with 95% confidence interval (CI) of 1.17–1.43), is located within a 75-kb linkage disequilibrium (LD) block on chromosome 6p25.3 (Table 1). This LD block includes FOXQ1 (forkhead box (Fox) Q1) gene, which is located 25 kb upstream to this marker SNP (Figure 3a). Imputation analysis also revealed modest association at SNPs located near to or on the FOXQ1 gene suggesting it to be one of the causative genes for pancreatic cancer (Figure 3a and Table S3).

thumbnail
Figure 3. Regional association plots for three pancreatic cancer risk loci.

(a) 6p25.3 region, SNP rs9502893 located 25 kb upstream to gene FOXQ1. (b) 12p11.21 region, SNP rs708224 is located at the second intron of gene BICD1. (c) 7q36.2 region, SNP rs6464375 is located at the first intron of gene DPP6 transcript variant 3. Each of the marker SNPs is marked by a blue diamond. SNPs that are genotyped in the Illumina platform are plotted as diamonds; Imputed SNPs are plotted as circles. The color intensity reflects the extent of LD with the marker SNP, red (r2≥0.8), orange (0.5≤r2<0.8), yellow (0.2≤r2<0.5) and white (r2<0.2). Light blue line indicated local recombination rate.

https://doi.org/10.1371/journal.pone.0011824.g003

thumbnail
Table 1. SNPs that show suggestive association with increase risk of pancreatic cancer in Japanese population.

https://doi.org/10.1371/journal.pone.0011824.t001

The second significantly-associated SNP, rs708224, located in the second intron of the gene BICD1 (Bicaudal-D homolog 1) on chromosome 12p11 (P-value of 3.30×10−7, per-allele OR of 1.32 with 95% CI of 1.19–1.47) (Table 1). The 80-kb LD block showing the association corresponds to the second intron of BICD1 as revealed by the imputation analysis shown in Figure 3b (Table S3).

The third locus is marked by rs6464375, rs7779540, rs6973850 and rs1048768 in the first intron of DPP6 gene. These SNPs indicated suggestive associations only under recessive model with minimum P-value of 4.41×10−7 (OR of 3.73 with 95%CI of 2.24–6.21) as shown in Table 1 and Figure 3c.

Discussion

Here we present results of GWAS analysis on 991 cases with pancreatic cancer and 5209 controls. Our study represents the first GWAS attempt to identify common variants associated with pancreatic cancer in Japanese population and successfully identified SNPs located on chromosomal loci of 6p25.3, 12p11.21 and 7q36.2 are significantly associated with increased risk of pancreatic cancer in Japanese population.

It is known that the development of the common disease is caused by the accumulation of common genetic variants, and each of this variant has a very modest effect on the risk (for example OR of <1.2). In order to detect such small fraction, GWAS involving much larger populations (5000–10000) should be required. Our study was expected to identify SNPs with moderate effects (i.e OR>1.4). Hence SNPs that show very modest effect might have failed to be identified through this study.

The most significantly associated SNP in this GWAS, rs9502893 (P-value = 3.30×10−7, OR = 1.29) is located within a 75 kb LD block which encompasses gene FOXQ1 on chromosome loci 6p25.3. FOXQ1 encodes for protein forkhead box (Fox) Q1. The Fox family of transcription factors consists of at least 43 members and mutations in Fox genes can cause significant effects on human common disease and cancers [24], [25]. A Fox member, FoxM1, is well-known to be associated with oncogenesis of pancreatic cancer. Down-regulation of this protein results in the inhibition of migration, invasion and angiogenesis in pancreatic cancer cells [26]. Furthermore, a recent study showed that FoxQ1 is overexpressed in pancreatic cancer, suggesting its role in pancreatic cancer tumorigenesis [27]. Although the SNP that we identified is approximately 25 kb downstream to this gene, the associated SNP may ‘tag’ the causative variant located on the expression regulatory region of the gene and subsequently alter expression of the gene. However, further study is needed to elucidate a precise biological role and mechanism of the gene function with regard to pancreatic carcinogenesis.

The second most significantly associated SNP, rs708224 (P-value = 3.30×10−7, OR = 1.32) is located within the BICD1 gene. This gene encodes a protein Bicaudal-D homolog 1, which plays a role in vacuolar trafficking. Previous studies reported substantial evidences indicating a link between vacuolar gene and shorter telomeres in yeast model [28][30]. In addition, Mangino et al. suggested that genetic variations within the BICD1 gene could alter its transcriptional levels and in turn influence telomere length in humans [31]. Several recent studies have documented reduced telomere length in pancreatic ductal adenocarnoma specimens, suggesting telomeric dysfunction in pancreatic cancer cells [32][34]. Thus, it is of importance to determine the functional consequences of rs708224 and/or variations linked to this SNP in the pathogenesis of pancreatic cancer.

Several SNPs located in the first intron of DPP6 indicated suggestive associations with an increased risk of pancreatic cancer in this study. DPP6 encodes protein dipeptidyl-peptidase 6, which binds to specific voltage-gated potassium channels and alters their expression and biophysical properties. A recent study on core signaling pathways in human pancreatic cancers found three somatic mutations in DPP6 among 24 pancreatic cancer samples examined by detailed sequence analyses. This report also suggested that DPP6 might play a crucial role in regulation of invasion of pancreatic cancer cells [35]. Hence, our study strengthens the risk of DPP6 in pancreatic cancer and warrants further screening on this gene to confirm its association with pancreatic cancer.

Recent GWAS reports have indicated several loci on chromosomes 9p34.2, 13q22.1, 1q32.1 and 5p15.33 to be associated with an increased risk of pancreatic cancer in Caucasian population [21], [22]. Among the significantly associated SNPs, rs9543325 on chromosome 13q22.1 showed moderate association in our study populations (P-value (allelic model) of 1.69×10−4; OR of 1.21 with 95%CI of 1.10–1.34) (Table S4). On the other hand, SNPs on chromosomes 9p34.2 (rs505922) and 1q32.1 (rs3790844) showed a weak association in our study populations (P-values of 3.69×10−2 and 1.24×10−2; ORs of 1.11 and 1.14 with 95% CI of 1.01–1.22 and 1.03–1.27, respectively) (Table S4). We were unable to replicate the remaining loci (SHH and two loci on chromosomes 5p15.33 and 15q14) in these reports, probably because most of these associated SNPs are either non-polymorphic or possess very low allelic frequencies (MAF = 0.01) in Japanese population. The power of our study was not sufficient enough to detect positive associations for these variants with the low allelic frequency. Such ethnic difference in genetic architecture of disease susceptibility is not rare. For example, two recent GWAS reported common variants on KCNQ1 gene associated with type 2 diabetes mellitus in Japanese population, but European GWAS were unable to identify the associations due to the low allelic frequency of these variants in the population [36], [37]. In addition, identification of susceptibility loci may be also influenced by the differences in the LD structure across different populations and by potential interaction with other genetic variants and environmental factors [38].

In summary, this study represents the first GWAS to identify common variants possibly associated with pancreatic cancer in Japanese population. Our study confirmed the association from the Caucasian GWAS studies and revealed several novel possible candidate associated loci that were not detected in the previous Caucasian GWAS studies. Nevertheless, further additional replications are required to confirm or exclude the current findings.

Materials and Methods

Case and control subjects

A total of 331 and 675 cases that were clinically and/or histologically diagnosed to have an invasive pancreatic ductal adenocarcinoma were obtained from Biobank Japan (http://biobankjp.org) at the Institute of Medical Science, The University of Tokyo as well as National Cancer Center Hospital, respectively. The control samples consisted of Japanese volunteers that were obtained from Osaka-Midosuji Rotary Club, Osaka, Japan (n = 906) as well as from staff members in Keio University, Japan, who participated in its health-check program (n = 677). In addition, individuals who were registered in Biobank Japan as subjects with various diseases except cancer (n = 3,728) (those having pulmonary tuberculosis, chronic hepatitis-B, keroid, drug-induced skin rash, peripheral artery disease, arrhythmia, stroke and myocardial infarction) were used as controls. All samples were obtained after obtaining the written informed consent. This project was approved by the ethics committee at The Institute of Medical Sciences, The University of Tokyo, National Cancer Center and Keio University. Individuals who had clinical history of diabetes mellitus (a possible confounding factor for pancreatic cancer) were excluded from these control sets. For sample quality control, we excluded five cases with call rate<0.98. After performing principal component analysis, we excluded outliers of 10 cases and 102 controls, who did not belong to the major Japanese cluster (Hondo cluster) (Figure S1) [39]. We eventually performed the association study based on 991 cases and 5209 controls (Table S1). Power calculation showed that our study would have over 90% power to detect a per-allele OR of 1.4 or greater for an allele with 30% frequency at the genome-wide significance level (α = 5×10−7).

SNP genotyping and quality control

All the individuals were genotyped using either Illumina Infinium HumanHap550v3 or Illumina Infinium Human610-Quad DNA Analysis Genotyping BeadChip. SNPs common in the two platforms were used for further analysis. We applied SNP quality control for all sets of samples as follows; SNP call rate should be >0.99 in both cases and controls, and P-value of Hardy-Weinberg equilibrium test should be >1.0×10−6 in controls. SNPs with minor allele frequency (MAF) of <0.01 in both case and control samples were excluded from the further analysis (Table S2).

Statistical analysis

We analyzed each SNP using logistic regression adjusted for age (continuous), sex and smoking status (current/former, never). P-values and OR with 95%CI were calculated for allelic, dominant and recessive models. We used the minimum P-values obtained from three models to evaluate the statistical significance of the association. All OR were reported with respect to the risk allele. All the statistical analyses were performed using R statistical environment version 2.9.0 (http://www.r-project.org/) or PLINK 1.06 (http://pngu.mgh.harvard.edu/~purcell/plink/). R statistical environment version 2.9.0 was employed to draw Q-Q plot and regional association plot.

Genotype Imputation

We performed genotype imputation analysis for each set of samples by utilizing a Hidden Markov model as programmed in MACH version 1.0 (http://www.sph.umich.edu/csg/abecasis/mach/index.html). To infer untyped and missing genotypes around the candidate chromosomal loci, we provided genotypes from our own samples together with haplotypes for reference samples (Japanese from Tokyo, JPT) from HapMap database (http://hapmap.ncbi.nlm.nih.gov/). SNPs with low genotyping rate (<99%), showing deviations from Hardy-Weinberg equilibrium (<1.0×10−6), or MAF (<0.01) were excluded from the analysis. MACH version 1.0 was used to estimate haplotypes, map crossover and error rates using 50 iterations of the Markov chain Monte Carlo algorithm. By utilizing the genotype information from the HapMap database, maximum likelihood genotypes were generated. For quality control, we retained imputed SNPs with the estimated r2 of >0.3. We also picked up a total of 17 SNPs (P-value<0.001) to verify the association using Invader and TaqMan genotyping methods (data not shown).

Supporting Information

Table S1.

Sample characteristic of this study.

https://doi.org/10.1371/journal.pone.0011824.s001

(0.02 MB XLS)

Table S2.

Total number of SNPs excluded according to each quality control criteria.

https://doi.org/10.1371/journal.pone.0011824.s002

(0.02 MB XLS)

Table S3.

Imputation analysis around significantly associated SNPs.

https://doi.org/10.1371/journal.pone.0011824.s003

(0.04 MB XLS)

Table S4.

Association study of SNPs which shown to be significantly associated with increased risk of pancreatic cancer in Caucasian population in Japanese.

https://doi.org/10.1371/journal.pone.0011824.s004

(0.02 MB XLS)

Figure S1.

Principal component analysis for GWAS of pancreatic cancer in Japanese population. a) Principal component analysis for GWAS of pancreatic cancer in Japanese population refer to four HapMap population control subjects including CEU indicates Caucasians from Utah; YRI, Nigerians from Yoruba; CHB, Han Chinese from Beijing and JPT, Japanese from Tokyo. b) Principal component analysis of study subjects referred only to Asian populations. We utilized samples from the homogenous case-control (Hondo) cluster.

https://doi.org/10.1371/journal.pone.0011824.s005

(9.43 MB TIF)

Acknowledgments

We express our heartfelt gratitude to all the patients who participate in this study. We would like to thank Dr Yoichiro Kamatani for his constructive comments and suggestions. Our thankfulness also goes to the member of The Rotary Club of Osaka-Midosuji District 2660 Rotary International in Japan for making this study possible. We thank Drs. Hideki Ueno, Masafumi Ikeda, Chigusa Morizane, Yoshihiro Sakamoto, Minoru Esaki, Tomoo Kosuge and Nobuyoshi Hiraoka for ascertainment of the patients and their clinico-pathological information at the National Cancer Center Hospital. We also would like to express our gratefulness to Miss Kumi Matsuda for her outstanding technical assistance.

Author Contributions

Conceived and designed the experiments: SKL AK HZ MK YD NK TY YN HS. Performed the experiments: SKL AK MK SO HS. Analyzed the data: SKL AK HZ AS AT MK NK SC HT TY YN HS. Contributed reagents/materials/analysis tools: SKL AK HZ AS AT MK NK HH KS TO TY YN. Wrote the paper: SKL AK HZ TY YN.

References

  1. 1. Kelsen DP, Portenoy R, Thaler H, Tao Y, Brennan M (1997) Pain as a predictor of outcome in patients with operable pancreatic carcinoma. Surgery 122: 53–59.DP KelsenR. PortenoyH. ThalerY. TaoM. Brennan1997Pain as a predictor of outcome in patients with operable pancreatic carcinoma.Surgery1225359
  2. 2. Catanzaro A, Richardson S, Veloso H, Isenberg GA, Wong RC, et al. (2003) Long-term follow-up of patients with clinically indeterminate suspicion of pancreatic cancer and normal EUS. Gastrointest Endosc 58: 836–840.A. CatanzaroS. RichardsonH. VelosoGA IsenbergRC Wong2003Long-term follow-up of patients with clinically indeterminate suspicion of pancreatic cancer and normal EUS.Gastrointest Endosc58836840
  3. 3. Anderson KE, Mack T, Silverman D (2006) Cancer of the pancreas. In: Schottenfeld D, Fraumeni JF Jr, editors. Cancer Epidemiology and Prevention. New York: Oxford University Press. pp. 721–762.KE AndersonT. MackD. Silverman2006Cancer of the pancreas.D. SchottenfeldJF Fraumeni JrCancer Epidemiology and PreventionNew YorkOxford University Press721762
  4. 4. Stevens RJ, Roddam AW, Beral V (2007) Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis. Br J Cancer 96: 507–509.RJ StevensAW RoddamV. Beral2007Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis.Br J Cancer96507509
  5. 5. Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, et al. (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328: 1433–1437.AB LowenfelsP. MaisonneuveG. CavalliniRW AmmannPG Lankisch1993Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group.N Engl J Med32814331437
  6. 6. Del Chiaro M, Zerbi A, Falconi M, Bertacca L, Polese M, et al. (2007) Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma. Pancreatology 7: 459–469.M. Del ChiaroA. ZerbiM. FalconiL. BertaccaM. Polese2007Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma.Pancreatology7459469
  7. 7. McWilliams RR, Rabe KG, Olswold C, De Andrade M, Petersen GM (2005) Risk of malignancy in first-degree relatives of patients with pancreatic carcinoma. Cancer 104: 388–394.RR McWilliamsKG RabeC. OlswoldM. De AndradeGM Petersen2005Risk of malignancy in first-degree relatives of patients with pancreatic carcinoma.Cancer104388394
  8. 8. Fernandez E, La Vecchia C, D'Avanzo B, Negri E, Franceschi S (1994) Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomarkers Prev 3: 209–212.E. FernandezC. La VecchiaB. D'AvanzoE. NegriS. Franceschi1994Family history and the risk of liver, gallbladder, and pancreatic cancer.Cancer Epidemiol Biomarkers Prev3209212
  9. 9. Tersmette AC, Petersen GM, Offerhaus GJ, Falatko FC, Brune KA, et al. (2001) Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 7: 738–744.AC TersmetteGM PetersenGJ OfferhausFC FalatkoKA Brune2001Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer.Clin Cancer Res7738744
  10. 10. Yan L, McFaul C, Howes N, Leslie J, Lancaster G, et al. (2005) Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups. Gastroenterology 128: 2124–2130.L. YanC. McFaulN. HowesJ. LeslieG. Lancaster2005Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups.Gastroenterology12821242130
  11. 11. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, et al. (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8: 27–32.C. CaldasSA HahnLT da CostaMS RedstonM. Schutte1994Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma.Nat Genet82732
  12. 12. Barton CM, Staddon SL, Hughes CM, Hall PA, O'Sullivan C, et al. (1991) Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer 64: 1076–1082.CM BartonSL StaddonCM HughesPA HallC. O'Sullivan1991Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.Br J Cancer6410761082
  13. 13. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M (1994) Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer 58: 185–191.G. BerrozpeJ. SchaefferMA PeinadoFX RealM. Perucho1994Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.Int J Cancer58185191
  14. 14. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350–3.SA HahnM. SchutteAT HoqueCA MoskalukLT da Costa1996DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.Science2713503
  15. 15. Hruban RH, Iacobuzio-Donahue C, Wilentz RE, Goggins M, Kern SE (2001) Molecular pathology of pancreatic cancer. Cancer J 7: 251–258.RH HrubanC. Iacobuzio-DonahueRE WilentzM. GogginsSE Kern2001Molecular pathology of pancreatic cancer.Cancer J7251258
  16. 16. Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, et al. (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95: 214–221.SA HahnB. GreenhalfI. EllisM. Sina-FreyH. Rieder2003BRCA2 germline mutations in familial pancreatic carcinoma.J Natl Cancer Inst95214221
  17. 17. Wong T, Howes N, Threadgold J, Smart HL, Lombard MG, et al. (2001) Molecular diagnosis of early pancreatic ductal adenocarcinoma in high-risk patients. Pancreatology 1: 486–509.T. WongN. HowesJ. ThreadgoldHL SmartMG Lombard2001Molecular diagnosis of early pancreatic ductal adenocarcinoma in high-risk patients.Pancreatology1486509
  18. 18. Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, et al. (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324: 217.S. JonesRH HrubanM. KamiyamaM. BorgesX. Zhang2009Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene.Science324217
  19. 19. MacLeod SL, Chowdhury P (2006) The genetics of nicotine dependence: relationship to pancreatic cancer. World J Gastroenterol 12: 7433–7439.SL MacLeodP. Chowdhury2006The genetics of nicotine dependence: relationship to pancreatic cancer.World J Gastroenterol1274337439
  20. 20. Milne RL, Greenhalf W, Murta-Nascimento C, Real FX, Malats N (2009) The inherited genetic component of sporadic pancreatic adenocarcinoma. Pancreatology 9: 206–214.RL MilneW. GreenhalfC. Murta-NascimentoFX RealN. Malats2009The inherited genetic component of sporadic pancreatic adenocarcinoma.Pancreatology9206214
  21. 21. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, et al. (2009) Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 41: 986–990.L. AmundadottirP. KraftRZ Stolzenberg-SolomonCS FuchsGM Petersen2009Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer.Nat Genet41986990
  22. 22. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, et al. (2010) A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42: 224–228.GM PetersenL. AmundadottirCS FuchsP. KraftRZ Stolzenberg-Solomon2010A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33.Nat Genet42224228
  23. 23. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–78.Wellcome Trust Case Control Consortium2007Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature44766178
  24. 24. Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7: 847–859.SS MyattEW Lam2007The emerging roles of forkhead box (Fox) proteins in cancer.Nat Rev Cancer7847859
  25. 25. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10: 233–240.S. HannenhalliKH Kaestner2009The evolution of Fox genes and their role in development and disease.Nat Rev Genet10233240
  26. 26. Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH (2007) Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67: 8293–8300.Z. WangS. BanerjeeD. KongY. LiFH Sarkar2007Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells.Cancer Res6782938300
  27. 27. Cao D, Hustinx SR, Sui G, Bala P, Sato N, et al. (2004) Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther 3: 1081–1089.D. CaoSR HustinxG. SuiP. BalaN. Sato2004Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags.Cancer Biol Ther310811089
  28. 28. Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101: 8658–8663.SH AskreeT. YehudaS. SmolikovR. GurevichJ. Hawk2004A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length.Proc Natl Acad Sci U S A10186588663
  29. 29. Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, et al. (2006) Telomere Length as a Quantitative Trait: Genome-Wide Survey and Genetic Mapping of Telomere Length-Control Genes in Yeast. PLoS Genet 2: e35.T. GatbontonM. ImbesiM. NelsonJM AkeyDM Ruderfer2006Telomere Length as a Quantitative Trait: Genome-Wide Survey and Genetic Mapping of Telomere Length-Control Genes in Yeast.PLoS Genet2e35
  30. 30. Rog O, Smolikov S, Krauskopf A, Kupiec M (2005) The yeast VPS genes affect telomere length regulation. Curr Genet 47: 18–28.O. RogS. SmolikovA. KrauskopfM. Kupiec2005The yeast VPS genes affect telomere length regulation.Curr Genet471828
  31. 31. Mangino M, Brouilette S, Braund P, Tirmizi N, Vasa-Nicotera M, et al. (2008) A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans. Hum Mol Genet 17: 2518–2523.M. ManginoS. BrouiletteP. BraundN. TirmiziM. Vasa-Nicotera2008A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans.Hum Mol Genet1725182523
  32. 32. Büchler P, Conejo-Garcia JR, Lehmann G, Müller M, Emrich T, et al. (2001) Real-time quantitative PCR of telomerase mRNA is useful for the differentiation of benign and malignant pancreatic disorders. Pancreas 22: 331–340.P. BüchlerJR Conejo-GarciaG. LehmannM. MüllerT. Emrich2001Real-time quantitative PCR of telomerase mRNA is useful for the differentiation of benign and malignant pancreatic disorders.Pancreas22331340
  33. 33. Kobitsu K, Tsutsumi M, Tsujiuchi T, Suzuki F, Kido A, et al. (1997) Shortened telomere length and increased telomerase activity in hamster pancreatic duct adenocarcinomas and cell lines. Mol Carcinog 18: 153–159.K. KobitsuM. TsutsumiT. TsujiuchiF. SuzukiA. Kido1997Shortened telomere length and increased telomerase activity in hamster pancreatic duct adenocarcinomas and cell lines.Mol Carcinog18153159
  34. 34. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, et al. (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161: 1541–1547.NT van HeekAK MeekerSE KernCJ YeoKD Lillemoe2002Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia.Am J Pathol16115411547
  35. 35. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.S. JonesX. ZhangDW ParsonsJC LinRJ Leary2008Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.Science32118011806
  36. 36. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, et al. (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40: 1098–1102.H. UnokiA. TakahashiT. KawaguchiK. HaraM. Horikoshi2008SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations.Nat Genet4010981102
  37. 37. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, et al. (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40: 1092–1097.K. YasudaK. MiyakeY. HorikawaK. HaraH. Osawa2008Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus.Nat Genet4010921097
  38. 38. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, et al. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9: 356–369.MI McCarthyGR AbecasisLR CardonDB GoldsteinJ. Little2008Genome-wide association studies for complex traits: consensus, uncertainty and challenges.Nat Rev Genet9356369
  39. 39. Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, et al. (2008) Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet 83: 445–456.Y. Yamaguchi-KabataK. NakazonoA. TakahashiS. SaitoN. Hosono2008Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies.Am J Hum Genet83445456