Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Genetic Architecture of Hybrid Male Sterility in Drosophila: Analysis of Intraspecies Variation for Interspecies Isolation

  • Laura K. Reed ,

    lkreed@ncsu.edu

    Affiliations Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America, Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America

  • Brooke A. LaFlamme,

    Affiliations Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America

  • Therese A. Markow

    Affiliations Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America

Genetic Architecture of Hybrid Male Sterility in Drosophila: Analysis of Intraspecies Variation for Interspecies Isolation

  • Laura K. Reed, 
  • Brooke A. LaFlamme, 
  • Therese A. Markow
PLOS
x

Abstract

Background

The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete.

Methodology/Principal Findings

Isofemale strains of D. mojavensis vary significantly in their production of sterile F1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects.

Conclusions/Significance

The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

Introduction

During the modern synthesis, Dobzhansky and Mayr proposed the Biological Species Concept that defines species by their ability to exchange genetic material within their group while being prevented from exchanging genetic material between groups [1], [2]. Reproductive isolating mechanisms subsequently have been the focus of extensive research such that a great deal now is understood about mechanisms of both pre and postzygotic isolation. Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation, however, is challenging. Consequently a gap still remains in our understanding of the mechanisms underlying the very first stages of postzygotic isolation.

Postzygotic isolation exists when a hybrid, or its progeny, experience a reduction in fitness relative to the parental types. Whether the genetic variation needed for postzygotic isolation is segregating within species in the form of epistatic variation [3], [4] or instead arises as de novo mutations in allopatric populations [5] remains controversial. Thus, there is need for further empirical study to determine the roles of segregating and de novo polymorphism in speciation, and the underlying architecture of such variation [3].

Three general patterns of postzygotic isolation are well supported. First, Haldane's rule [6] states that decreases in hybrid fitness are more common in the heterogametic sex; second, hybrid sterility often appears earlier in species divergence than hybrid inviability [7], [8]; and third, heterogametic isolation generally appears earlier in speciation than homogametic isolation [8], [9]. Taken together, these patterns suggest that the earliest manifestation of postzygotic isolation likely will be hybrid sterility in the heterogametic sex. These patterns hold across diverse taxa in which the male is the heterogametic sex, such as mammals and Drosophila and interestingly, also for systems where the female is the heterogametic sex, such as birds and Lepidoptera [10]. Various theories exist about the basis for Haldane's rule [11][13]. The explanations with the most consistent empirical support revolve around the X (Z)-chromosome [14], leading to the expectation that the X-chromosome plays a substantial genetic role in the occurrence of postzygotic isolation in any given system.

The problem of how a trait that decreases the fitness of hybrids could evolve between two populations sharing a common ancestral genome without either population passing through a state of reduced fitness is solved by the Dobzhansky-Muller (DM) model of reproductive isolation [1], [15][17]. For example, if derived alleles of two loci arise independently in two populations then, upon meeting in a hybrid, they may be incompatible, leading to decreased fitness [18]. Several known interacting genomic regions have been implicated in hybrid incompatibilities [19][23]. In addition, the incompatible alleles of the Lhr and Hmr genes in the Drosophila melanogaster – D. simulans pair have been demonstrated functionally to cause hybrid male lethality [24].

Expanding the Dobzhansky-Muller model, Orr [18] proposed that the number of two locus incompatibilities between two populations will increase as a function of the square of their divergence times. If more complex genetic scenarios are considered, the accumulation of incompatibilities is even faster. Those genetic incompatibilities that initially defined the two species therefore, can rapidly become obscured by subsequent genetic differentiation. Efforts to elucidate the origin of isolation can be facilitated by identifying the architecture of postzygotic isolating mechanisms in incipient species, where the number of postzygotic incompatibilities are still few and, ideally, not yet fixed within the populations

A major lingering question in speciation genetics concerns the actual genetic architecture of postzygotic isolation as it first emerges. Does it have a simple or a complex genetic basis at the earliest stages of the speciation process? A burdensome disadvantage to genetic studies of postzygotic isolation is that the phenotype of interest, sterility or inviability, precludes direct genetic crossing schemes. Many successful studies of species pairs, in which the factors underlying isolation are effectively fixed, utilized the common occurrence of asymmetry [25] and/or Haldane's Rule. While the genetic dissections of incompatibility phenotypes by backcrosses and introgression [10], [21], [24], [26], [27] have contributed significantly to our current understanding of the genetics of postzygotic isolation, it is not without limitations. Since the crossing schemes employed potentially disrupted the very co-adapted gene complexes that might be critical to the F1 phenotype we cannot be certain that the genetic architecture for the incompatibility observed in the F1 hybrid has been fully characterized. Evidence of substantial within species epistasis contributing to postzygotic isolation has been demonstrated in Tribolium by joint-scaling analysis [28], [29] showing that co-adapted gene complexes may indeed be important in the architecture of hybrid incompatibilities.

In the present study, we circumvented the limitations of the hybrid phenotype by exploiting within-species polymorphism for between-species postzygotic isolation to determine the genetic architecture of segregating variation for F1 hybrid male sterility directly. We used Drosophila mojavensis and D. arizonae, a recently diverged species pair (0.66–1.2 my [30], [31]) and a model system for the study of speciation [32]. Crosses between D. mojavensis females and D. arizonae males exhibit widespread between-population [33], [34] and within-population variation for the HMS phenotype suggesting polymorphism at multiple loci within D. mojavensis [33]. The polymorphism for HMS shows that this trait is not yet fixed in D. mojavensis. Since intraspecific evolution is the process by which gene frequencies change, only a trait exhibiting genetic variation is capable of evolving. Thus HMS in this system is still capable of experiencing the forces of evolution (selection and/or drift) and can give insight into how HMS evolves. In a novel design, we have utilized the within-population variation for production of F1 HMS to determine the genomic regions and epistatic interactions that shape the architecture of postzygotic isolation within the F1 hybrid males. Below we address the following questions: What is the nature and number of polymorphic loci within D. mojavensis contributing to the HMS phenotype? And what can that tell us, in conjunction with other information about this species pair, about the evolution of HMS?

Materials and Methods

Lines used for mapping

Genetic lines were derived from lines used in the HMS polymorphism study by Reed and Markow [33]. Isofemale D. mojavensis lines were collected from Santa Catalina Island (CI) in April 2001. The Low (CI-10) line exhibiting low levels of HMS was inbred through full-sib mating for six generations and the High (CI-12) line exhibiting high levels of HMS was inbred for eight generations. The lines had minimum inbreeding coefficients of 0.734 and 0.826 respectively [35]. They showed significant differences from each other for HMS (presence of motile sperm) observed when females from those lines were crossed to D. arizonae males from an inbred line (minimum inbreeding coefficient of 0.859) collected at Peralta Canyon Trail Head, east of Phoenix, Arizona (AZ), in April 1997. All lines show normal male fertility when the males are genetically pure D. mojavensis or D. arizonae [33]. The sterility phenotype is only manifested in the species hybrid state. Homozygosity of the High line, used in the D. mojavensis genome sequencing project, had been confirmed by sequencing five marker loci in 10 females (L. Matzkin, unpublished) and an additional seven loci in 10 individuals by Agencourt Biosciences, and none showed sequence variation. The two D. mojavensis QTL lines were homokaryotypic, lacking inversion polymorphism. The lines used showed extreme contrasting HMS (sperm motility) phenotypes in heterospecific crosses (Table 1) as well as strong viability.

thumbnail
Table 1. Hybrid Sperm Motility in sons of mothers from the High and Low D. mojavensis lines and in the intercross populations of the High and Low lines, when females crossed to D. arizonae fathers.

https://doi.org/10.1371/journal.pone.0003076.t001

Identifying Markers and Genotyping

We designed fluorescently-tagged PCR primers for flanking sequences of microsatellite loci identified by Ross et al. [36]. Additional candidate microsatellite sequences were drawn from Staten et al. [37]. Potential loci were genotyped in a panel of four individuals from each D. mojavensis line to confirm that the lines contained different alleles for the locus. We genotyped 132 potential loci but only found 25 that distinguished the High and Low lines (primer sequences not already described in Staten et al. [37] shown in Table S1). Polymorphic marker discovery was inhibited by the general deficit of neutral microsatellite variation in the wild population from which the mapping lines were derived [38]. We had markers on the X-chromosome and the four major autosomes but failed to find a marker on the 6th dot chromosome. Markers were assigned to chromosome using one or more of the following methods. 1) BLASTing [39] the flanking sequence against the D. melanogaster genome sequence to identify which Muller element and thereby to what chromosome in D. mojavensis it belonged; 2) linkage mapping to allozyme markers assigned to chromosome by Zouros [40], [41]; 3) looking for close linkage between assigned markers and unassigned makers. Informative loci were multiplexed and PCR amplified using HotStarTaq DNA Polymerase (Qiagen Inc.). Genotyping was performed by the Genomic Analysis and Technology Core (GATC) at the University of Arizona using an ABI 3730 DNA Analyzer. Genotypes were read using Genotyper ver. 1.1 from Applied Biosystems.

Crossing Design

The crossing design used was an innovative modification of a standard F2 line cross (Figure 1). Five virgin F2 females, at six days post-eclosion, were paired with five sexually mature virgin male D. arizonae (AZ) for 48 hours. After 48 hours, the females were placed individually into vials, allowed to oviposit for four days, then removed and frozen for later genotyping. Virgin hybrid males were collected from those vials producing viable adults. Hybrid males were allowed to reach sexual maturity at 9–12 days post-eclosion before phenotyping. Use of the F2 mothers' genotypes allowed for a largest possible sample of recombinant genotypes (given limited resources for genotyping) while the use of the sons' phenotypes allowed for a good estimate of their mother's average phenotype, maximizing the quality and quantity of the data. A reciprocal design was also performed; instead of using Low females crossed to High males at the first step (F2 cross) High females were crossed to Low males (RF2 cross). A large number of attempted matings between F2 and RF2 females and D. arizonae males failed to produce offspring as was expected considering the significant prezygotic isolation between the species. Seven percent of the F2 (224 of 3214) and the 12% of the RF2 (278 of 2339) mothers produced larvae after being mated to D. arizonae males.

thumbnail
Figure 1. Crossing scheme.

Design used to produce the recombinant D. mojavensis females to be mated to inbred D. arizonae males.

https://doi.org/10.1371/journal.pone.0003076.g001

Mating and/or oviposition took place on standard opuntia-banana food (http://flyfood.arl.arizona.edu/opuntia.php3#s2.1) while virgins were maintained on standard cornmeal food (http://flyfood.arl.arizona.edu/cornmeal.php3). Cultures were maintained at 24+/−1 degree Celsius and under a strict 12h: 12h light: dark cycle.

Phenotyping

Male Drosophila store mature sperm in a seminal vesicle, a structure at the base of each testis. To assess sperm motility, males were anesthetized with ether just prior to dissection. Testes and seminal vesicles were dissected from the male in sperm buffer (0.05 M Tris, 1.1% NaCL, 0.1% Glucose, 0.01% L-arginine, 0.01% L-lysine, pH 8.7). Reproductive organs were transferred to a fresh slide with an 11 microliter droplet of sperm buffer, stretched with forceps to be linear, and then placed under a coverslip. Pressing the coverslip down on the sample forced all sperm out of the seminal vesicle, allowing motility of the sperm to be observed under dark-field microscopy. The entire area where potentially motile sperm could be found was visually scanned and each seminal vesicle assigned an integer score from 0 to 6 on a sperm motility scale.

Unlike mammalian systems that have short sperm, Drosophila sperm are extremely long, forming a tangled wiggling knot, in which the movement of any individual sperm cannot be tracked. The zero-to-six scale is a reasonable means to approximate the amount of motility exhibited by Drosophila sperm, and is a refinement of the presence/absence of motility scheme used in many previous studies of sperm motility in Drosophila [33], [42], [43]. A quantitative measurement of sperm motility more suitable for quantitative genetic analysis results from the zero-to-six scale. A score of “0” meant there was no motility observed, “1” was one or two motile sperm, “2” being several motile sperm, “3” being several motile sperm in two or more areas of the field, “4” is three to four areas of moderate motility, “5” being several large areas of high motility, and “6” being wild-type where most of the field showed high levels of sperm motility (as is observed in non-hybrid males of these species). A male's phenotype was the average score of his two seminal vesicles. We phenotyped up to ten sons for each mother (mean family size of 3.4) and found no trends of decreasing motility scores with time (first verses second testis scored). The genotype of the male being scored was not known during phenotyping. A subset of samples were also scored and rescored in a randomized order while blind to sample identity. Replicate scores were highly correlated (R2 = 0.79, p<0.0001), validating this method for estimating Drosophila sperm motility suggesting its utility for future studies. Sperm motility is one phenotypic component of sterility. We have shown in previous work that motile sperm are required though not always sufficient for males to be able to reproduce in this system due to additional genetic polymorphism for other phenotypic components of sterility [33]. Studies of other phenotypic components of sterility would be interesting though not required to assess the importance of natural genetic variation for HMS as estimated by sperm motility in this system.

Linkage Mapping

F2 or RF2 females that successfully produced hybrid male offspring were genotyped for the 25 microsatellite markers described above. Maximum likelihood marker (Figure S1) order was calculated for each chromosome and the Haldane mapping function was used to assign linkage distances between markers in centiMorgans (cM) using Mapmaker 3.0 [44].

Autosomal genotypes were pooled from the F2 and RF2 crosses for linkage map calculation while they are separated for the X-chromosome due to differences in X-chromosome inheritance patterns in the two crosses. Marker density was an average of 27.6 cM.

QTL Mapping

QTL mapping was conducted using Windows QTL Cartographer 2.5 [45], [46]. We conducted composite interval mapping [47], [48] on the F2, RF2, and combined data sets using a common linkage maps for the autosomes and their respective linkage maps for the X-chromosome. Composite interval mapping (CIM) uses cofactors from other regions to control for genome wide influences when regression analysis at any given genomic location is being tested [47], [48]. For our study a multiple regression analysis at each 2 cM segment of each chromosome was performed using five randomly selected markers from elsewhere in the genome as cofactors to control for genetic effects in other genomic regions (Model 6 in QTLCartographer). A 10 cM region around the test location was excluded for selection of the five control markers. A likelihood ratio (LR) test was performed for each position comparing the null hypothesis that no QTL is present at that position to the alternative that there is a QTL present. To control for any violations of normality, multiple testing, or the possible disruption of the asymptotic distribution of the chi-squared test statistic by idiosyncrasies of the study (due to factors such as multiple QTL per chromosome or distorted segregation ratios), QTL peak significance was assessed by 1000 permutations [49].

Two datasets were used in mapping. In the one called sons, sons of each mother were analyzed with their mother's genotype and their individual motility phenotype to account for the within mother variation in her sons' motility scores. Analyses were also conducted on the second dataset using the mother's Best Linear Unbiased Prediction (BLUP) [50], [51], which considers both the mean and variance in offspring scores, as a summary of her “breeding quality” for hybrid male sperm motility calculated in the SAS/STAT Mixed Procedure (SAS 9.1.3, SAS Institute Inc. Cary, NC 2000–2004). The BLUP data is well suited to determine the basis of additive (heritable) variation while the sons data set is better for detecting genetic loci experiencing non-additive effects.

Epistatic Interactions

We assessed epistatic interactions using methods modified from Moehring and Mackay [52] and Morgan and Mackay [53]. We tested for interaction effects between all pairs of markers using a repeated measures model of the form:where F is the effect of mother, C is the effect of the direction of the cross (F2 vs. RF2), M1 is the effect of genotype at marker 1 and M2 is the effect of genotype at marker 2. All 300 possible two-way interactions were tested and significance of the interaction term (M1*M2) was assessed by Bonferroni correction and False Discovery Rate (FDR). All calculations were implemented using the SAS Mixed procedure (SAS 9.1.3, SAS Institute Inc., Cary, NC 2000–2004).

Maternal Effects

Maternal effects were identified as a significant cross by main effect interaction. Hybrid male phenotype (n = 304) was regressed against the interaction between marker genotypes as the four main effect loci and the direction of the cross (F2 vs. RF2) in the multiple regression model of the form:Where C in the direction of the cross and M1 is the genotype at the marker associated with one of the main effect QTL.

Results

Inbred D. mojavensis lines showing High and Low phenotypic levels of HMS when crossed to D. arizonae were used in a standard F2 (and reciprocal) intercross QTL mapping design (Figure 1). Sperm motility in the parental, F1, RF1, F2, and RF2 lines are presented in Table 1. High and Low lines showed significant differences in the proportion of inter-species hybrid sons with motile sperm (91% and 46% respectively), and motility clearly was dominant in all hybrids (Table 1). Sperm motility is necessary but not always sufficient for fertility [33], thus motility is used as a correlate to absolute fertility. Sperm motility scores were normally distributed (Shapiro-Wilks W = 0.99, p = 0.38), with a mean of 2.35+/−0.08.

Female F2s (149 F2 and 155 RF2), of the species D. mojavensis, were crossed to male D. arizonae for QTL analysis. Sperm motility was scored, from 0 to 6, in the interspecific hybrid males. 304 F2 mothers were genotyped at 25 microsatellite markers across the genome and used to generate the linkage map. Phenotypes were mapped relative to genotype in two ways. One was to use each son's motility score, hereafter referred to as sons, as a sample of the mother's phenotype and the other was to map a mother's Best Linear Unbiased Prediction (BLUP) for her sons' motility scores. Sons better captures non-additive effects, while BLUP highlights the additive effects in the architecture.

Main effects

There were two striking outcomes of the main effects analysis; first that the F2 and RF2 mapping populations did not match more closely, and second, no main effects were detected on the X-chromosome. Main effect QTL were detected, however, on the 2nd, 3rd, and 5th chromosomes (Table 2, Figure 2). Note that estimated effect sizes (percent of phenotypic variation explained) of all detected QTL are likely to be overestimates due to the Beavis effect [54], [55], thus, there are likely to be additional genetic factors contributing to observed differences between lines that were not detected in this study. Also the actual genotype of the hybrid males at a given marker can only fall into two possible genotypic classes, High or Low for the D. mojavensis half of their genome: they will be monomorphic with respect to the D. arizonae half of their genome. Thus, the variance due to non-additive effects identified in the QTL mapping corresponds to intra-genome epistasis rather then intra-locus dominance. Finally, remember that these two lines are only a sample from a larger population. There may be additional polymorphic factors on the X-chromosome or autosomes segregating in the population as a whole that were not captured by this biparental cross. One QTL with estimated effect size of 10.9–22.1% occurred on the 3rd chromosome at about 60 cM and was observed in both datasets (sons and BLUP) and across all population samples (F2, RF2, and combined). The RF2 population sample did not reveal any other significant QTL.

thumbnail
Figure 2. Composite interval mapping results for intraspecific variation for interspecific hybrid male sterility.

Likelihood ratio values for the F2 (dashed red), RF2 (dashed blue), and combined (solid black) data sets are given for the X through 5th chromosome. The X-chromosome scale is normalized to “combined” map length for the F2 and RF2 maps. The threshold for significance is the horizontal line (red- F2, blue- RF2, and black- combined). (a) Mapping results considering each son as measure of the mother's phenotype. Black asterisks indicate the location of markers with significant pairwise epistatic effects and yellow asterisks indicate two additional markers showing a significant deviation from the additive expectation. There is clear evidence for a QTL of major effect on the 3rd chromosome for all data sets, on the 2nd chromosome for the F2 and combined data sets, and on the 5th for the F2 dataset. (b) Mapping results of the BLUP values for each mother. There is evidence for a QTL on major effect on the 3rd chromosome in all three datasets and on the 2nd chromosome in the combined dataset.

https://doi.org/10.1371/journal.pone.0003076.g002

thumbnail
Table 2. Maximum Likelihood Position and Effect Size for individual son and BLUP QTL found in Composite Interval Mapping.

https://doi.org/10.1371/journal.pone.0003076.t002

QTL were also identified on the 2nd chromosome. Analysis of the sons dataset in the F2 and combined populations found two and one QTL on the 2nd chromosome respectively (Table 2, Figure 2). The combined population sons QTL at 58 cM has a large non-additive effect of 2.23 motility units and estimated effect size is 55.3%. The two QTL found in the F2 population sons dataset (at 32 and 66 cM) also had large (and opposite) non-additive effects of −2.17 and 2.16 motility units, respectively. The RF2 sons dataset had an elevated likelihood ratio on the 2nd chromosome but it did not reach significance. The BLUP datasets exposed a significant QTL on 2nd chromosome for the combined population (60 cM) and the RF2 population (50 cM) with a non-additive effect of 0.92 to 1.10 motility units, with estimated effect size of 44.3 to 59.3%. The lack of a significant 2nd chromosome QTL in the F2 BLUP dataset can be explained by the apparent equal and opposite non-additive effects of the two QTL found in the sons dataset.

Chromosome five also contained a QTL, but only in the F2 population sons dataset. It was at 54.5 cM with a relatively large additive effect of −0.80 and moderate non-additive effect of −0.43 motility units with an estimated effect size of only 9%.

We tested for biases due to variation in family size by rerunning all analyses of both the BLUP and sons datasets on families limited to three randomly selected sons. All QTLs replicated with controlled family size (data not shown) so we are confident that the mapping results are not due to biases in family size. We also looked for any biases introduced by segregation bias due to prezygotic isolation between the species or hybrid male over dominance in viability. We found that 15 of the 25 markers were not in the expected 1:2:1 (autosomes) or 1:1 (x-chromosome) ratios having excess heterozygotes, but there was no association between violation of these ratios and the location of the QTL (X2 = 0.45, p = 0.50). Thus, there is evidence of genetic variation for prezygotic isolation with a possible heterozygote advantage that may be worth mapping in future studies, but that variation did not introduce bias into the mapping for HMS. The linkage map, though, is likely only accurate for the population that was genotyped and cannot be applied to the F2-females that failed to mother hybrid sons, because two or more segregation distortion loci within a given marker interval can bias estimates of recombination rate [56][58].

Architectural Complexity

The lack of a segregating main effect on the X-chromosome was surprising, as this chromosome has been generally shown to play a major role in the evolution of hybrid male sterility [14]. There may still be factors on the X-chromosome (or autosomes) segregating in the ancestral population as a whole whose effects were not captured by the two lines used in this study, and there also may be fixed factors on the X-chromosome that we cannot detect with this design. Additionally, there were several major discrepancies between the F2 and RF2 populations. Specifically, four main effect QTL were identified in the F2 population; two had largely additive effects on the 3rd and 5th chromosomes and two had largely non-additive effects on the 2nd chromosome. In the RF2 population, however, only a single, largely additive QTL was found on the 3rd chromosome. The combined population data set shows one 2nd chromosome QTL and the 3rd chromosome QTL. These unexpected results motivated further analyses of the underlying architectural complexity of HMS.

There are several possible explanations for the discrepancy between F2 and RF2 populations. First, we may have failed to detect QTL due to simple sampling variance between the F2 and RF2 populations. Second, the different compositions of the X-chromosomes in the reciprocal populations could have lead to an X-by-autosome interaction. Finally, an interaction between the nature of the cross (e.g. cytoplasm) and the QTLs could account for (or underlie) the observed differences between reciprocal crosses. We address each of these below.

Sampling Variance: To test whether the inevitable force of sampling variance was driving the differences observed between the F2 and RF2 populations, we subsampled from the datasets to test for consistency of the signal. From each population 100 datasets were created by randomly selecting 80% of the data points from the original dataset. Complete mapping analyses, including permutations for significance thresholds, were then performed on the subsampled datasets. Despite the reduced power of the smaller datasets, the QTLs found on the full dataset remained detectable in between 27% and 70% of the subsampled datasets (Figure S2), while spurious QTL were only detected in a maximum of 24% (e.g. see left portion of chromosome 5 in the F2 dataset). Subsampling indicates that QTL identified in the complete dataset remain detectable in a large portion of the subsets despite variation in sampling and spurious QTL (those not detected in the complete dataset but in the subsets) rarely arise due to sampling variance. The consistency between our subsampled datasets and our complete dataset suggests that our findings are fairly robust to variation in sampling and that the differences between the F2 and RF2 are likely biologically real, though some of the differences could still be due in part to sampling variance.

Inheritance of the X-chromosome: If an important X-linked genetic difference between the parental lines interacts with the autosomes, the cross direction will affect the frequency of that factor in the mapping population. This, in turn, would influence the detection and nature of autosomal QTL that interact with the X. The X-linked factor could primarily influence the penetrance or expression of the genetic variation at the autosomal factor and thus have a significant epistatic effect without having a main effect. To test for X-by-autosome interactions, as well as for other epistasis, we looked for significant pairwise interactions between all markers across the combined dataset (n = 304). We found seven interactions with a FDR significance of 0.05 or less, two of which were between the X-chromosome and the autosomes (Table 3, Figure 2). Epistatic interactions between the X-chromosome and the autosomes therefore could be contributing to some of the differences observed between the F2 and RF2 populations. We also found 5 inter-autosomal epistatic interactions. Notice that markers on the 4th chromosome were involved in five of the seven interactions, thus the 4th chromosome appears to be playing an important epistatic role in the HMS in this system worthy of additional study. Only one of nine markers involved in these pairwise interactions (m4_9_1 on the 5th chromosome) resides in or near a main effect QTL. Two additional markers (a1_2_1 on chromosome 3 and m1_10_11 on chromosome 4) did not appear in the list of significant marker by marker interactions, but exhibited significant deviations from the additive expectation after a Bonferroni correction, indicating that there are at least two other unidentified epistatic interactions. Taken together, not only does the X-chromosome appear to play an epistatic role in shaping the genetic architecture of HMS in this system, but so does within-species epistasis throughout the rest of the genome.

Maternal effects: Cytoplasmic factors may also underlie interactions between the direction of the cross and the QTLs. We tested for marker by cross interactions for the four markers showing main effects and found a significant interaction effect of marker dmoj2210 on the 2nd chromosome with cross (p = 0.0142), after controlling for the main effect of the 3rd chromosome (Figure 3). This marker did not show evidence of interacting with the X-chromosome in the test for epistasis above. Chromosome 2 is where the large and opposing non-additive QTL were found in the F2 population but not in the RF2 populations. The significant cross by marker interaction on the 2nd chromosome is a likely contributor to the differences seen in the mapping for the two crosses. The cross effect is not necessarily independent of the epistatic effect of the X –chromosome found above. But since dmoj2210 did not show any evidence of interacting with the X-chromosome, it is likely that the cytoplasm plays a role in HMS. Thus, both the X-chromosome and the cytoplasmic environment should be further explored in future studies of HMS.

thumbnail
Figure 3. Interaction effect between marker genotype and cross-type on motility score.

The average motility score of the homozygous marker genotype on the second chromosome (dmoj2210-High or Low parental line) relative to which cross it was derived (F2 or RF2). There is a significant interaction between marker and cross type.

https://doi.org/10.1371/journal.pone.0003076.g003

Discussion

The first question we proposed to answer in this study was: what is the basic architecture of HMS in the early stages of its evolution? Is HMS caused by only a few factors of large effect or does it have a more complex basis, involving multiple loci and epistatic interactions? An earlier study [33] showed evidence of multiple polymorphic factors for HMS within D. mojavensis and additional data show genetic polymorphisms for HMS segregating in the sister species D. arizonae (Reed, unpublished). Our present QTL study reveals that HMS, even at the earliest stages of speciation, can be surprisingly complex. We found within-population variation not only for several QTL of main effect, but also for significant within-species epistatic interactions. Similar complexity has been seen in other systems, such as with the Lhr-Hmr gene pair, where the incompatibility requires an epistatic interaction with the hybrid genetic background to be expressed [59]. There is likely to be more segregating genetic variation in this species that was not captured by these two particular mapping lines, and fixed genetic factors that could not be detected by this design; potentially both of which further contribute to the complexity of this trait. While previous investigations on more diverged species pairs [10] have revealed a multi-factored genetic basis for post-zygotic isolation, these studies were unable to determine whether the polygenicity had arisen early or was a byproduct of long divergence time. We show that HMS has a polygenic and epistatic basis even early in the evolutionary process, before the ability to produce HMS is fixed within a species. These findings are consistent with the complex genetic basis of early postzygotic isolation found in Tribolium [28], [29]

In addition to the unexpected complexity of HMS in this incipient species pair, we were surprised to discover no main-effect QTL segregating on the X-chromosome, though we did find an epistatic effect. While we may have lacked the statistical power to detect X-linked main effects, main effects were detected on other chromosomes indicating that sample size alone is not the full explanation. There may still be fixed X-linked effects that could not be detected by this design, and fixed effects on the X are more likely due its smaller effective population size. Demuth and Wade did demonstrate the role of epistatic variation on the X-chromosome on Haldane's Rule both theoretically [13] and empirically [28], [29]. We also found such a role for the X-chromosome in our epistasis tests.

Finally, our data show a striking difference between reciprocal crosses, suggesting a potential role for maternal effects and genome-wide epistatic variation on HMS. Cytoplasmic and epistatic effects have been demonstrated in other systems as well [24], [28], [29], [59]. Zouros and colleagues have mapped the genetic basis of HMS resulting from the reciprocal cross (female D. arizonae mated to male D. mojavensis) to the third, fourth and Y-chromosomes [40], [41], [60][62]. Whether or not the third chromosome effect in the cross using D. arizonae mothers is a function of the same factor or factors as revealed in our study remains unknown.

The second question we proposed to answer was: what can the genetic architecture of HMS tell us, in conjunction with other information, about its evolution? Substantial within-species natural polymorphism for between species postzygotic isolation has been characterized in many independent taxa thus far, including at least nine Drosophila species groups, [33], [34], [43], [63][70], Tribolium beetles [71], [72], Chorthippus parallelus grasshoppers [73], Mus musculus [74], Xiphophorus fish [75], Crepis hawksberg weed [76], Gossypium cotton [77] and Mimulus monkey flowers [78]. Thus, intraspecific polymorphism for postzygotic isolation appears to be a common phenomenon. Shuker et al. [73] argue that witnessing substantial within-species polymorphism for hybrid incompatibilities means that loci contributing to the hybrid phenotype are likely to be neutral or nearly-neutral in the parental species' genetic background. Finding that a trait is polymorphic at multiple loci, supports the role of drift and/or balancing selection in the genetics of the trait. If directional selection was occurring on the genes related to the trait, no matter what the within- species function of the genes, they would be polymorphic for only the briefest of times [79]. The probability of catching multiple polymorphic loci under directional selection would be minute. Considering that there is evidence of balancing selection on male reproductive proteins in several systems [80][83] it is not unreasonable to hypothesize that it might also be playing a role in HMS.

A handful of genes causing hybrid incompatibilities have been identified in other species and all but one (a gene transposition [84]) show evidence of being under positive selection (OdsH in D. mauritiana, [85]; Xmrk-2 in Xiphophorus, [86]; Nup96, Hmr, Lhr in the D. melanogaster/D. simulans species pair [24], [87], [88]), leading to the impression that most postzygotic speciation genes experience directional selection. Given our findings with D. mojavensis and in other systems discussed above, however, we believe it is premature to discount the role of drift and balancing selection in speciation. Empirically, we need to characterize more completely the genetic architecture of incompatibility phenotypes during early stages to find reproductive isolation genes before they are fixed and test those loci for evidence of selection. In the present study we have begun the empirical aspect of this process.

Supporting Information

Table S1.

Primers for Microsatellites.

https://doi.org/10.1371/journal.pone.0003076.s001

(0.06 MB DOC)

Figure S1.

Linkage map for D. mojavensis. Distance between markers given in centiMorgans.

https://doi.org/10.1371/journal.pone.0003076.s002

(0.30 MB DOC)

Figure S2.

Subsampling effect on QTL detection. Bar graphs of count (right x-axis, out of 100) of 80%-subsampled datasets at each mapping interval showing a likelihood ratio greater than the significance threshold determined by permutation for each subset. Solid lines indicate likelihood ratio (left x-axis) calculated from the complete dataset. A. F2-sons dataset. B. RF2-sons dataset. Subsampling indicates that QTL identified in the complete dataset remain detectable in a large portion of the subsets and spurious QTL (those not detected in the completely dataset) rarely arise due to sampling variance. Thus, patterns observed in the complete dataset appear robust to sampling variance.

https://doi.org/10.1371/journal.pone.0003076.s003

(0.16 MB DOC)

Acknowledgments

We greatly appreciated the assistance from M. Wasserman in confirming homosequentiality of the two D. mojavensis QTL lines by inspection of polytene chromosomes. We thank C. Ross for assistance in collecting specimens and M. Lowrance for assistance with inbreeding. We also appreciate advice on this study and manuscript from I. Dworkin, G. Gibson, E. Kelleher, C. Machado, T. Mackay, L. Matzkin, T. Morgan, D. Nielsen, D. Papaj, B. Payseur, and B. Walsh. We also are greatly indebted to the Santa Catalina Island Conservancy for collecting permits and logistical support in collecting specimens.

Author Contributions

Conceived and designed the experiments: LKR TAM. Performed the experiments: LKR BAL. Analyzed the data: LKR. Wrote the paper: LKR TAM.

References

  1. 1. Dobzhansky T (1937) Genetics and the origin of species. New York: Columbia University. T. Dobzhansky1937Genetics and the origin of species.New YorkColumbia University
  2. 2. Mayr E (1942) Systematics and the Origin of Species. New York: Columbia University Press. E. Mayr1942Systematics and the Origin of Species.New YorkColumbia University Press
  3. 3. Goodnight CJ, Wade MJ (2000) The ongoing synthesis: A reply to Coyne, Barton, and Turelli. Evolution 54: 317–324.CJ GoodnightMJ Wade2000The ongoing synthesis: A reply to Coyne, Barton, and Turelli.Evolution54317324
  4. 4. Wade MJ, Goodnight CJ (1998) Perspective: The theories of Fisher and Wright in the context of metapopulations: When nature does many small experiments. Evolution 52: 1537–1553.MJ WadeCJ Goodnight1998Perspective: The theories of Fisher and Wright in the context of metapopulations: When nature does many small experiments.Evolution5215371553
  5. 5. Coyne JA, Barton NH, Turelli M (2000) Is Wright's shifting balance process important in evolution? Evolution 54: 306–317.JA CoyneNH BartonM. Turelli2000Is Wright's shifting balance process important in evolution?Evolution54306317
  6. 6. Haldane JBS (1922) Sex ratio and unisexual sterility in animal hybrids. Journal of Genetics 12: 101–109.JBS Haldane1922Sex ratio and unisexual sterility in animal hybrids.Journal of Genetics12101109
  7. 7. Wu CI (1992) A note on Haldane's rule: hybrid inviability verses hybrid sterility. Evolution 46: 1584–1587.CI Wu1992A note on Haldane's rule: hybrid inviability verses hybrid sterility.Evolution4615841587
  8. 8. Coyne JA, Orr HA (1997) “Patterns of speciation in Drosophila” revisited. Evolution 51: 295–303.JA CoyneHA Orr1997“Patterns of speciation in Drosophila” revisited.Evolution51295303
  9. 9. Coyne JA, Orr HA (1989) Patterns of Speciation in Drosophila. Evolution 43: 362–381.JA CoyneHA Orr1989Patterns of Speciation in Drosophila.Evolution43362381
  10. 10. Coyne J, Orr HA (2004) Speciation. Sunderland, MA: Sinauer Associates Inc. J. CoyneHA Orr2004Speciation.Sunderland, MASinauer Associates Inc
  11. 11. Turelli M, Orr HA (1995) The dominance theory of Haldane's rule. Genetics 140: 389–402.M. TurelliHA Orr1995The dominance theory of Haldane's rule.Genetics140389402
  12. 12. Orr HA, Presgraves DC (2000) Speciation by postzygotic isolation: forces, genes and molecules. Bioessays 22: 1085–1094.HA OrrDC Presgraves2000Speciation by postzygotic isolation: forces, genes and molecules.Bioessays2210851094
  13. 13. Demuth JP, Wade MJ (2005) On the theoretical and empirical framework for studying genetic interactions within and among species. American Naturalist 165: 524–536.JP DemuthMJ Wade2005On the theoretical and empirical framework for studying genetic interactions within and among species.American Naturalist165524536
  14. 14. Masly JP, Presgraves DC (2007) High-Resolution Genome-Wide Dissection of the Two Rules of Speciation in Drosophila. PLoS Biology 5: e243.JP MaslyDC Presgraves2007High-Resolution Genome-Wide Dissection of the Two Rules of Speciation in Drosophila.PLoS Biology5e243
  15. 15. Muller HJ (1942) Isolating mechanisms, evolution and temperature. Biological Symposia 6: 71–125.HJ Muller1942Isolating mechanisms, evolution and temperature.Biological Symposia671125
  16. 16. Muller HJ (1940) Bearing of the Drosophila work on systematics. In: Huxley J, editor. The New Systematics. Oxford: Clarendon. pp. 185–268.HJ Muller1940Bearing of the Drosophila work on systematics.J. HuxleyThe New SystematicsOxfordClarendon185268
  17. 17. Bateson W (1909) Heredity and variation in modern lights. In: Seward AC, editor. Darwin and Modern Science. Cambridge, UK: Cambridge University Press. pp. 85–101.W. Bateson1909Heredity and variation in modern lights.AC SewardDarwin and Modern ScienceCambridge, UKCambridge University Press85101
  18. 18. Orr HA (1995) The Population-Genetics of Speciation - the Evolution of Hybrid Incompatibilities. Genetics 139: 1805–1813.HA Orr1995The Population-Genetics of Speciation - the Evolution of Hybrid Incompatibilities.Genetics13918051813
  19. 19. Carvajal AR, Gandarela MR, Naveira HF (1996) A three-locus system of interspecific incompatibility underlies male inviability in hybrids between Drosophila buzzatii and D-koepferae. Genetica 98: 1–19.AR CarvajalMR GandarelaHF Naveira1996A three-locus system of interspecific incompatibility underlies male inviability in hybrids between Drosophila buzzatii and D-koepferae.Genetica98119
  20. 20. Christie P, Macnair MR (1984) Complementary Lethal Factors in 2 North-American Populations of the Yellow Monkey Flower. Journal of Heredity 75: 510–511.P. ChristieMR Macnair1984Complementary Lethal Factors in 2 North-American Populations of the Yellow Monkey Flower.Journal of Heredity75510511
  21. 21. Sweigart AL, Fishman L, Willis JH (2006) A simple genetic incompatibility causes hybrid male sterility in mimulus. Genetics 172: 2465–2479.AL SweigartL. FishmanJH Willis2006A simple genetic incompatibility causes hybrid male sterility in mimulus.Genetics17224652479
  22. 22. Hutchinson JB (1932) The genetics of cotton. Part VII. “Crumpled”: A new dominant in Asiatic cottons produced by complementary factors. Journal of Genetics 25: 281–291.JB Hutchinson1932The genetics of cotton. Part VII. “Crumpled”: A new dominant in Asiatic cottons produced by complementary factors.Journal of Genetics25281291
  23. 23. Kazianis S, Gutbrod H, Nairn RS, McEntire BB, Della Coletta L, et al. (1998) Localization of a CDKN2 gene in Linkage Group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor. Genes Chromosomes & Cancer 22: 210–220.S. KazianisH. GutbrodRS NairnBB McEntireL. Della Coletta1998Localization of a CDKN2 gene in Linkage Group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor.Genes Chromosomes & Cancer22210220
  24. 24. Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, et al. (2006) Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314: 1292–1295.NJ BrideauHA FloresJ. WangS. MaheshwariX. Wang2006Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila.Science31412921295
  25. 25. Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics 176: 1059–1088.M. TurelliLC Moyle2007Asymmetric postmating isolation: Darwin's corollary to Haldane's rule.Genetics17610591088
  26. 26. Barbash DA, Ashburner M (2003) A novel system of fertility rescue in Drosophila hybrids reveals a link between hybrid lethality and female sterility. Genetics 163: 217–226.DA BarbashM. Ashburner2003A novel system of fertility rescue in Drosophila hybrids reveals a link between hybrid lethality and female sterility.Genetics163217226
  27. 27. Presgraves DC (2003) A fine-scale genetic analysis of hybrid Incompatibilities in drosophila. Genetics 163: 955–972.DC Presgraves2003A fine-scale genetic analysis of hybrid Incompatibilities in drosophila.Genetics163955972
  28. 28. Demuth JP, Wade MJ (2007) Population differentiation in the beetle Tribolium castaneum. I. Genetic architecture. Evolution 61: 494–509.JP DemuthMJ Wade2007Population differentiation in the beetle Tribolium castaneum. I. Genetic architecture.Evolution61494509
  29. 29. Demuth JP, Wade MJ (2007) Population differentiation in the beetle Tribolium castaneum. II. Haldane's rule and incipient speciation. Evolution 61: 694–699.JP DemuthMJ Wade2007Population differentiation in the beetle Tribolium castaneum. II. Haldane's rule and incipient speciation.Evolution61694699
  30. 30. Matzkin LM (2004) Population genetics and geographic variation of alcohol dehydrogenase (Adh) paralogs and glucose-6-phosphate dehydrogenase (G6pd) in Drosophila mojavensis. Molecular Biology and Evolution 21: 276–285.LM Matzkin2004Population genetics and geographic variation of alcohol dehydrogenase (Adh) paralogs and glucose-6-phosphate dehydrogenase (G6pd) in Drosophila mojavensis.Molecular Biology and Evolution21276285
  31. 31. Reed LK, Nyboer M, Markow TA (2007) Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae. Molecular Ecology 16: 1007–1022.LK ReedM. NyboerTA Markow2007Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae.Molecular Ecology1610071022
  32. 32. Markow TA, Hocutt GD (1998) Reproductive isolation in Sonoran Desert Drosophila: testing the limits of the rules. In: J. HD, S.H. B, editors. Endless Forms: species and speciation. Oxford: Oxford University Press. pp. 234–244.TA MarkowGD Hocutt1998Reproductive isolation in Sonoran Desert Drosophila: testing the limits of the rules.HD J.B. S.H.Endless Forms: species and speciationOxfordOxford University Press234244
  33. 33. Reed LK, Markow TA (2004) Early events in speciation: Polymorphism for hybrid male sterility in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 101: 9009–9012.LK ReedTA Markow2004Early events in speciation: Polymorphism for hybrid male sterility in Drosophila.Proceedings of the National Academy of Sciences of the United States of America10190099012
  34. 34. Ruiz A, Heed WB, Wasserman M (1990) Evolution of the Mojavensis Cluster of Cactophilic Drosophila with Descriptions of 2 New Species. Journal of Heredity 81: 30–42.A. RuizWB HeedM. Wasserman1990Evolution of the Mojavensis Cluster of Cactophilic Drosophila with Descriptions of 2 New Species.Journal of Heredity813042
  35. 35. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Harlow. England: Prentice Hall. DS FalconerTFC Mackay1996Introduction to quantitative genetics.HarlowEnglandPrentice Hall
  36. 36. Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, et al. (2003) Rapid divergence of microsatellite abundance among species of Drosophila. Molecular Biology and Evolution 20: 1143–1157.CL RossKA DyerT. ErezSJ MillerJ. Jaenike2003Rapid divergence of microsatellite abundance among species of Drosophila.Molecular Biology and Evolution2011431157
  37. 37. Staten R, Schully SD, Noor MAF (2004) A microsatellite linkage map of Drosophila mojavensis. Bmc Genetics 5: R. StatenSD SchullyMAF Noor2004A microsatellite linkage map of Drosophila mojavensis.Bmc Genetics5
  38. 38. Ross CL, Markow TA (2006) Microsatellite variation among diverging populations of Drosophila mojavensis. Journal of Evolutionary Biology 19: 1691–1700.CL RossTA Markow2006Microsatellite variation among diverging populations of Drosophila mojavensis.Journal of Evolutionary Biology1916911700
  39. 39. Altschul S, Boguski M, Gish W, Wootton J (1994) Issues in searching molecular sequence databases. Nature Genetics 6: 119–129.S. AltschulM. BoguskiW. GishJ. Wootton1994Issues in searching molecular sequence databases.Nature Genetics6119129
  40. 40. Zouros E (1981) An autosome-Y chromosome combination that causes sterility in D. mojavensis and D. arizonensis hybrids. Drosophila Information Service 56: 167–168.E. Zouros1981An autosome-Y chromosome combination that causes sterility in D. mojavensis and D. arizonensis hybrids.Drosophila Information Service56167168
  41. 41. Zouros E (1991) Searching for speciaton genes in the species pair Drosophila mojavnesis and D. arizonae. In: Young JPW, editor. Molecular Techniques in Taxonomy. Berlin: Springer-Verlag. pp. 233–247.E. Zouros1991Searching for speciaton genes in the species pair Drosophila mojavnesis and D. arizonae.JPW YoungMolecular Techniques in TaxonomyBerlinSpringer-Verlag233247
  42. 42. Orr HA, Irving S (2001) Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseudoobscura Bogota-USA hybridization. Genetics 158: 1089–1100.HA OrrS. Irving2001Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseudoobscura Bogota-USA hybridization.Genetics15810891100
  43. 43. Kopp A, Frank AK (2005) Speciation in progress? A continuum of reproductive isolation in Drosophila bipectinata. Genetica 125: 55–68.A. KoppAK Frank2005Speciation in progress? A continuum of reproductive isolation in Drosophila bipectinata.Genetica1255568
  44. 44. Lander E, Abrahamson J, Barlow A, Daly M, Lincoln S, et al. (1987) Mapmaker a Computer Package for Constructing Genetic-Linkage Maps. Cytogenetics and Cell Genetics 46: 642–642.E. LanderJ. AbrahamsonA. BarlowM. DalyS. Lincoln1987Mapmaker a Computer Package for Constructing Genetic-Linkage Maps.Cytogenetics and Cell Genetics46642642
  45. 45. Basten CJ, Weir BS, Zeng ZB (1994) Zmap-a QTL cartographer. In: Smith C, Gavora JS, Benkel B, Chesnais J, Fairfull W, et al., editors. Proceedings of the 5th world congress on genetics applied to livestock production:Computing strategies and software. Guelph, Ontario, Canada: Organizing committee, 5th world congress on genetics applied to livestock production. pp. 65–66.CJ BastenBS WeirZB Zeng1994Zmap-a QTL cartographer.C. SmithJS GavoraB. BenkelJ. ChesnaisW. FairfullProceedings of the 5th world congress on genetics applied to livestock production:Computing strategies and softwareGuelph, Ontario, CanadaOrganizing committee, 5th world congress on genetics applied to livestock production6566
  46. 46. Basten CJ, Weir BS, Zeng ZB (2002) QTL Cartographer. 1.16 ed. Raleigh, NC: Department of Statistics, North Carolina State Univeristy. CJ BastenBS WeirZB Zeng2002QTL Cartographer. 1.16 ed.Raleigh, NCDepartment of Statistics, North Carolina State Univeristy
  47. 47. Zeng ZB (1993) Theoretical Basis for Separation of Multiple Linked Gene Effects in Mapping Quantitative Trait Loci. Proceedings of the National Academy of Sciences of the United States of America 90: 10972–10976.ZB Zeng1993Theoretical Basis for Separation of Multiple Linked Gene Effects in Mapping Quantitative Trait Loci.Proceedings of the National Academy of Sciences of the United States of America901097210976
  48. 48. Zeng ZB (1994) Precision Mapping of Quantitative Trait Loci. Genetics 136: 1457–1468.ZB Zeng1994Precision Mapping of Quantitative Trait Loci.Genetics13614571468
  49. 49. Churchill GA, Doerge RW (1994) Empirical Threshold Values for Quantitative Trait Mapping. Genetics 138: 963–971.GA ChurchillRW Doerge1994Empirical Threshold Values for Quantitative Trait Mapping.Genetics138963971
  50. 50. Mclean RA, Sanders WL, Stroup WW (1991) A Unified Approach to Mixed Linear-Models. American Statistician 45: 54–64.RA McleanWL SandersWW Stroup1991A Unified Approach to Mixed Linear-Models.American Statistician455464
  51. 51. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates Inc. M. LynchB. Walsh1998Genetics and analysis of quantitative traits.Sunderland, MASinauer Associates Inc
  52. 52. Moehring AJ, Mackay TFC (2004) The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 167: 1249–1263.AJ MoehringTFC Mackay2004The quantitative genetic basis of male mating behavior in Drosophila melanogaster.Genetics16712491263
  53. 53. Morgan TJ, Mackay TFC (2006) Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster. Heredity 96: 232–242.TJ MorganTFC Mackay2006Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster.Heredity96232242
  54. 54. Beavis W (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. Report of the 49th annual corn and sorghum reseach conference. Washington, DC: American Seed Trade Association. pp. 252–268.W. Beavis1994The power and deceit of QTL experiments: lessons from comparative QTL studies.Report of the 49th annual corn and sorghum reseach conferenceWashington, DCAmerican Seed Trade Association252268
  55. 55. Xu SZ (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163: 789–801.SZ Xu2003Estimating polygenic effects using markers of the entire genome.Genetics163789801
  56. 56. Fisher RA, Bailey NTJ (1949) The Estimation of Linkage with Differential Viability. Heredity 3: 215–228.RA FisherNTJ Bailey1949The Estimation of Linkage with Differential Viability.Heredity3215228
  57. 57. Lorieux M, Goffinet B, Perrier X, Deleon DG, Lanaud C (1995) Maximum-Likelihood Models for Mapping Genetic-Markers Showing Segregation Distortion .1. Backcross Populations. Theoretical and Applied Genetics 90: 73–80.M. LorieuxB. GoffinetX. PerrierDG DeleonC. Lanaud1995Maximum-Likelihood Models for Mapping Genetic-Markers Showing Segregation Distortion .1. Backcross Populations.Theoretical and Applied Genetics907380
  58. 58. Lorieux M, Perrier X, Goffinet B, Lanaud C, Deleon DG (1995) Maximum-Likelihood Models for Mapping Genetic-Markers Showing Segregation Distortion .2. F2 Populations. Theoretical and Applied Genetics 90: 81–89.M. LorieuxX. PerrierB. GoffinetC. LanaudDG Deleon1995Maximum-Likelihood Models for Mapping Genetic-Markers Showing Segregation Distortion .2. F2 Populations.Theoretical and Applied Genetics908189
  59. 59. Pontecorvo G (1943) Viability interactions between chromosomes of Drosophila melanogaster and Drosophila simulans. Journal of Genetics 45: 51–66.G. Pontecorvo1943Viability interactions between chromosomes of Drosophila melanogaster and Drosophila simulans.Journal of Genetics455166
  60. 60. Vigneault G, Zouros E (1986) The Genetics of Asymmetrical Male-Sterility in Drosophila-Mojavensis and Drosophila-Arizonensis Hybrids - Interactions between the Y-Chromosome and Autosomes. Evolution 40: 1160–1170.G. VigneaultE. Zouros1986The Genetics of Asymmetrical Male-Sterility in Drosophila-Mojavensis and Drosophila-Arizonensis Hybrids - Interactions between the Y-Chromosome and Autosomes.Evolution4011601170
  61. 61. Pantazidis AC, Zouros E (1988) Location of an Autosomal Factor Causing Sterility in Drosophila-Mojavensis Males Carrying the Drosophila-Arizonensis Y-Chromosome. Heredity 60: 299–304.AC PantazidisE. Zouros1988Location of an Autosomal Factor Causing Sterility in Drosophila-Mojavensis Males Carrying the Drosophila-Arizonensis Y-Chromosome.Heredity60299304
  62. 62. Zouros E, Lofdahl K, Martin PA (1988) Male Hybrid Sterility in Drosophila - Interactions between Autosomes and Sex-Chromosomes in Crosses of Drosophila-Mojavensis and Drosophila-Arizonensis. Evolution 42: 1321–1331.E. ZourosK. LofdahlPA Martin1988Male Hybrid Sterility in Drosophila - Interactions between Autosomes and Sex-Chromosomes in Crosses of Drosophila-Mojavensis and Drosophila-Arizonensis.Evolution4213211331
  63. 63. Macknight RH (1939) The sex-determining mechanism of Drosophila miranda. Genetics 24: 180–201.RH Macknight1939The sex-determining mechanism of Drosophila miranda.Genetics24180201
  64. 64. Orr HA, Irving S (2005) Segregation distortion in hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura. Genetics 169: 671–682.HA OrrS. Irving2005Segregation distortion in hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura.Genetics169671682
  65. 65. Patterson JT, Stone WS (1952) Evolution in the Genus Drosophila. New York: Macmillian. JT PattersonWS Stone1952Evolution in the Genus Drosophila.New YorkMacmillian
  66. 66. Kimura M (1987) Habitat differentiation and speciaiton in the Drosophila auraria species complex (Diptera: Drosophilidae). Kontyu 55: 429–436.M. Kimura1987Habitat differentiation and speciaiton in the Drosophila auraria species complex (Diptera: Drosophilidae).Kontyu55429436
  67. 67. Ayala FJ, Tracey ML, Barr LG, Ehrenfeld JG (1974) Genetic and reproductive differentiation of the subspecies Drosophila equinoxialis caribbensis. Evolution 28: 24–41.FJ AyalaML TraceyLG BarrJG Ehrenfeld1974Genetic and reproductive differentiation of the subspecies Drosophila equinoxialis caribbensis.Evolution282441
  68. 68. Mainland GB (1942) Genetic relationships in the Drosophila funebris group. University of Texas Publications 4228: 74–112.GB Mainland1942Genetic relationships in the Drosophila funebris group.University of Texas Publications422874112
  69. 69. Nolte V, Weigel D, Schlotterer C (2008) The impact of shared ancestral variation on hybrid male lethality - a 16 codon indel in the Drosophila simulans Lhr gene. Journal of Evolutionary Biology 21: 551–555.V. NolteD. WeigelC. Schlotterer2008The impact of shared ancestral variation on hybrid male lethality - a 16 codon indel in the Drosophila simulans Lhr gene.Journal of Evolutionary Biology21551555
  70. 70. Crow JF (1942) Cross fertility and isolating mechanisms in the Drosophila mulleri group. University of Texas Publications 4228: 53–67.JF Crow1942Cross fertility and isolating mechanisms in the Drosophila mulleri group.University of Texas Publications42285367
  71. 71. Wade MJ, Johnson NA (1994) Reproductive Isolation between 2 Species of Flour Beetles, Tribolium-Castaneum and T-Freemani - Variation within and among Geographical Populations of T-Castaneum. Heredity 72: 155–162.MJ WadeNA Johnson1994Reproductive Isolation between 2 Species of Flour Beetles, Tribolium-Castaneum and T-Freemani - Variation within and among Geographical Populations of T-Castaneum.Heredity72155162
  72. 72. Wade MJ, Johnson NA, Jones R, Siguel V, McNaughton M (1997) Genetic variation segregating in natural populations of Tribolium castaneum affecting traits observed in hybrids with T-freemani. Genetics 147: 1235–1247.MJ WadeNA JohnsonR. JonesV. SiguelM. McNaughton1997Genetic variation segregating in natural populations of Tribolium castaneum affecting traits observed in hybrids with T-freemani.Genetics14712351247
  73. 73. Shuker DM, Underwood K, King TM, Butlin RK (2005) Patterns of male sterility in a grasshopper hybrid zone imply accumulation of hybrid incompatibilities without selection. Proceedings of the Royal Society B-Biological Sciences 272: 2491–2497.DM ShukerK. UnderwoodTM KingRK Butlin2005Patterns of male sterility in a grasshopper hybrid zone imply accumulation of hybrid incompatibilities without selection.Proceedings of the Royal Society B-Biological Sciences27224912497
  74. 74. Good JM, Handel MA, Nachman MW (2008) Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice. Evolution 62: 50–65.JM GoodMA HandelMW Nachman2008Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice.Evolution625065
  75. 75. Nairn RS, Kazianis S, McEntire BB, DellaColetta L, Walter RB, et al. (1996) A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids. Proceedings of the National Academy of Sciences of the United States of America 93: 13042–13047.RS NairnS. KazianisBB McEntireL. DellaColettaRB Walter1996A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids.Proceedings of the National Academy of Sciences of the United States of America931304213047
  76. 76. Hollingshead L (1930) A lethal factor in crepis effective only in an interspecific hybrid. Genetics 15: 114–140.L. Hollingshead1930A lethal factor in crepis effective only in an interspecific hybrid.Genetics15114140
  77. 77. Stephens SG (1950) The Genetics of Corky .2. Further Studies on Its Genetic Basis in Relation to the General Problem of Interspecific Isolating Mechanisms. Journal of Genetics 50: 9–20.SG Stephens1950The Genetics of Corky .2. Further Studies on Its Genetic Basis in Relation to the General Problem of Interspecific Isolating Mechanisms.Journal of Genetics50920
  78. 78. Sweigart AL, Mason AR, Willis JH (2007) Natural variation for a hybrid incompatibility between two species of Mimulus. Evolution 61: 141–151.AL SweigartAR MasonJH Willis2007Natural variation for a hybrid incompatibility between two species of Mimulus.Evolution61141151
  79. 79. Kimura M, Ohta T (1969) Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics 61: 763-&.M. KimuraT. Ohta1969Average Number of Generations until Fixation of a Mutant Gene in a Finite Population.Genetics61763-&
  80. 80. Gasper J, Swanson WJ (2006) Molecular population genetics of the gene encoding the human fertilization protein zonadhesin reveals rapid adaptive evolution. American Journal of Human Genetics 79: 820–830.J. GasperWJ Swanson2006Molecular population genetics of the gene encoding the human fertilization protein zonadhesin reveals rapid adaptive evolution.American Journal of Human Genetics79820830
  81. 81. Hamm D, Mautz BS, Wolfner MF, Aquadro CF, Swanson WJ (2007) Evidence of amino acid diversity-enhancing selection within humans and among primates at the candidate sperm-receptor gene PKDREJ. American Journal of Human Genetics 81: 44–52.D. HammBS MautzMF WolfnerCF AquadroWJ Swanson2007Evidence of amino acid diversity-enhancing selection within humans and among primates at the candidate sperm-receptor gene PKDREJ.American Journal of Human Genetics814452
  82. 82. Begun DJ, Whitley P, Todd BL, Waldrip-Dail HM, Clark AG (2000) Molecular population genetics of male accessory gland proteins in drosophila. Genetics 156: 1879–1888.DJ BegunP. WhitleyBL ToddHM Waldrip-DailAG Clark2000Molecular population genetics of male accessory gland proteins in drosophila.Genetics15618791888
  83. 83. Levitan DR, Ferrell DL (2006) Selection on gamete recognition proteins depends on sex, density, and genotype frequency. Science 312: 267–269.DR LevitanDL Ferrell2006Selection on gamete recognition proteins depends on sex, density, and genotype frequency.Science312267269
  84. 84. Masly JP, Jones CD, Noor MAF, Locke J, Orr HA (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313: 1448–1450.JP MaslyCD JonesMAF NoorJ. LockeHA Orr2006Gene transposition as a cause of hybrid sterility in Drosophila.Science31314481450
  85. 85. Ting CT, Tsaur SC, Wu ML, Wu CI (1998) A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282: 1501–1504.CT TingSC TsaurML WuCI Wu1998A rapidly evolving homeobox at the site of a hybrid sterility gene.Science28215011504
  86. 86. Schartl M, Hornung U, Gutbrod H, Volff JN, Wittbrodt J (1999) Melanoma loss-of-function mutants in xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153: 1385–1394.M. SchartlU. HornungH. GutbrodJN VolffJ. Wittbrodt1999Melanoma loss-of-function mutants in xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element.Genetics15313851394
  87. 87. Barbash DA, Siino DF, Tarone AM, Roote J (2003) A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 100: 5302–5307.DA BarbashDF SiinoAM TaroneJ. Roote2003A rapidly evolving MYB-related protein causes species isolation in Drosophila.Proceedings of the National Academy of Sciences of the United States of America10053025307
  88. 88. Presgraves DC, Balagopalan L, Abmayr SM, Orr HA (2003) Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423: 715–719.DC PresgravesL. BalagopalanSM AbmayrHA Orr2003Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila.Nature423715719