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1 Data analyses and modelling 28 

 29 

1.1 Genetic diversity analyses 30 

 31 

1.1.1 Genetic structure 32 

Genetic structure analysis was performed using two unsupervised algorithms handling large 33 

SNP datasets: 34 

(1) sNMF [1], a model-free algorithm with a least-square optimization based on 35 

factorization of the genotype matrix into a matrix Q of individual ancestry 36 

coefficients and a matrix G of ancestry allele frequencies, 37 

(2) ADMIXTURE [2], a model-based algorithm. 38 

For the analyses, we used 100,000 filtered SNPs output from the pipeline B. To estimate the 39 

most probable number of genetic clusters, we varied the prior number of clusters (K) from 1 40 

to 10 for both software programs.  41 

For sNMF, we performed 20 runs per K value with 200 iterations per run. The regularization 42 

parameter was set at 10 [1]. Cross-validation based on cross-entropy criteria for each run 43 

per K was computed with a 5% fraction of masked genotypes.  44 

For ADMIXTURE, we used default parameters and computed a cross-validation error for each 45 

K using 20 cross-validations. 46 

We defined the most probable number of cluster(s) (K) as the one minimizing both cross-47 

entropy criterion (sNMF) and cross-validation error (ADMIXTURE). 48 

Owing to potential biases entailed by low-coverage sequencing, an independent clustering 49 

analysis was realized with NGSAdmix (Skotte et al. 2013) based on the full genotype 50 

likelihoods computed in ANGSD 0.9 with the SAMTools sequencing error model (Skotte et al. 51 

2013). Called positions were filtered on quality scores, minor allele frequencies and sample 52 

coverage, leaving a subset of 107 sites. 53 

 54 
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1.1.2 Differentiation indices and pairwise genetic distances 55 

Based on the VCF dataset previously used for structure analysis and after removal of the 56 

Aoupinié individual, Weir and Cockerham [3] weighted FST was calculated between the two 57 

major genetic groups using VCFTools  0.1.13 [4]. The significance of the FST was estimated 58 

by performing 999 permutations of sample assignation to the genetic clusters, the null 59 

hypothesis being that all individuals are sampled from a panmictic population. An empirical 60 

p-value was then calculated as the ratio between the number of permuted FST values equal or 61 

superior to the observed FST value. Pairwise allele sharing distances between individuals [5] 62 

were also estimated, using a custom R script. 63 

 64 

 65 

  66 
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1.2 Non-spatial demo-genomic coalescent modelling 67 

 68 

1.2.1 Model design 69 

We compared a set of 13 demographic scenarios (see the table below)—assuming either a 70 

single or two ancestral population(s), out of which the two currently major genetic 71 

populations were derived. In addition to the number and size of putative refugial 72 

populations, the 13 demographic scenarios also differ in the specification of the age of 73 

divergence between the two major genetic groups relative to the contraction phase. We also 74 

considered variations in the recent demographic dynamics: (a) abrupt or smooth population 75 

growth, and (b) presence or absence of gene flows. 76 

Demo-genomic models are simulated using the Kingman coalescent based on a Wright-77 

Fisher population model, assuming an infinite-allele mutation model. 78 

 79 
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                   Po Do DoM 1 1G 1M 1MG 2 2G 2M 2MM 2MG 3I 

Number of 

expansion 

origins 

1 0 0 1 1 1 1 2 2 2 2 2 2 

Recent gene flow No No Yes No No Yes Yes No No Yes Yes Yes Yes 

Gene flow 

between 

ancestral 

populations 

No No No No No No No No No No Yes No No 

Exponential 

expansion 
No No No No Yes No Yes No Yes No No Yes No 
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1.2.2 Prior search ranges 

 

Historical events are defined forward in time. 

 

Parameter Distrib. Lower bound Upper bound Notes 

     

Present population sizes U 10 400,000 For all models except Po, there are two independent present population sizes. 

Age of bottleneck onsetb (Tb) U 5 200,000 Corresponds also to the age of divergence for models 2xx. 

Age of expansion onsetb (Te) U 5 200,000 Corresponds also the age of divergence for models 1xx. 

Neutral substitution rate U 5.00E-09 1.00E-07  

Early population size U 100 400,000  

Migration ratesc LU 1.00E-05 0.05 For all models, we set the possibility of asymmetric gene flow (= 2 independent migration 

rates parameters). 

Bottlenecked population ratio U 1.00E-04 1 For models 2xx, there are two “bottlenecked” population ratios. For models 1xx, Do and 

PoB: only one ratio. 

Population sizes at expansion onset U 1.00E+01 400,000 For models with continuous expansion growth.  

 

a “U” stands for “uniform” and “LU” for log10-uniform distributions.  

b Due to the existence of two likelihood attractors for model 2M, one with unrealistic divergence times, Tb and Te search ranges were restricted to 5-25,000 and 5-50,000 respectively. Ages are 

specified in generations before present. 

c For 1M, 1MG, DoM upper bound = 1E-3 to reduce computation time 
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1.2.3 Model comparison 

To compare demographic scenarios and estimate their parameters, we used the composite 

likelihood maximization approach implemented in fastsimcoal2 [6]. This approach is based 

on the comparison of the composite likelihoods (CL) of model-based SFSs, given the 

observed SFS. Note that we filled in the cell [0,0] of the SFS (corresponding to the 

monomorphic bases across populations) to obtain better estimates of θ. 

To maximise the CL, fastsimcoal2 performs an Expectation-Conditional Maximisation (ECM) 

algorithm where each parameter is optimized sequentially, keeping other parameters at their 

previous values [6]. CL estimates can be sensitive to the initial conditions, so we performed 

120 independent estimation replicates using various parametric seeds. For each estimation, 

we ran a series of 10 to 70 ECM cycles stopping the convergence when the likelihood weight 

decay fell below 10-2. We simulated 250,000 to 700,000 coalescent trees per likelihood 

computation. Convergence was checked for each model a posteriori. For each model, we 

retained the one run with overall maximum CL among the 120 runs performed. Runs which 

converged to unrealistic parametric values (any island with an effective size estimated below 

120 haploid individuals during more than 5,000 generations) were excluded from the 

comparison. 

Since the distribution of the composite likelihood ratio test is often unknown [6] and since 

models differ in their degrees of freedom, we used the Akaike Information Criterion (AIC) as 

a way to compare model fits. 

 

1.2.4 Estimation precision 

For the fittest scenario, we estimated confidence intervals around the point estimate for each 

parameter by conducting parametric bootstrapping. We simulated 100 SFSs out of the fittest 

adjusted scenario and subsequently used them as pseudo-observed datasets. For each 

pseudo-observed SFS, we performed 20 parametric estimation runs out of which we 

extracted the parameter values of the overall fittest run. The sequence of the 100 fittest 

parametric values obtained for the 100 pseudo-observed SFSs were used to compute the 

empirical 95% confidence intervals for each parameter. 
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1.2.5 Model validation 

The predictive power of the retained model with its maximum likelihood point estimates was 

assessed by generating DNA polymorphisms along 105 chromosomes of 300 bp each, 

corresponding to the total number of filtered sites analysed to infer the joint 2D-SFS. 

Observed and predicted polymorphisms were summarized into six statistics using a custom 

R script: number of segregating sites, proportion of singletons, of private and shared alleles, 

expected heterozygosity and Wright’s FST. Results are given in S6 Table. 

1.2.6 Model with more than two ancestral populations 

To test whether our sampling sizes allowed to correctly identify a model with more than two 

ancestral populations from a model assuming exactly two, we generated 50 pseudo-

observed datasets (PODs = folded 2D-SFS) using the adjusted 2M model and 50 PODs under 

a 3M model. The 3M model is an extension of the 2M model assuming two isolated 

bottlenecked populations for the North lineage, instead of one only. The 3M model therefore 

assumes a total of 3 bottlenecked populations (2 for the North + 1 for the South). The (i) 

effective size of the additional bottlenecked population and (ii) the fraction of lineages of the 

North present population which originated from this additional population were set as 

random parameters. A model selection (2M vs 3M model) was then performed for each of the 

100 PODs based on AIC criterion. 

 

Models 2M and 3M 

Results. If we consider the “2M” as the positive outcome, the false negative rate is FNR = 

27/(23+27) = 54% and the false positive rate is FPR = 22/(22+28) = 44%. 
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Confusion matrix 

  Estimated as 

  2M 3M 

Simulated as 2M 23 27 

3M 22 28 

 

This complementary analysis suggests that a model assuming three ancestral populations is 

not identifiable from a model assuming two ancestral populations.  
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1.2.7 Structured model 

To assess the impact of population structure on the estimation of population size changes 

[7,8], we implemented a 3I model (an extension of the 2M model) representing a 5-island 

metapopulation model with 3 unsampled islands (filled in green in the figure below) of size 

NGhost. These unsampled islands were allowed to exchange between themselves and with the 

2 sampled islands m (symmetric) migrants per generation after (forward) the contraction 

(grey-filled) period. A series of 120 independent runs of composite likelihood maximization 

were performed under the same procedure as described in the Model Comparison section. 

 

Model 3I 

Results. Among the 120 runs, only three have an AIC inferior to the best-fit 2M model 

presented in the main text. Those runs are described in the following table, in columns. 

There is no biological reason to reject the adequacy of these three 3I run estimates, yet we 

might probably face the same identifiability issue as with the 3 ancestral population model 

(3M, aforementioned). Point estimates for parameters of interest, like the age of expansion 

onset, are close to the ones obtained from the 2M model. The point estimate for the age of 

divergence is however 3 to 6-fold higher than under the 2M model. The ratio 

[present/ancestral population sizes] for the North is comparable to the 2M model (= 1 in 3I 

and 2M models) but slightly lower for the South (2.5; 2.7; 4.4 for the 3I runs vs. 6.6 for the 

2M best run). 
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Table – Maximum composite likelihood estimates of the 3 best runs for the 3I structured 

model. 

 Run 1 Run 2 Run 3 

Maximum Estimated Ln-Likelihod -1168179.632 -1168201.882 -1168221.755 

Ne North 55192 28173 31025 

Ne South 71212 31589 35126 

Ne Ghost 13076 20018 13094 

Ne Ancestral North 54622.84906 27638.42014 30586.04899 

Ne Ancestral South 27501.19849 11496.14055 8010.779358 

Ne Pre-divergence 86423 53813 51876 

Age of expansion onset (generations) 

 

5049 

~20,000 yBP 

3868 

~15,500 yBP 

9387 

~37,500 yBP 

Age of divergence (generations) 35918 

~144,000 yBP 

19318 

~77,000 yBP 

29741 

~120,000 yBP 

Migration North->South 1.25819E-05 1.23277E-05 1.15973E-05 

Migration North<-South 1.16483E-05 1.24861E-05 1.23545E-05 

Migration<->Ghost 1.12027E-05 2.22179E-05 1.14077E-05 

Mutation Rate 5.15842E-09 8.6307E-09 8.07783E-09 
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1.3 Spatially explicit demo-genetic coalescent modelling 

 

1.3.1 Description of the demo-genetic coalescent model 

In this section, we describe the demographic model associated with the spatially explicit 

demo-genetic modelling (software SPLATCHE 2.01 Ray et al. [9]). This demographic model 

assumes that an earliest population diverged 5,900 generations before present (BP) into two 

daughter populations with respective sizes N1 and N2 haploid individuals. The species 

started expanding at 3,200 generations BP. Time estimates are derived from the non-spatial 

demographic inference but we tested the robustness of our results to the variations of their 

value. 

 

 

Figure - Illustration of the demographic model associated with the spatially explicit demo-

genetic model. 

 

Since 3,200 generations BP, these populations have been expanding and their local 

population density has been logistically regulated with an intrinsic growth rate r and a 

carrying capacity Ki. We consider that carrying capacities can have different independent 

values between three pre-defined zones latitudinally subdividing Grande Terre: a Northern 

zone above latitude 7,668,351 UTM-58S (with a carrying capacity noted KN); a Central zone 

between latitudes 7,668,351 and 7,646,970 (KC); a Southern zone below latitude 7,646,970 

(KS). Besides, since Amborella trichopoda is restricted to volcano-sedimentary substrates, we 
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set the carrying capacities of non-volcanosedimentary soil types of Grande Terre at a value 

of 50 haploid individuals. 

Since 3,200 generations BP, adjacent populations have sent migrants with a mean stepwise 

migration rate m and the proportion of emigrants in each cardinal direction has been 

controlled by topography-dependent friction coefficients f. To allow greater flexibility in the 

modelling of landscape-dependent resistance to gene flows, we set a log-bilinear 

relationship between friction coefficients and elevation (see next section): frictions can vary 

more or less significantly as a function of the elevation and in independent magnitudes 

whether the elevations are inferior or superior to an elevation threshold which is defined as a 

random variable. 

The genetic mutation model is a generalized stepwise model for microsatellites (GSM, 

Kimmel and Chakraborty [10]) incorporating two parameters: µ, the raw mutation rate per 

base per generation and α, the shape of the gamma distribution characterizing the 

probability law for the transition scale of microsatellite repeats at each mutational event. 

Bayesian prior distributions for demographic parameters mentioned in the figure are 

summarized in the following Table A hereunder. 
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Table A - Bayesian prior distributions for demographic parameters used in the spatially 

explicit coalescent modelling. 

Parameter Definition 

Prior 

distribution 

function 

Lower 

bound 

Upper 

bound 

Forward expansion modelling 

GROWTHRATE, r Logistic intrinsic growth rate uniform 10-3 10 

MIGRATIONRATE, 

m 

Stepwise intrinsic migration rate 
log-uniform 10-7 1 

SOURCE1.Ne, N1 
Effective size of the ancestral 

population 1  
uniform 100 20,000 

SOURCE2.Ne, N2 
Effective size of the ancestral 

population 2  
uniform 100 50,000 

CARCAP1, KN 
Carrying capacity in the Northern 

zone 
uniform 500 500,000 

CARCAP2, KC 
Carrying capacity in the Central 

zone 
uniform 500 500,000 

CARCAP3, KS 
Carrying capacity in the Southern 

zone 
log-uniform 500 500,000 

MID.ALT, A 
Altitudinal threshold for the log-

bilinear relationship 
uniform 1 1,427 

PLAIN.F.COEF, fp 
Friction coefficient of the lowest 

elevation 

=  𝑥𝑦      with x ~ U(1,105) and 𝑦 ∈
[−1; 0; 1] 

SUMMIT.F.COEF, 

fs 

Friction coefficient of the highest 

elevation 
=  𝑥𝑦        with x ~ U(1,105) and 𝑦 ∈

[−1; 0; 1] 

COORD_1 
Longitude/Latitude coordinates of 

the ancestral population 1 

Randomly sampled among non-

ultramafic pixels 

COORD_2 

Longitude/Latitude coordinate of 

the ancestral population 2 

(with constraint Lat2 ≥ Lat1)* 

Randomly sampled among non-

ultramafic pixels 

Coalescent genetic modelling 

MUTRATE, µ Mean mutation rate log-uniform 10-5 5∙10-3 

GAMMA 
Microsatellite repeat gamma rate 

(generalized stepwise model) 
uniform 0.01 1 

* The geographical system used is the UTM 58S, thus latitude increases towards the north. The 

constraint therefore implies that population 2 will always be north of population 1. 
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1.3.2 Log-bilinear transformation of friction coefficients from a digital 

elevation raster 

 

This section details the log-bilinear transformation we applied to the Digital Elevation Map 

(DEM) of New Caledonia for each simulation to obtain a pattern of resistance to gene flows 

between neighbouring demes. Following SPLATCHE 2.01 conventions, friction coefficients 

are bounded by 0 and 1 and a friction close to 1 reflects a higher resistance to gene flow [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure - Bilinear relationship between friction coefficients and elevation. 

 

Defining: 

Xp, the lowest elevation (fixed; 0 m) 

Xs, the highest elevation (fixed; 1,427 m), 

Xm, the mid-elevation, a random variable:  𝑋𝑚~𝑈(1; 1,427). 

 

The log10-bilinear relationship is defined as: 

 

𝐹(𝑋) = {
10

(
log10 𝐹𝑚−log10 𝐹𝑝

𝑋𝑚−𝑋𝑝
∙(𝑋−𝑋𝑝)+log10 𝐹𝑚)

  𝑖𝑓 𝑋 ≤  𝑋𝑚

10
(

log10 𝐹𝑠−log10 𝐹𝑚
𝑋𝑠−𝑋𝑚

∙(𝑋−𝑋𝑚)+log10 𝐹𝑚)
  𝑖𝑓 𝑋 >  𝑋𝑚

 

 

log10(F)  (friction) 

(Xp,Fp) 

(Xm,Fm) 

(Xs,Fs) 

X (elevation) 

Xm (mid) Xp (plain) Xs (summit) 
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The probability that at generation t, M individuals emigrate from a focal deme to the 

neighbouring deme i (for sake of simplicity in the explanation, we consider two possible 

neighbouring demes) is pi and following SPLATCHE 2.01 conventions: 

𝑝𝑖 =
1

𝑓𝑖 ∑ 1
𝑓𝑗

⁄2
𝑗=1

 

With fi the friction of the neighbouring deme (or pixel) i and j the possible demes 

neighbouring the focal deme. 

If we consider a focal deme with elevation X and two neighbouring demes with respective 

elevations X-ΔX and X+ΔX (with ΔX > 0), the ratio of directional probabilities between both 

neighbouring demes gives the proportion of m emigrants which will be sent more likely ΔX 

m down X than ΔX above. 

 

𝐷 =
𝑝𝑋−∆𝑋

𝑝𝑋+∆𝑋

 

 

From the previous equation, with fX denoting the friction coefficient at elevation X, D 

simplifies into: 

𝐷 =
𝑓𝑋+∆𝑋

𝑓𝑋−∆𝑋

 

 

 

1.3.3 Statistical inferences 

The estimation of sDGM parameters was conducted using 600,000 simulations in an 

Approximate Bayesian Computation (ABC) framework. For each simulation, parameter values 

are drawn from a prior distribution. Simulations produce individual genotypes that we 

summarized by a set of 159 summary statistics using a custom R script (see Table B below 

for further details on the implemented statistics). The ABC procedure approximates the 

likelihood of the parameters by retaining a minute fraction of the whole simulated datasets 

which are the Euclidian closest to the observed (here, 0.5% of the full dataset, corresponding 

to 3,000 accepted simulations) based on the standardized summary statistics. This fraction 

of accepted simulated datasets provides the Bayesian posterior distribution of the 

parameters [11]. Since the ABC procedure is sensitive to the curse of dimensionality [12], we 

performed a dimensionality reduction using neural networks as implemented in the abc 
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package [13] (200 called networks, 20 units in the hidden layer, maximum of 500 iterations 

per network with a weight decay randomly sampled at 10-4, 10-3 and 10-2). Parameters were 

logit transformed, except for the intrinsic growth rate, r, and microsatellite mutation rate, µ, 

since we assumed that their posterior distribution could possibly depart from their prior 

range. 

Table B - Typology of the 159 genetic summary statistics computed for each microsatellite 

polymorphism simulated from the spatially explicit demo-genetic model. 

 Across 

loci 

Averaged 

over loci 

Per 

population 

Over 

populations 

Pairwise 

comparison 

Allelic richness, AE yes yes yes yes no 

Microsatellite repeat 

range, R 

no yes yes yes no 

Expected heterozygosity, 

He 

no yes yes yes no 

Garza-Williamson’s M no yes yes no no 

Goldstein’s (δµ)² no yes no no yes 

FST no yes no yes yes 

 

 

1.3.4 Accuracy of parametric estimation 

We evaluated the parameter estimation accuracy around the previously estimated parameter 

values in ABC by performing 100 local leave-one-out cross-validations. We used the same 

ABC procedure as above, however, to limit computation burden, we reduced the number of 

neural networks to 50 and the number of units in the hidden layer to 10. To evaluate the 

discrepancy between the true parameter values and their mean posterior estimates, we 

computed the mean-standardized root-mean-square error (SRMSE) and the great-circle 

distance for the geographical parameters (locations). 

 

1.3.5 Posterior predictive check 

To further assess whether the posterior model reproduced genetic datasets close to the 

observed one, we performed a predictive model check by simulating 2,850 datasets from the 

fitted model using the adjusted posterior distributions for each parameter. We performed a 

goodness-of-fit test by assessing whether each observed summary statistic fell within the 

range of the posterior predictive distribution. To do so, we computed an empirical one-sided 
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p-value for each summary statistic, i.e. the fraction of predictive values that are above the 

observed value (or below, if the observed value lay on the left side of the predictive 

distribution). To estimate the number of observed summary statistics which falls within the 

corresponding posterior predictive distributions, we computed the fraction of summary 

statistics which have a p-value superior to α = 5%. 

 

 

1.3.6 Test of robustness for the inferred locations of expansion origins 

 

1.3.6.1 Robustness to the age of expansion onset (Ti) and of divergence (Td) 

 

Method. Based on the posterior adjusted model, we relaxed the age of expansion onset 

𝑇𝑒~ log10 𝑈 (150; 104) and the divergence age as 𝑇𝑑~𝑇𝑒 + log10 𝑈 (125; 104) (times are given in 

generation). We generated 200 pseudo-observed datasets (PODs) for ABC cross-validations 

(same procedure as for the aforementioned LOOCV). 

 

Results. 

 

Posterior density of the expansion origins. White dots represent the true locations of 

expansion origins. 
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Table - Great-circle error distances (GCED, in kilometres) between true and estimated 

locations of South and North expansion origins, estimated with 200 cross-validations. 

 

GCED South (km) GCED North (km) 

Mean 6.25 16.77 

Median 5.53 15.64 

Standard Dev 7.08 9.29 

 

Conclusion. We are able to recover the locations of the expansion origins whatever the age 

of expansion onset or the duration of the pre-expansion bottleneck period (within their prior 

ranges). The estimation of the expansion origin coordinates seems robust to the variation of 

these two temporal parameters. 

 

1.3.6.2 Robustness to the delimitation of the carrying capacity zones 

 

Method. Based on the posterior adjusted model, we tested the impact that carrying capacity 

delineation could entail on the inference, by setting 𝐾𝑁 = 𝐾𝐶 = 𝐾𝑆 with  𝐾𝑁~ log10 𝑈(100; 5 ∙ 105). 

This model assumes therefore a complete homogeneity of the carrying capacities across New 

Caledonia. We generated 200 pseudo-observed datasets (PODs) for ABC cross-validations 

(same procedure as for the aforementioned LOOCV). 

 

Results. 
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Figure - Posterior density of the expansion origins. White dots represent the true locations 

of expansion origins. 

 

Table - Great-circle error distances (GCED, in kilometres) between true and estimated 

locations of South and North expansion origins, estimated with 200 cross-validations. 

 

GCED South (km) GCED North (km) 

Mean 8.24 27.33 

Median 6.19 26.20 

Standard Dev 6.73 9.76 

 

Conclusion. Homogenising the carrying capacities does not change significantly the 

inference of the locations of expansion origins (we may detect a slight bias for the North 

origin), but the geographical separation of the two origins is less marked. We expect 

therefore the inference of origin coordinates to be robust to the prior properties (zonal vs. 

homogeneous pattern) of the carrying capacity map. 

 

1.3.6.3 Number of expansion origins: single origin 

 

Our spatial model implements two independent expansion origins. How would the inference 

behave with this model, when we had a single expansion origin instead? 
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Method. Based on the posterior adjusted model, we generated 200 PODs assuming a single 

expansion origin, located in the South (white dot in the figure below). We performed ABC 

cross-validations (same procedure as for the aforementioned LOOCV), based on the model 

assuming 2 expansion origins. 

 

Results. 

 

Figure - Posterior density of the expansion origins. The white dot represents the true 

locations of the single expansion origin. 

 

Conclusion. In the case where we simulate one single expansion origin, the model is still 

able to recover this origin with a narrow posterior spatial extent. Implementing two origins 

in the model does not appear to bias the inference if there were actually a single expansion 

origin. 

 

1.3.6.4 Number of expansion origins: three origins 

 

How would the inference behave with the 2-origin model, when we had an actual three-

expansion origins? 

 

Method. Based on the posterior adjusted model, we generated 200 PODs assuming three 

expansion origins: two correspond to the posterior coordinate estimates and an additional 
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origin was located at Ponandou (white dots in the figure below). We performed ABC cross-

validations (same procedure as for the aforementioned LOOCV), based on the model 

assuming 2 expansion origins. 

 

Results. 

 

Figure - Posterior density of the expansion origins. White dots represent the true locations 

of the three expansion origins. 

 

Conclusion. In the case where we simulate three expansion origins, the two-origin model 

seems to expand the northern inferred density. The northern distribution almost captures 

the three said origins. Hence, implementing only two origins widens the confidence interval 

of the inference in the model but does not seem to significantly bias the estimated 

distribution of expansion origins. 
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1.4 Species Distribution Modelling (SDM) 

 

To compare our genetic model-based predictions of past distributions to more classical 

correlative species distribution modelling, we modelled habitat suitabilities for Amborella 

trichopoda in New Caledonia under different ages of the past—mid-Holocene (~6,000 BP) 

and the Last Glacial Maximum (LGM, ~18,000 BP)—by projecting the current distribution 

model of Amborella trichopoda as determined by Poncet et al. [14] under paleoclimate 

conditions. Paleo-distribution projection was performed with the MaxEnt software package 

[15]. 

 

1.4.1 Discretization of paleo-occurrence probabilities 

Continuous logistic probabilities of paleo-occurrence were discretized into three categories: 

unlikely presence for probabilities below the maximum training sensitivity plus specificity 

cut-off (0.293), likely presence for probabilities above the equal training sensitivity and 

specificity cut-off (0.379) and probable presence for probabilities in-between. The cut-off 

values are derived from the MaxEnt receiver operating characteristic curve computed by 

Poncet et al. [14]. 
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