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Abstract. Even the support vector machine (SVM) has been proposed
to provide a good generalization performance, the classification result
of the practically implemented SVM is often far from the theoretically
expected level because their implementations are based on the approx-
imated algorithms due to the high complexity of time and space. To
improve the limited classification performance of the real SVM, we pro-
pose to use the SVM ensembles with bagging (bootstrap aggregating).
Each individual SVM is trained independently using the randomly chosen
training samples via a bootstrap technique. Then, they are aggregated
into to make a collective decision in several ways such as the major-
ity voting, the LSE(least squares estimation)-based weighting, and the
double-layer hierarchical combining. Various simulation results for the
IRIS data classification and the hand-written digit recognitionshow that
the proposed SVM ensembles with bagging outperforms a single SVM in
terms of classification accuracy greatly.

1 Introduction

The support vector machine is a new and promising classification and regression
technique proposed by Vapnik and his group at AT&T Bell Laboratories [1]. The
SVM learns a separating hyperplane to maximize the margin and to produce a
good generalization ability [2]. Recent theoretical research work has solved the
existing difficulties of using the SVM in practical applications [3, 4]. By now,
it has been successfully applied in many areas, such as the face detection, the
hand-writing digital character recognition, and the data mining, etc.

However, the SVM has two drawbacks. First, since it is originally a model
for the binary-class classification, we should use a combination of SVMs for the
multi-class classification. There are methods for combining binary classifiers for
the multi-class classification [6, 7], but when it has been applied to SVM, the
performance has not seemed to improve as much as in the binary classification.
Second, since learning SVM is time-consuming for a large scale of data, we
should use some approximate algorithms [2]. Using the approximate algorithms
can reduce the computation time, but degrade the classification performance.

To overcome the above drawbacks, we propose to use the SVM ensembles.
We expect that the SVM ensemble can improve the classification performance
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greatly than using a single SVM by the following fact. Each individual SVM has
been trained independently from the randomly chosen training samples and the
correctly- classified area in the space of data samples of each SVM becomes lim-
ited to a certain area. We can imagine that a combination of several SVMs will
expand the correctly-classified area incrementally. This implies the improvement
of classification performance by using the SVM ensemble. Likewise, we also ex-
pect that the SVM ensemble will improve the classification performance in case
of the multi-class classification.

The idea of the SVM ensemble has been proposed in [8]. They used the
boosting technique to train each individual SVM and took another SVM for
combining several SVMs. In this paper, we propose to use the SVM ensemble
based on the bagging technique where each individual SVM is trained over the
randomly chosen training samples via a bootstrap technique and the indepen-
dently trained several SVMs are aggregated in various ways such as the majority
voting, the LSE-based weighting, and the double-layer hierarchical combining.

This paper is organized as follows. Section 2 describes the theoretical back-
ground of the SVM. Section 3 describes the SVM ensembles, the bagging method
and three different combination methods. Section 4 shows the simulation results
when the proposed SVM ensemble are applied to the classification problems such
as the IRIS data classification and the hand-written digit recognition.Finally, a
conclusion is drawn.

2 Support Vector Machines

The classical emprical risk minimization approach, which determines the classi-
fication decision function by minimizing the empirical risk as

R =
1
l

L∑

i=1

|f(xi)− yi|, (1)

where L and f are the size of examples and the classification decision func-
tion, respectively. For SVM, determining an optimal separating hyperplane that
gives low generalization error is the primary concern. Usually, the classification
decision function in the linearly separable problem is represented by

fw,b = sign(w · x + b). (2)

In SVM, the optimal separating hyperplane is determined by giving the largest
margin of separation between different classes. This optimal hyperplane bisects
the shortest line between the convex hulls of the two classes. The optimal hy-
perplane is required to satisfy the following constrained minimization as

Min :
1
2
wT w,

yi(w · xi + b) ≥ 1. (3)
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For the linearly non-separable case, the minimization problem needs to be mod-
ified to allow the misclassified data points. This modification results in a soft
margin classifier that allows but penalizes errors by introducing a new set of
variables ξli=1 as the measurement of violation of the constraints.

Min :
1
2
wT w + C(

L∑

i=1

ξi)k,

yi(wTϕ(xi) + b) ≥ 1− ξi, (4)

where C and k are used to weight the penalizing variables ξi, ϕ(·) is a nonlinear
function which maps the input space into a higher dimensional space. Minimizing
the first term in Eq.(4) is corresponding to minimizing the VC-dimension of
the learning machine and minimizing the second term in Eq.(4) controls the
empirical risk. Therefore, in order to solve problem Eq.(4), we need to construct
a set of functions, and implement the classical risk minimization on the set of
functions. Here, a Lagrangian method is used to solve the above problem. Then,
Eq.(4) can be written as

Max : F (∧) = ∧ · 1− 1
2
∧ ·D∧ ,

∧ · y = 0;∧ ≤ C;∧ ≥ 0, (5)

where ∧ = (λ1, ..., λL),D = yiyjxi ·xj . For the binary classification, the decision
function Eq.(2) can be rewritten as

f(x) = sign(
l∑

i=1

yiλ
∗
i (x) + b

∗)). (6)

where λ∗i (x) = λiyiK(x,xi), and K(x,xi) = φ(x)φ(xi). ( K(x,xi) can be sim-
plifed by the kernel trick [9]. )

For the multi-class classification, we can extend the SVM in the following two
ways. One method is called the “one-against-all” method [6], where we have as
many SVMs as the number of classes. The ith SVM is trained from the training
samples where some examples contained in the ith class have ”+1” labels, and
other examples contained in the other classes have ”-1” labels. Then, Eq.(4) is
modified into

Min : F (∧) =
1
2
(wi)T wi + C(

L∑

t=1

(ξi)t)k

yi((wi)Tϕ(xt) + bi) ≥ 1− (ξi)t, if xi ∈ Ci,

yi((wi)Tϕ(xt) + bi) ≤ 1− (ξi)t, if xi ∈ C̄i,

(ξi)t > 0, i = 1, ..., L, (7)
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where Ci is the set of data of class i. The decision function of (7) becomes

f(x) = sign( Max
j∈1,2,...,C

((wj)T · ϕ(xj) + bj)), (8)

where C is the number of the classes.
Another method is called the one-against-one method [7]. When the number

of classes is C, this method constructs C(C − 1)/2 SVM classifiers. The ijth
SVM is trained from the training samples where some examples contained in
the ith class have ”+1” labels and other examples contained in the jth class
have ”-1” labels. Then, Eq.(4) is modified into

Min : F (∧) =
1
2
(wij)Twij + C(

L∑

t=1

(ξij)t)k

yt((wij)Tϕ(xt) + bij) ≥ 1− (ξij)t, if xt ∈ Ci,

yt((wij)Tϕ(xt) + bij) ≤ 1− (ξij)t, if xt ∈ Cj ,

(ξij)t > 0, t = 1, ..., L.

(9)

The class decision in this type of multi-class classifier can be performed in the
following two ways. The first decision is based on the “Max Wins” voting strat-
egy, in which C(C −1)/2 binary SVM classifiers will vote for each class, and the
winner class having the maximum votes is the last classification decision. The
second method uses the tournament match, which reduces the classification time
to the log scale.

3 Support Vector Machine Ensemble

An ensemble of classifiers is a collection of several classifiers whose individual
decisions are combined in some way to classify the test examples [10]. It is known
that an ensemble often shows much better performance than the individual clas-
sifiers that make it up. Hansen et. al. [11] shows why the ensemble shows better
performance than individual classifiers as follows. Assume that there are an en-
semble of n classifiers: {f1, f2, . . . , fn} and consider a test data x. If all the classi-
fiers are identical, they are wrong at the same data, where an ensemble will show
the same performance as individual classifiers. However, if classifiers are different
and their errors are uncorrelated, then when fi(x) is wrong, most of other classi-
fiers except for fi(x) may be correct. Then, the result of majority voting can be
correct. More precisely, if the error of individual classifier is p < 1/2 and the er-
rors are independent, then the probability pE that the result of majority voting is
incorrect is

∑n
k=�n/2� p

k(1−p)(n−k) (<
∑n

k=�n/2�(
1
2 )

k(1
2 )

(n−k) =
∑n

k=�n/2�(
1
2 )

n).
When the size of classifiers n is large, the probability pE becomes very small.

The SVM has been known to show a good generalization performance and
is easy to learn exact parameters for the global optimum[2]. Because of these
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advantages, their ensemble may not be considered as a method for improving
the classification performance greatly. However, since the practical SVM has
been implemented using the approximated algorithms in order to reduce the
computation complexity of time and space, a single SVM may not learn exact
parameters for the global optimum. Sometimes, the support vectors obtained
from the learning is not sufficient to classify all unknown test examples com-
pletely. So, we can not guarantee that a single SVM always provides the global
optimal classification performance over all test examples.

To overcome this limitation, we propose to use an ensemble of support vec-
tor machines. Similar arguments mentioned above about the general ensemble
of classifiers can also be applied to the ensemble of support vector machines.
Figure 1 shows a general architecture of the proposed SVM ensemble. During
the training phase, each individual SVM is trained independently by its own
replicated training data set via a bootstrap method explained in the Section
3.1. All constituent SVMs will be aggregated by various combination strategies
explained in the Section 3.2. During the testing phase, a test example is applied
to all SVMs simultaneously and a collective decision is obtained based on the
aggregation strategy.

On the other hand, the advantage of using the SVM ensemble over a single
SVM can be achieved equally in the case of multi-class classification. Since the
SVM is originally a binary classifier, many SVMs should be combined for the
multi-class classification as mentioned in 2.2. The SVM classifier for the multi-

Fig. 1. A general architecture of the SVM ensemble
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class classification does not show as good performance as that for the binary-
class classification. So, we can also improve the classification performance in the
multi-class classification by taking the SVM ensemble where each SVM classifier
is designed for the multi-class classification.

3.1 Constructing the SVM Ensembles Using Bagging

In this work, we adopt a bagging technique [12] to construct the SVM ensemble.
In bagging, several SVMs are trained independently via a bootstrap method and
then they are aggregated via an appropriate combination technique.

Usually, we have a single training set Usually, we have a single training set
TR = {(xi; yi)|i = 1, 2, . . . , l}. But we need K training samples sets to construct
the SVM ensemble with K independent SVMs. From the statistical fact, we need
to make the training sample sets different as much as possible in order to obtain
higher improvement of the aggregation result. For doing this, we often use the
bootstrap technique as follows.

Bootstrapping builds K replicate training data sets {TRB
k |k = 1, 2, . . . ,K}

by randomly resampling, but with replacement, from the given training data
set TR repeatedly. Each example xi in the given training set TR may appear
repeated times or not at all in any particular replicate training data set. Each
replicate training set will be used to train a certain SVM.

3.2 Aggregating Support Vector Machines

After training, we need to aggregate several independently trained SVMs in an
appropriate combination manner. We consider two types of combination tech-
niques such as the linear and nonlinear combination method. The linear combi-
nation method, as a linear combination of several SVMs, includes the majority
voting and the LSE-based weighting. The majority voting and the LSE-based
weighting are often used for the bagging and the boosting, respectively. A non-
linear method, as a nonlinear combination of several SVMs, includes the double-
layer hierarchical combining that use another upper-layer SVM to combine sev-
eral lower-layer SVMs.

Majority Voting Majority voting is the simplest method for combining several
SVMs. Let fk(k = 1, 2, . . . ,K) be a decision function of the kth SVM in the
SVM ensemble and Cj(j = 1, 2, . . . , C) denote a label of the j-th class. Then,
let Nj = #{k|fk(x) = Cj}, i.e. the number of SVMs whose decisions are known
to the jth class. Then, the final decision of the SVM ensemble fmv(x) for a given
test vector x due to the majority voting is determined by

fmv(x) = argmax
j

Nj . (10)
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The LSE-Based Weighting The LSE-based weighting treats several SVMs
in the SVM ensemble with different weights. Often, the weights of several SVMs
are determined in proportional to their accuracies of classifications [13]. Here,
we propose to learn the weights using the LSE method as follows.

Let fk(k = 1, 2, . . . ,K) be a decision function of the kth SVM in the SVM
ensemble that is trained by a replicate training data set ThauB

k = {(x′
i; y

′
i)|i =

1, 2, . . . , L}. The weight vector w can be obtained by wE = A−1y, where
A = (fi(xj))K×L, and y = (yj)1×L. Then, the final decision of the SVM ensem-
ble fmv(x) for a given test vector x due to the LSE-based weighting is determined
by

fLSE(x) = sign(w · [(fi(x))K×1]) (11)

The Double-Layer Hierarchical Combining We can use another SVM to
aggregate the outputs of several SVMs in the SVM ensemble. So, this combi-
nation consists of a double-layer of SVMs hierarchically where the outputs of
several SVMs in the lower layer feed into a super SVM in the upper layer. This
type of combination looks similar of the mixture of experts introduced by M.
Jordan et. al. [14].

Let fk(k = 1, 2, . . . ,K) be a decision function of the kth SVM in the SVM
ensemble and F be a decision function of the super SVM in the upper layer.
Then, the final decision of the SVM ensemble fSV M(x) for a given test vector x
due to the double-layer hierarchical combining is determined by

fSV M (x) = F ((f1(x), f2(x), . . . , fK(x))), (12)

where K is the number of SVMs in the SVM ensemble.

3.3 Extension of the SVM Ensemlbe to the Multi-class
Classification

In section 2, we explained two kinds of extension methods such as ”one-against-
all and one-against-one methods” in order to apply the SVM to the multi-class
classification problem. We can use these extension methods equally in the case of
the SVM ensemble for the multi-class classification. For the C-class classification
problem, we can have two types of extensions according to the insertion level
of the SVM ensemble: (1) the binary-classifier-level SVM ensemble and (2) the
multi-classifier-level SVM ensemble.

The binary-classifier-level SVM ensemble consists of C SVM ensembles in the
case of “one-against-all” method or C(C − 1)/2 SVM ensembles in the case of
“one-against-one” method. And, each SVM ensemble consists of K independent
SVMs. So, the SVM ensemble is built in the level of binary classifiers. We obtain
the final decision from the decision results of many SVM ensembles via either
the “Max Wins” voting strategy or the tournament match.

The multi-classifier-level SVM ensemble consists of K multi-class classifiers.
And each multi-class classifier consists of C binary classifiers in the case of
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“one-against-all” method or for C(C−1)/2 binary classifiers in the case of “one-
against-one” method. So, the SVM ensemble is built in the level of multi-class
classifiers. We obtain the final decision from the decision results of many multi-
class classifiers via an appropriate aggregating strategy of the SVM ensemble.

4 Simulation Results

To evaluate the efficacy of the proposed SVM ensemble using the bagging tech-
nique, we have performed three different classification problems such as the IRIS
data classification, the UCI hand-written digit recognition.We used four different
classification methods such as a single SVM, and three different SVM ensem-
bles with different aggregating strategies like the majority voting, the LSE-based
weighting, and the double-layer hierarchical combining.

4.1 IRIS Data Classification

The IRIS data set[15, 16] is one of the best known databases to be found in
the pattern recognition literature. The IRIS data set contains 3 classes where
each class consists of 50 instances. Each class refers to a type of IRIS planet.
One class is linearly separable from the other classes but they are not linearly
separable from each other.

We used the one-against-one method for the multi-class extension and took
the binary-classifier-level SVM ensemble for the classification. So, for the 3-class
classification problem and one-against-one extension method, there are three
binary-classifier-level SVM ensembles (SVMC1,C1, SVMC1,C2, SV MC1,C3)
where each SVM ensemble consists of 5 independent SVMs. The final decision
are obtained from the decision results of three SVM ensembles via a tournament
matching scheme. Each SVM used 2-d polynomial kernel function.

We selected randomly 90 data samples for the training set. For bootstrap-
ping, we re-sampled randomly 60 data samples with replacement from the train-
ing data set. We trained each SVM independently over the replicated training
data set and aggregated several trained SVMs via three different combination
methods. We test four different classification methods using the test data set con-
sisting of 60 IRIS data. Table 1 shows the classification results of four different
classification methods for the IRIS data classification.

Table 1. The classification results of IRIS data classification

Method Classification rate

Single SVM 96.73%

Majoirity voting 98.0%

LSE-based weighting 98.66%

Hierarchical SVM 98.66%



Support Vector Machine Ensemble with Bagging 405

4.2 UCI Hand-Written Digit Recognition

We used the UCI hand-written digit data [16]. Some digits in the database are
shown in Figure 2. Among the UCI hand-written digits, we chose randomly 3,828
digits as a training data set and the remaining 1,797 digits as a test data set.
The original image of each digit has the size of 32 × 32 pixels. It is reduced to
the size of 8×8 pixels where each pixel is obtained from the average of the block
of 4 × 4 pixels in the original image. So each digit is represented by a feature
vector with the size of 64× 1.

Fig. 2. Examples of hand-written digits in UCI database

We used one-against-one methods. We constructed a SVM ensemble, con-
siting of 11 SVMs, for one-against-one classification, and used the tournament
scheme for decision. Each SVM used 2-d polynomial kernel function. For bag-
ging, we sampled 2000 data randomly for an individual SVM. We trained each
SVM and combined three methods, such as unweighted voting, weighted voting
(using LSE), and a combining SVM. We applied a single SVM for the compar-
ison. Table 2 shows the performance of a single SVM and bagging SVMs with
three combining methods for the IRIS data classification.

We used the one-against-one method for the multi-class extension and took
the binary-classifier-level SVM ensemble for the classification. So, for the 10-
class classification problem and one-against-one extension method, there are 45
binary-classifier-level SVM ensembles (SVMC0,C1, SV MC0,C2, . . . , SV MC8,C9)
where each SVM ensemble consists of 11 independent SVMs. The final decision
are obtained from the decision results of three SVM ensembles via a tournament
matching scheme. Each SVM used 2-d polynomial kernel function.

For bootstrapping, we re-sampled randomly 2,000 digits samples with re-
placement from the training data set consisting of 3,828 digit samples. We trained
each SVM independently over the replicated training data set and aggregated
several trained SVMs via three different combination methods. We test four dif-
ferent classification methods using the test data set consisting of 1,797 digits.



406 Hyun-Chul Kim et al.

Table 2 shows the classification results of four different classification methods
for the hand-written digit data classification.

Table 2. The classification results of UCI hand-written digit recognition

Method Classification rate

Single SVM 96.99%

Majority voting 97.55%

LSE-based weighting 97.82%

Hierarchical SVM 98.01%

5 Conclusion

Usually, the practical SVM has been implemented based on the approximation
algorithm to reduce the cost of time and space. So, the obtained classification
performance is far from the theoretically expected level of it. To overcome this
limitation, we addressed the SVM ensemble that consists of several indepen-
dently trained SVMs. For training each SVM, we generated many replicated
training sample sets via the bootstrapping technique. Then, all independently
trained SVMs over the replicated training sample sets were aggregated by three
combination techniques such as the majority voting, the LSE-based weighting,
and the double-layer hierarchical combining.

We also extended the SVM ensemble to the multi-class classification problem:
the binary-classifier-level SVM ensemble and the multi-classifier-level SVM en-
semble. The former did build the SVM ensemble in the level of binary classifiers
and the latter did build the SVM ensemble in the level of multi-class classifiers.
The former had C SVM ensembles in the case of “one-against-all” method or
C(C − 1)/2 SVM ensembles in the case of “one-against-one” method. And, each
SVM ensemble consisted of K independent SVMs. The latter consisted of K
multi-class classifiers. And each multi-class classifier consists of C binary classi-
fiers in the case of “one-against-all” method or for C(C − 1)/2 binary classifiers
in the case of “one-against-one” method.

We evaluated the classification performance of the proposed SVM ensemble
over three different multi-class classification problems such as the IRIS data clas-
sification, the hand-written digit recognition. The SVM ensembles outperform
a single SVM for all applications in terms of classification accuracy. For three
different aggregation methods, the classification performance is superior in the
order of the double-layer hierarchical combining, the LSE-based weighting, and
the majority voting. In the future, we will consider other aggregation scheme
like boosting for constructing the SVM ensemble.
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