S1 Appendix. Theoretical power spectrum.

The solution of

$$
\begin{equation*}
\hat{\boldsymbol{L}}(\partial / \partial t) \boldsymbol{Y}(t)=\boldsymbol{A} \boldsymbol{Y}(t)+\boldsymbol{B} \boldsymbol{Y}\left(t-\tau_{T C}\right)+\boldsymbol{C} \boldsymbol{Y}\left(t-\tau_{C T}\right)+\boldsymbol{\xi}(t) \tag{1}
\end{equation*}
$$

for $t \rightarrow \infty$ is

$$
\begin{equation*}
\boldsymbol{Y}(t)=\int_{-\infty}^{\infty} \boldsymbol{G}\left(t-t^{\prime}\right) \boldsymbol{\xi}\left(t^{\prime}\right) d t^{\prime} \tag{2}
\end{equation*}
$$

with the matrix Green's function $\boldsymbol{G} \in \mathbb{R}^{N \times N}$. Substituting Eq (2) into Eq (1) leads to

$$
\begin{equation*}
\hat{\boldsymbol{L}}(\partial / \partial t) \boldsymbol{G}(t)=\boldsymbol{A} \boldsymbol{G}(t)+\boldsymbol{B} \boldsymbol{G}\left(t-\tau_{T C}\right)+\boldsymbol{C} \boldsymbol{G}\left(t-\tau_{C T}\right)+\mathbf{1} \delta(t), \tag{3}
\end{equation*}
$$

with the unitary matrix $1 \in \mathbb{R}^{N \times N}$. Applying the Fourier transform

$$
\begin{equation*}
\boldsymbol{G}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tilde{\boldsymbol{G}}(\omega) e^{i \omega t} d \omega \tag{4}
\end{equation*}
$$

yields

$$
\begin{equation*}
\tilde{\boldsymbol{G}}(\omega)=\frac{1}{\sqrt{2 \pi}}\left[\boldsymbol{L}(\omega)-\boldsymbol{A}-\boldsymbol{B} e^{-i \omega \tau_{T C}}-\boldsymbol{C} e^{-i \omega \tau_{C T}}\right]^{-1} \tag{5}
\end{equation*}
$$

The power spectral density matrix $\boldsymbol{P}(\omega)$ of $\boldsymbol{Y}(t)$ is the Fourier transform of the auto-correlation function matrix $\left\langle\boldsymbol{Y}(t)^{t} \boldsymbol{Y}(t-T)\right\rangle$ (Wiener-Khinchine Theorem) leading to

$$
\boldsymbol{P}(\omega)=2 \kappa \sqrt{2 \pi} \tilde{\boldsymbol{G}}(\omega) \tilde{\boldsymbol{G}}^{\top}(-\omega)
$$

Finally, by virtue of the specific choice of external input to the j-th element of the activity variable, the power spectrum of i-th element just depends on one matrix component of the matrix Green's function by

$$
\begin{equation*}
P_{i}(\omega)=2 \kappa \sqrt{2 \pi}\left|\tilde{G}_{i, j}(\omega)\right|^{2} \tag{6}
\end{equation*}
$$

