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1. In-silico line shape simulation. EXCEL spreadsheets were programmed to simulate basic 

line shapes. For Gaussian lines, the following equation was used:  

  !"#$!%
"
&!'"!( )*

*" *                                                                   S-1 

 

where I! = intensity of digital point k of the water 1H NMR resonance, from k = 1 to k = m; m = 

total number of digital points making up the used spectral line; h = height of the curve's peak; 

δ!  = chemical shift of digital point k of the water 1H NMR resonance, from k = 1 to k = m; δ!  = 

chemical shift of the water 1H NMR resonance corresponding to temperature T at the center of 

the Gaussian line; σ = standard deviation controlling the width of the Gaussian line, with 

σ = !"
!  ×   (!"#!)

 and LW = line width [ppm] corresponding to 7.5 Hz.  

For "asymmetric" Gaussians (Fig. 3 C), LW = 7.5 Hz for (δ! − δ!)   >   0, and LW = 15 Hz for 

(δ! − δ!)   <   0. Chemical shifts δ! were 4.6918, 4.6648 and 4.6378 ppm for 32.0, 34.5 and 37.0 

°C, respectively. To simulate full 1H NMR spectra with 8 k data points, δ! was varied in 8192 

equidistant steps between 10.995 and −1.003 ppm (intervals of 0.0014648 ppm). For h, 

relatively high values were chosen to ensure that n >> m, as explained elsewhere 1: h = 10000 

for the maximum at 37 °C (unimodal, bimodal and trimodal distributions), and h = 2500 and 5000 

for maxima at 32.0 and 34.5 °C, respectively, for bimodal and trimodal distributions. The latter 

were constructed by superimposing Gaussians with the corresponding temperature maxima and 

h values (Figs. 1 A - F, and 3 D,E). 

For Lorentzian lines, the following equation was used:   

 

I! =
!

(!!!!!!"/! )
!  !  !

                                                      eq. S-2 

 

with parameter values as given above for Gaussians (unimodal distribution only).  

 

2. Further algorithms and equations for statistical descriptors of thermal heterogeneity.  

 2.1. Temperature curves as histograms; weighted mean and median temperature.  

In an NMR spectrum presented as a histogram, each curve point is characterized by an 

abscissa value, tk, and a weight, Wk, for k = 1 to k = m (Fig. 2 C). The histogram then reflects the 

relative prevalence of tk values in the measured sample. As indicated in the main body of this 

paper, the weight W = Wk of a particular digital point k in a temperature curve or histogram 
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reflects the relative frequency with which the temperature value represented by this point occurs 

in the measured sample (Fig. 2 C). Wk can be thought of as the sum of (real or hypothetical) 

individual contributions to a given digital point k of the temperature curve. It follows that 

n = W!
!
!!!  is the sum of the weights of all digital points of the temperature curve [39]. By 

analogy to conventional histograms, n can be considered as the (real or hypothetical) total 

number of individual contributions to the temperature frequency distribution, and interpreted as 

being proportional to the total number of equal microscopic sample volume elements 

contributing to the weights Wk of the digital points k of the temperature curve. The following 

equation was used for determining weighted mean temperature: 

 

temp = !!×!!
!
!!!

!!
!
!!!

                                                   eq. S-3 

 

where Wk is the weight of digital point k of the temperature curve, tk is the discrete temperature 

value of digital point k, and m is the number of digital point k of the temperature curve. 

As outlined in the main body, water 1H NMR lineshape distortions caused by factors other than 

temperature have little influence on the resulting temp. In this context, the question of possible 

line shape effects may be raised for reference signals as well. A number of small organic 

molecules may serve as internal references, depending on the application in question. For 

biological tissues, such compounds may be phosphorylcholine (PCho) or N-acetylaspartate 

(NAA), both of which are characterized by methyl singlet positions invariant to temperature. 

Obviously, for extremely inhomogeneous magnetic fields the lineshapes of such reference 

signals would be distorted along with the water signal, which would complicate temperature 

analysis. In this case, alternative correction methods should be considered, as presented below. 

For less distorting magnetic-field inhomogeneities, it is sufficient to calibrate the weighted-

average chemical shift of the reference signal to its set value prior to ppm-to-temperature 

conversion. 
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Figure S-1 :  Determination of the weighted median temperature, temp, of a temperature distribution.  

(A) Weights Wk for temperature distribution curve points tk, from t1 to tm. The first step in temp calculation 

is the determination of cumulated sums CSUM (Eqs. S-4 and S-5), with CSUM m  = W!
!
!!! . 

(B) Section of histogram shown in (A), with additional parameters needed for temp calculation. Δt, interval 

between two adjacent points of the temperature distribution curve. Δt values are constant across the entire 

temperature distribution due to the linear relationship between δ and temperature. Black bars: weights of 

temperatures, as defined in (A). Orange bars: weights of temperatures corrected for discrete vs. binned-

value histogram (t! = t! +
!!
!

). Δm, interval between temp (green vertical line) and the next lower 

temperature after !!
!

 correction (in this example, t!). 

 

Since the median is generally more robust to outliers and extreme values than the mean, small 

foci of atypical temperature values in materials with otherwise "typical" temperature distributions 

will influence the median temperature less than the median temperature. Therefore, depending 

on the purpose of temperature analysis, either temp or temp should be emphasized. Weighted 

median temperature was determined via calculation of cumulative sums CSUM (corresponding 

to cumulative frequencies in histograms) for the weights of the individual temperature curve 

points: CSUM(k) = W!
!
!!! , for all k from k = 1 to k = m. Then, the cumulative sum of weights 
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obtained for the last point of the temperature curve, CSUM(m) = W!
!
!!! , is divided by 2, yielding 

the half-sum CSUM(h) = !"#$(!)
!

. Subsequently, the temperature curve point k whose cumulative 

sum equals the obtained half-sum is identified, i.e., the curve point k for which CSUM(k) =

CSUM(h). The temperature value of curve point k   =   h, i.e.,  tk = th, is defined as the weighted 

median temperature, temp. 

Although this relationship may be directly applied to tk defined in the main part of this report, 

two adjustments are needed to obtain correct  temperature values for h and, subsequently, 

accurate temp values1. First, the algorithm described above has originally been established for 

frequency distributions based on binned measurement of continuous parameters, as outlined in 

this report. In this context, the cumulative sum of each bin k includes all observations from 

parameter interval 1 through parameter interval k. By contrast, our temperature histograms are 

not based on continuous-parameter measurements that are assigned to bins because each 

point k represents a discrete temperature value. In fact, a tk value can be defined as a distinct 

data point (Fig. 2 C) located at the center of a conventional bin interval xk (Fig. 2 A). For this 

reason, the temperature values tk used for the identification of temp as described in the previous 

paragraph (Figs. S-1 A and B, black bars), need to be corrected by adding to each tk one half of 

Δ! = (t!!!   −    t!), i.e., the distance to the next curve point, such that t! =    t! +
!!
!
= t! +

!
!
(t!!!   −

  t!) (Fig. S-1 B, orange bars). Second, in most real-world cases none of the points k  represented 

by a t! value possesses a cumulative sum CSUM(k) that is exactly equal to the half-

sum,  CSUM(h). Instead, there will be two adjacent points, k = kh and (k − 1) = (kh−1), that 

possess cumulative sums such that CSUM(kh−1) < CSUM(h) < CSUM(kh). In other words, the 

exact median temperature will lie between these adjacent temperature curve points and can be 

interpolated based on the differences between the half-sum CSUM(h) on the one hand, and each 

of the cumulative sums, CSUM(kh−1) and CSUM(kh), on the other. Consequently, the equation 

to be used for the calculation of the weighted median temperature is 

 

temp = t!"!! + Δ! = t!"!! + (t!" − t!!!!)×f!"# ,                                eq. S-4 

 

where t!" is the temperature value of curve point kh possessing the cumulative sum CSUM(kh); 

t!"!! is the temperature value of curve point (kh−1) possessing the cumulative sum 

CSUM(kh−1); and f!"# is an interpolation factor defined as 
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fint = [CSUM(h) − CSUM(kh−1)] / [CSUM(kh) − CSUM(kh−1)]                         eq. S-5 

 

It is evident that temp = t!" in the limit where CSUM(kh) = CSUM(h). Likewise, temp = t!"!! in 

the limit where CSUM(kh−1)= CSUM(h). 

 

 2.2. Temperature skewness, kurtosis and entropy. Our equations for skewness and 

kurtosis calculation were adopted from the statistics module of the EXCEL spreadsheet and 

adapted to temperature distributions: 

      temperature  skewness = G1!"#$ =
!

!!! !!!
!!!!"#$

!

!
!
!!!                                     eq. S-6 

 

            =
n

n − 1 n − 2
W!

t! − temp
s

!!

!!!

 

 

temperature  kurtosis =   G2!"#$ =
! !!!

!!! !!! !!!
!!!!"#$

!

!
!
!!! − ! !!! !

!!! !!!
            eq. S-7 

=
n n + 1

n − 1 n − 2 n − 3
W!

t! − temp
s

!

−
3 n − 1 !

n − 2 n − 3

!

!!!

 

 

with  s = !!!!"#$ !!
!!!

!!!
                                       eq. S-8 

    = !! !!!!"#$ !!
!!!

!!!
       

 

and    n = W!
!
!!! ,                                        eq. S-9 

 

where s is the nominal standard deviation, a parameter analogous to the standard deviation of 

the mean based on individual observations; tl is the temperature value of the l-th (real or 

hypothetical) individual contribution to the measured temperature distribution; l is a parameter 

analogous to the index that counts individual observations in conventional skewness and 
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kurtosis calculation, from l = 1 to l = n. As pointed out elsewhere in more detail, skewness and 

kurtosis become independent of n for n greater than several times the number of digital points m 

1. Therefore, to obtain consistent results it is sufficient to scale the weights W! such that n is 

much greater than m (W! is typically on the order of several thousand or higher).  

The interpretation of temperature profiles in terms of skewness and kurtosis is straightforward, 

based on the definitions presented above and in the main body. Skewness > 0 indicates a 

higher prevalence of high-temperature vs. low-temperature sample volumes. This implies that 

the low-temperature (< mean temperature) sample volume fraction consists of regions whose 

temperature values vary little and are close to the mean, while there is a relatively large 

temperature variability within the high-temperature sample volume fraction. The opposite applies 

to distributions with skewness < 0. For kurtosis > 0, a considerable proportion of the sample 

volume has temperature values that fall within a very narrow range around the center of the 

temperature distribution, while the residual sample volume has temperature values that are 

spread over a large range beyond the center (tail-heavy temperature distribution). By contrast, 

for kurtosis < 0 the bulk of the sample volume has temperature values distributed over a 

significant range around the mean (flat temperature distribution), but very little sample volume 

has extreme temperature values (shoulder-heavy temperature distribution). Accordingly, both 

skewness and kurtosis are parameters useful for characterization of temperature heterogeneity. 

 

When the concept of entropy is applied to the analysis of the weights Wk of a temperature 

distribution,  

 

temperature  entropy =   H!"#$(W) = H! = − !!
!!

!
!!!

log!
!!
!!

!
!!!

!
!!!  ,                   eq. S-10 

 

where b = 2 is used by convention. Equation S-10 is based on the classical definition of 

standard entropy, Hs, as described in the main part of this work. However, the standard entropy 

of a particular distribution of parameter values depends on the number, m, of parameter values. 

Therefore, if entropies of distributions with significantly different numbers of parameter values 

are to be compared, it is meaningful to normalize each entropy value with respect to the number 

of underlying parameter values, according to the following equation: 
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H! = H!/log! k  ,                                                 eq. S-11 

 

where Hn is the normalized entropy. 

 

 2.3. Temperature modes, ranges and volume regions. In the presence of major 

temperature differences, more than two or three separate modes can potentially be detected. In 

the opposite case, i.e., when the temperature difference between two volume regions is on the 

order of 2.5 °C or smaller, it will be difficult to clearly separate modes in temperature curves 

derived from standard water 1H NMR spectra. Instead, temperature "maxima" may appear as 

shoulders on broad lines, but can still be used to characterize temperature heterogeneity. 

Relatively flat temperature distributions that do not possess well-defined modes may be 

frequently found in practical situations, but cannot be mimicked easily in silico or in vitro. 

However, well-defined unimodal or oligomodal distributions are amenable to illustrating our 

paradigm and demonstrating the basic proof of principle.  

Quantitative characterization of temperature distributions with multiple distinguishable 

temperature ranges can be achieved by calculating or estimating the overall physical sizes of 

these regions. Since the temperature curves are based on NMR spectra, the area under a 

temperature curve is, under appropriate measurement conditions, proportional to the amount of 

the compound measured. For this reason, we suggest to use 1H NMR-derived temperature 

curves to quantify overall volume regions defined by specific temperature values. Relative sizes 

of individual areas under a particular temperature curve can be obtained as a result of (i) fitting 

of multiple analytical curves in some favorable cases, or (ii) integration over defined temperature 

ranges. The relative areas (e.g., area ratios) calculated in this way directly yield the 

corresponding relative volumes, provided that the free-water content does not vary significantly 

across the regions studied. To obtain accurate area ratios by integration (ii), intensities of curve 

points are summed over chosen temperature ranges. Fitting of multiple analytical functions with 

Gaussian/Lorentzian line shapes can be achieved with conventional NMR spectrometer 

software. Although the latter procedure is frequently referred to as "deconvolution", it should not 

be confounded with the homonymous mathematical operation also known as "faltung" (folding) 

which is used by us in the context of "deconvolution" for water signal correction (see below). 
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3. Temperature curve processing. A detailed description of the steps involved in the statistical 

analysis of our temperature curves is provided as a document embedded in the EXCEL file 

temp_param_template.xlsx (Supporting Information). The algorithms used were entirely based 

on the equations given in the main body of this paper. The first step included the conversion of 

an NMR spectrum into a temperature distribution curve. This was achieved using the first 

calculation sheet of our EXCEL file, which exclusively consists of two input columns for spectral 

data in ASCII format (one column for the chemical-shift values of the abscissa, and one column 

for the intensity values of the ordinate, i.e., one data pair per digital spectrum point). Relevant 

spectral and temperature ranges were selected interactively, and were verified by inspecting the 

automatically updated ranges in the figure windows of this sheet. Relevant temperature ranges 

were fine-tuned interactively by using the second calculation sheet. This sheet exclusively 

serves to extract the statistical descriptors of temperature value distributions from the 

temperature curves. Multiple modes were identified by inspection of the relevant column as 

described in the manual embedded in the EXCEL spreadsheet. All other statistical descriptors 

were automatically calculated by the programmed algorithms. 

 

4. Correction of temperature curves. In addition to the temperature-dependence of the 

chemical shift of water protons, multiple factors may significantly influence line shapes of 

experimentally determined temperature curves if temperature gradients are very small, i.e., if the 

temperatures occurring within the measured volume vary only by a few degrees Celsius, or less. 

Here, we introduce concepts designed to cancel out these spurious effects. The feasibility of our 

approach is demonstrated below; its full implementation, as well as the evaluation of its potential 

and limitations are an ongoing effort. 

 4.1. Compensation of spurious line shape modifications by using the convolution 

theorem. As outlined in the main body of this manuscript, temperature curves derived from 

water proton NMR spectra may be significantly influenced by effects of T2, T2*, magnetic-field 

inhomogeneity and other factors. All of these define NMR line shape and line width in the 

absence of temperature gradients. In fact, measured "raw" temperature curves can be thought of 

as "true" temperature distribution curves (defined solely by the temperature dependence of δH20) 

combined with concomitant line shape contributions caused by said spurious effects. It is 

therefore possible to correct experimentally obtained raw temperature distribution curves for 

modifications caused by spurious effects. As a first approximation, we propose to use a 
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reference water NMR resonance from the sample in question, at thermal equilibrium. During the 

acquisition of this spectrum, the sample temperature should be close to the average temperature 

of the subsequent measurement(s) to be performed in the presence of temperature gradients. 

The temperature curve(s) derived from the latter experiment(s) should then be corrected by 

taking into account the line shape and line width of the reference spectrum obtained at thermal 

equilibrium.  

The separation of two concomitant contributions to NMR line shapes can be obtained by a 

process known as deconvolution. In physical and mathematical terms, deconvolution of two 

functions in the spectral (frequency) domain corresponds to a division of the corresponding 

functions in the FID (time) domain. In the inverse process, convolution of two functions in the 

time domain corresponds to a multiplication of the corresponding functions in the frequency 

domain. This is a direct consequence of the well-established convolution theorem 2 stating that 

the Fourier transform of the convolution of two functions is equal to the product of their individual 

Fourier transforms, 

 
Figure S-2 :  The modeled raw temperature distribution curve (bottom left, convolved function) is 

deconvolved with a function corresponding to a spectral line obtained in the absence of temperature 

gradients (bottom center, response function) to yield the true temperature distribution curve (bottom right, 

deconvolved signal function). This transformation procedure is equivalent to, and made practically feasible 

by (i) converting the convolved and response functions to their corresponding iFTs (top left and center, 
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respectively); (ii) dividing the iFT of the convolved function by the iFT of the response function (result, top 

right); and (iii) converting the resulting FID to its corresponding spectral line (bottom right) by FT. In 

practice, the top left FID is directly available as a result of the NMR experiment, and does not need to be 

obtained by iFT. Since in this particular in-silico example both the convolved and response functions are 

perfectly Lorentzian, the deconvolved signal is also Lorentzian, as was to be expected based on the 

convolution theorem. The expected (and desired) consequence of this deconvolution procedure is the 

reduced line width of the deconvolved signal (bottom right) when compared with the original signal (bottom 

left). For better visibility, only the initial parts of the FIDs, and the regions around the temperature 

distribution curves (corresponding to water 1H NMR resonances) are shown. 

 

 

 

  

 

     F !!!{ }= F !{ }! F !{ }     eq. S-12 

and, inversely, the Fourier transform of the product of two functions is equal to the convolution of 

their individual Fourier transforms 

     ! F " ! #{ }= F "{ }" F #{ }     eq. S-12 

where ! = signal function, ! = response function, and ℱ  = Fourier transform. 

 

Both convolution and deconvolution are widely applied in high-resolution NMR spectroscopy, in 

particular for spectral filtering (apodization) and resolution enhancement by Lorentzian-Gaussian 

line shape transformation. We suggest to apply an equivalent approach to the deconvolution of 

the raw temperature distribution curve (convolved function, !!" ) with the reference curve 

(response function, ! ). This is to be achieved by dividing the FID acquired in the presence of 

temperature gradients by the inverse Fourier transform (iFT) of the reference spectrum. The 

Fourier transform of the resulting FID is then easily converted to the true temperature distribution 

curve (signal function, ! ) using the algorithms described in the main manuscript. For direct and 

inverse Fourier transform calculations, EXCEL was employed in conjunction with the 

StatPlus:mac module, version v5 (AnalystSoft, Walnut, CA, USA). 

 

The suggested deconvolution procedure is demonstrated in Fig. S-2 for a numerically simulated 

model. In our example, both signal and response functions are Lorentzian. FIDs were modeled 

by exponentially decaying sinusoids, and the corresponding Lorentzians were obtained by 
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Fourier transformation. Note that the FID corresponding to the response function has the form of 

an exponential curve (equivalent to an on-resonance FID). 

 

 4.2. Compensation of the temperature dependence of water spectral line widths. 

The corrections introduced in subsection 4.1. suppose that the response function itself does not 

vary as a function of the temperature. In particular, the effective line shape and line width 

underlying the response function were assumed to be constant. These assumptions are rather 

realistic in cases where the spurious contribution to the measured line shape is determined by 

magnetic-field inhomogeneity. However, in cases where T2 processes related to molecular 

mobility, exchange and/or other factors have a decisive influence on the line width, the line width 

may significantly change with temperature. For many materials, line widths can be measured as 

a function of (homogeneous) sample temperature in separate experiments, and the result of 

these measurements can be included in the mathematical description of the response function. 

The development of appropriate algorithms for these and further sophisticated corrections will be 

included in future projects centered about quantitative characterization of temperature 

heterogeneity by water 1H NMR spectroscopy. 

 

5. Thermal macroheterogeneity vs. microheterogeneity 

 5.1. Principle of intravoxel vs. intervoxel thermal heterogeneity. In the context of this 

study, it is important to distinguish between 'temperature regions' (corresponding to temperature 

ranges) that can be derived from temperature curves, on one hand, and physical regions within 

a sample on the other. The temperature distributions obtained from 1H NMR spectra 

approximate histogram-like temperature profiles. Therefore, they do not contain information on 

the spatial organization of the underlying sample. In particular, no assumptions are made as to 

the physical shapes, sizes or locations of the physical macro or microregions responsible for the 

temperature regions, beyond the trivial fact that, e.g., all physical regions measured in one 

single-voxel 1H NMR experiment are contained within the same macroscopic voxel (voxel = 

volume element). For instance, the appearance of two distinct temperature regions in a 

particular temperature profile may be generated by two large volume regions, each one 

characterized by a distinct characteristic temperature range. However, the same temperature 

distribution pattern may be produced, in principle, by a mixture of a large number of small 

volume regions whose temperature values fall into one of the distinct temperature ranges 
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represented by the temperature profile. In either case, the ratios of volumes characterized by 

different temperature values can be estimated as described above.  

Our technique takes into account thermal heterogeneity independently of its spatial distribution, 

as opposed to heterogeneities based on temperature maps (such as temperature MR imaging 3-

8). One of these currently existing temperature mapping techniques (MRSI-PRF, magnetic 

resonance spectroscopic imaging - proton resonance frequency 8) is based on the same effects 

of temperature on water proton chemical shifts as our new method presented in this work. To 

compare the temperature heterogeneities detectable by our proposed method and by 

temperature maps, it is essential to distinguish between macroscopic thermal heterogeneity 

(macroheterogeneity) and microscopic temperature heterogeneity (microheterogeneity). The 

differing consequences of these two forms of heterogeneity on their detectability by image-based 

and spectroscopy-based temperature measurement techniques are elicited through a 

gedankenexperiment (thought experiment) presented in Figs. S-3 and S-4. Thermal 

microheterogeneity refers to temperature differences between physical microregions that are 

smaller than a voxel underlying a pixel in a temperature map. Thus, several microscopic regions 

with different temperatures may be located inside the same voxel (microheterogeneity = 

intravoxel heterogeneity; Fig. S-4, left panels). Microheterogeneity is undetectable in 

temperature maps because only one pixel value per voxel is obtainable, and this pixel value will 
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Figure S-3 : Thought experiment for thermal macroheterogeneity  

Top left: Cross section of a physical body consisting of macroscopic regions at two different temperatures: 

20 °C (blue area) and 40 °C (red areas). The 20 °C area is twice as large as the two 40 °C areas 

combined. 

Bottom left: Histogram accurately representing the temperature distribution for this model. Blue bar and 

black arrows: 20 °C; red bar and magenta arrows: 40 °C. Relative heights rrel of histogram bars: 2 : 1 (20 

°C bar : 40 °C bar). This distribution can be approximated by a temperature curve derived from a water 1H 

NMR spectrum (green trace; simulated Gaussians).  

Top right: Cross section of the same body, with an overlay showing a pixelation grid as used in digital 

imaging techniques such as MRI. Most pixels are positioned such that they only cover voxels containing 

either 20 °C or 40 °C regions. However, note that several pixels cover voxels each containing both 20 °C 

and 40 °C regions. 

Bottom right: Digital image generated with the pixelation depicted in the top right panel. "Mixed" pixels that 

each represent both 20 °C and 40 °C regions, result in averaged (apparent) temperature values that are 

weighted according to the relative sizes of these regions within each voxel (partial volume effect). The 

number and hue associated with each voxel represent its apparent temperature [°C]. Despite the partial 

volume effect, the digital image permits the distinction of the two 40 °C regions from each other and from 

the 20 °C region, because each of these regions is larger than the pixel size. 

Bottom center: Image-based histogram representing the temperature distribution derived from the 

apparent voxel temperature values for the model (bottom right). The hue of each histogram bar represents 
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the associated apparent temperature. Note the occurrence of a number of histogram bars at intermediate 

temperatures; these artifacts are a result of the partial volume effect but do not represent any actual 

regions within the body volume. The height nrel of each histogram bar is proportional to the number of 

pixels at the effective temperature in question, and is normalized to the corresponding histogram at the 

bottom left. 

 

 

 

usually represent an average temperature value for the entire voxel (Fig. S-4, right panels). 

Although intravoxel temperature gradients may be negligible for (i) small thermal gradients 

throughout the sample and (ii) very small imaging voxels, this would no longer be true for larger 

thermal gradients within the sample and/or moderate spatial resolution as obtained in many 

MRSI-PRF experiments. 

Thermal macroheterogeneity refers to temperature heterogeneity that is detectable in 

temperature maps because it is based on temperature differences between (average) 

temperature values of individual voxels underlying the pixel values in a temperature map 

(macroheterogeneity = intervoxel heterogeneity; Fig. S-3, right panels). Therefore, temperature 

imaging detects macroscopic temperature heterogeneity only (histogram in Fig. S-3, bottom 

center panel). By contrast, our new 1H NMR spectroscopy-based temperature profiles represent 

macroscopic (histogram in Fig. S-3, bottom left panel) and microscopic (histograms in Fig. S-4, 

bottom left panels) temperature heterogeneities combined, as these are indistinguishable. The 

precision of the resulting temperature curves (green traces) may vary as a function of the 

material being studied; it is only limited by lineshape contributions other than temperature-

dependent water proton chemical shift, although much of these spurious effects on linewidths 

can be minimized and/or compensated for by our deconvolution technique (see section 4 

above). In the new statistical temperature profiling method presented in this report, the 

measured voxel comprises the entire volume of interest, unless multivoxel 1H NMR 

spectroscopy is performed which produces one spectrum per voxel (briefly discussed in the 

following subsection). In fact, the issue of macroheterogeneity vs. microheterogeneity is not 

specific to temperature maps, but is common to all voxel-based imaging 1,9. 
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Figure S-4 :  Thought experiment for temperature microheterogeneity  

Top left: Cross section of a physical body consisting of microscopic and macroscopic regions at three 

different temperatures: 20, 30 and 40 °C (blue, magenta and red areas, respectively), with a pixelation 

grid overlay as shown in Fig. S-3, top right. The segment delineated by a green frame only covers pixels 

each of which represents a voxel consisting of microscopic regions of equal sizes at 20, 30 and 40 °C. 

The segment delineated by a red frame covers pixels each of which represents a voxel consisting of 

microscopic regions of equal sizes at 20 and 40 °C. 

Bottom left: Histograms accurately representing the temperature distributions for the green and red-

framed segments (green and red arrows). The hues of the histogram bars match those of the 

corresponding microscopic regions. Relative heights rrel of histogram bars: 1 : 1 : 1 (20 °C bar : 30 °C bar : 

40 °C bar) for the green-framed segment; and 1 : 1 (20 °C bar : 40 °C bar) for the red-framed segment. 

These distributions can be approximated by temperature curves derived from water 1H NMR spectra 

(green traces; simulated Gaussians). 

Top right: Digital image generated with the pixelation depicted in the top left panel. "Mixed" pixels each 

representing equally sized microscopic body regions of 20 °C and 40 °C result in an averaged apparent 

temperature value of 30 °C (partial volume effect), as do "mixed" pixels each representing equal 
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microscopic regions of 20, 30 and 40 °C. The number and hue associated with each voxel represent its 

apparent temperature [°C]. Due to the partial volume effect, the digital image no longer permits the 

distinction of individual regions based on temperature differences within the heterogeneous core of the 

body, because these regions are smaller than the pixel size. The only distinction possible is between the 

periphery (20 °C, genuinely homogeneous temperature) and the core (30 °C, apparently homogeneous 

temperature). 

Bottom right: Image-based histograms representing the temperature for the green and red-framed 

segments in our model, based on apparent voxel temperature values (see green and red arrows). The hue 

of each histogram bar represents its apparent temperature, which is identical to that of the corresponding 

voxels and segments. Note the presence of only one bar in each histogram; this artifact is a result of the 

partial volume effect in this example of microscopic thermal heterogeneity, and may erroneously suggest 

thermal homogeneity within the corresponding voxels and segments of the body volume. The height nrel of 

each histogram bar is normalized to the corresponding histograms at the bottom left. 

 

 

 5.2. Comparison of spectrum-based vs. image-based thermal heterogeneity 

analysis. In our approach to quantifying thermal heterogeneity, all descriptors are based on 

digital points of temperature curves derived from water 1H NMR spectra. A crucial aspect of our 

new paradigm is that these quantitative statistical parameters describe global features of thermal 

heterogeneity within a selected volume. To the best of our knowledge, none of the currently 

available temperature measurement methods provides such descriptors. As opposed to voxel-

based imaging, our spectroscopic approach indiscriminately takes into account both 

macroscopic and microscopic heterogeneity, and allows for very fast measurements. Changes in 

temperature profiles over time can be followed at a rate of several measurements per second, 

but the temporal resolution is ultimately dependent on physicochemical properties of the 

aqueous material to be studied. However, the proposed method can be easily combined with 

one such method that is also based on water 1H NMR (MRSI-PRF). In this way, both statistical 

and spatial information on temperature distribution can be gained from the same sample, 

provided the available NMR instrument is equipped for imaging. In fact, our new method could 

be used to directly analyze water 1H NMR spectra obtained through MRSI-PRF, albeit at the 

expense of temporal resolution. 
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