S3 Table. Summary of Kruskall-Wallis^{*a*} and one-way ANOVA^{*b*} performed to analyze the effect of temperature elevation in studied biomarkers in healthy mussels (from Mundaka) and stressed mussels (from Arriluze) in fall, winter and summer. χ^2 : Chi square; *F*: Fisher's *F*; degrees of freedom are given between brackets; *p*: significance. Significant effects are indicated by bold characters (*p*<0.05).

	Healthy mussel population (Mundaka)			Stressed mussel population (Arriluze)		
	Fall	Winter	Summer	Fall	Winter	Summer
\mathbf{LP}^{a}	$\chi^2_{(4)} = 17.84 p = 0.001$	$\chi^2_{(3)}=2.82$ $p=0.419$	$\chi^{2}_{(4)}=15.05 \ p < 0.001$	$\chi^2_{(4)}=2.52$ $p=0.641$	$\chi^2_{(4)}$ =9.27 p=0.055	$\chi^2_{(4)}=10.00 p=0.040$
$\mathbf{V}\boldsymbol{\nu}_{\mathbf{L}}^{b}$	<i>F</i> _(4,19) =3.89 <i>p</i> =0.018	$F_{(3,9)}=2.63$ $p=0.114$	$F_{(3,10)}$ =14.45 <i>p</i> =0.001	$F_{(4,17)}=0.58$ $p=0.680$	$F_{(4,14)}$ =1.28 p =0.329	$F_{(4,15)}=0.41$ $p=0.797$
$\mathbf{S/V_L}^a$	$\chi^{2}_{(4)} = 4.24 p = 0.374$	$\chi^2_{(3)} = 3.28 p = 0.351$	$\chi^2_{(3)}=10.88$ <i>p</i>=0.012	$\chi^2_{(4)}$ =2.69 p=0.610	$\chi^2_{(4)} = 1.19 p = 0.880$	$\chi^{2}_{(4)}=2.82$ $p=0.588$
$\mathbf{N}\boldsymbol{\nu}_{\mathbf{L}}^{a}$	$\chi^2_{(4)}$ =11.13 <i>p</i> =0.025	$\chi^2_{(3)}$ =6.01 p=0.111	$\chi^2_{(3)}$ =4.36 p=0.225	$\chi^2_{(4)}$ =13.32 <i>p</i> =0.010	$\chi^2_{(4)} = 8.76 p = 0.067$	$\chi^2_{(4)} = 8.92 p = 0.063$
$\mathbf{V} \boldsymbol{v}_{\mathbf{NL}}^{a}$	$\chi^2_{(4)} = 12.71 p = 0.013$	$\chi^2_{(4)} = 5.52 p = 0.238$	$\chi^2_{(3)} = 6.32 p = 0.097$	$\chi^{2}_{(4)}=11.26$ <i>p</i>=0.024	$\chi^2_{(4)} = 2.49 p = 0.646$	$\chi^2_{(4)} = 10.71 p = 0.030$
$\mathbf{V}\boldsymbol{v}_{\mathbf{BAS}}^{b}$	$F_{(4,18)}=3.86$ <i>p</i>=0.020	$F_{(4,19)}=2.59$ $p=0.070$	$F_{(3,16)}$ =8.07 <i>p</i> =0.002	$F_{(4,18)}$ =2.74 p =0.061	$F_{(4,19)}=2.22$ $p=0.105$	$F_{(4,19)}=0.84$ $p=0.516$
\mathbf{MET}^{b}	$F_{(4,18)}=0.80$ $p=0.543$	<i>F</i> _(4,19) =6.53 <i>p</i> =0.002	$F_{(3,16)}=0.80 p=0.510$	$F_{(4,18)}$ =1.45 p =0.259	$F_{(4,19)}$ =1.23 p =0.332	$F_{(4,19)}$ =1.69 p =0.193
\mathbf{MLR}^b	$F_{(4,18)}$ =0.76 p =0.562	$F_{(4,19)}$ =2.45 p =0.082	$F_{(3,16)}=0.12$ $p=0.949$	$F_{(4,18)}$ =11.15 p <0.001	<i>F</i> _(4,19) =4.86 <i>p</i> =0.007	$F_{(4,19)}=0.29$ $p=0.882$
MLR/MET	$PF_{(4,18)}=0.96$ $p=0.453$	$F_{(4,19)}$ =5.91 <i>p</i> =0.003	$F_{(3,16)}=0.37$ $p=0.773$	<i>F</i> _(4,18) =7.82 <i>p</i> =0.001	$F_{(4,19)}=2.79$ $p=0.560$	$F_{(4,19)}=0.65$ $p=0.636$
CTD ratio ^b	$F_{(4,18)}=0.41$ $p=0.798$	<i>F</i> _{(4,19})=7.71 <i>p</i> =0.001	$F_{(3,16)}$ =1.12 p =0.37	$F_{(4,18)}=0.93$ $p=0.470$	$F_{(4,17)}=1.53$ $p=0.237$	$F_{(4,18)}$ =2.76 p =0.059
\mathbf{TAOC}^{b}	$F_{(3,14)}$ =4.32 p =0.024	$F_{(3,15)}$ =4.05 <i>p</i> =0.027	$F_{(2,12)}=0.96$ $p=0.412$	$F_{(3,14)}=2.44$ <i>p</i>=0.180	$F_{(3,15)}=0.94$ $p=0.448$	$F_{(3,15)}$ =1.24 p =0.329
\mathbf{PK}^{b}	$F_{(3,15)}=0.75$ $p=0.542$	$F_{(3,15)}=0.85$ $p=0.489$	$F_{(2,11)}=2.45$ $p=0.131$	$F_{(3,15)}=1.17$ $p=0.354$	$F_{(3,14)}$ =3.07 p =0.063	$F_{(3,16)}=1.09$ $p=0.381$
PEPCK ^b	$F_{(3,14)}=3.65 p=0.039$	$F_{(3,14)}$ =5.22 <i>p</i> =0.013	$F_{(2,11)}=2.91$ p=0.097	$F_{(3,16)}$ =1.74 p =0.200	$F_{(3,14)}=3.1$ $p=0.061$	$F_{(3,15)}=12.48 \ p < 0.001$
PK/PEPCK ^b	<i>F</i> _(3,15) =4.14 <i>p</i> =0.025	<i>F</i> _(3,13) =7.05 <i>p</i> =0.005	$F_{(2,10)}$ =22.71 p <0.001	$F_{(3,15)}=1.15$ $p=0.362$	$F_{(3,15)}=1.01$ $p=0.415$	$F_{(3,15)}=2.87$ $p=0.071$
\mathbf{COX}^b	$F_{(3,14)}$ =1.90 p =0.177	$F_{(3,14)}$ =0.26 p =0.853	$F_{(2,10)}$ =3.30 p =0.079	$F_{(3,15)}=3.30$ p=0.059	$F_{(3,13)}=0.82$ $p=0.506$	$F_{(3,14)}=3.89 p=0.032$
\mathbf{HK}^{b}	$F_{(3,14)}$ =1.84 p =0.186	$F_{(3,15)}=2.06$ $p=0.149$	$F_{(2,11)}=0.12$ $p=0.891$	$F_{(3,15)}=0.89$ $p=0.467$	$F_{(3,13)}$ =5.23 <i>p</i> =0.014	$F_{(3,14)}$ =4.46 <i>p</i>=0.021
\mathbf{GP}^{b}	$F_{(3,12)}=0.45$ $p=0.720$	$F_{(3,14)}$ =1.30 p =0.313	$F_{(2,10)}$ =3.47 p =0.072	<i>F</i> _(3,14) =3.62 <i>p</i> =0.040	$F_{(3,16)}=0.04$ p=0.991	$F_{(3,14)}$ =2.74 p =0.083