
S1 Appendix: Visualisation tools for interpretation of three-
dimensional architecture

Highlighting fibrous structures

It is important to be able to visualise fibrous structure in the myometrium to identify fasciculi,
sheets, and bundles, as previously observed by Young and Hession [6]. While the in silico re-
construction of the myometrium contains these structures, they are not readily observed in three
dimensions, because they are not present in isolation, but, rather, form an intricate network of
fibrous structures which are not readily separated by visual inspection. In order to identify these
structures, portions of the reconstruction were highlighted in a manner that represents the local
fibre direction.

Three forms of highlighting were used: bundle highlighting, which isolates thin strands of the
reconstruction; fasciculus highlighting, which isolates wider strands than the bundle highlighting;
and sheet highlighting, which isolates flat sheet-like structures. These three highlighting methods
were used together to identify the relevant structures, while bundle and fasciculus highlighting
were also used in isolation to view these structures throughout the tissue. When combining the
three methods, the highlighting for a given point depended on the local structure of the tissue,
as illustrated in Fig 1. Each point was classified based on this local structure, and for each
classification a specific set of highlighting points was allocated. These highlighting points were
used as a basis for a recursive expansion of highlighting from a point. Parameter values for the
following are given in Table 1.

Categorising structures

The local structure of the tissue was determined by measuring line lengths along direction vectors,
as follows. For a point p and unit direction vector v, define v̂ to be

v̂ := v/ max
i∈{1,2,3}

vi,

where vi is the ith component of v. The length of the line L+(p, v) along the vector v from p is
defined to be the largest value l1 < lmax such that for all integers l ∈ [0, l1], the weight of the voxel
containing the point

p+ lv̂

is above the minimum weight wmin given in Table 1, where lmax is the length limit given in Table 1.
The length L(p, v) ∈ [0, 2lmax] is thus defined

L(p, v) := L+(p, v) + L−(p, v),

where L−(p, v) = L+(p,−v) is the length in the reverse direction.
Each point in the tissue was classified based on L(p, v) as follows. For a point p with direc-

tion vector v, a sequence {vi}7i=0 of vectors perpendicular to v was selected such that the angle
between vi and vi+1 was 22.5◦ for each i < 7. The length L(p, vi) was measured for each i, and
compared to L(p, v), using the threshold ratio T given in Table 1:

(i) if L(p, vi) ≤ TL(p, v) for all i or L(p, v) < lmin (Table 1), p is classified as a bundle point ;

(ii) if L(p, vi) > TL(p, v) and L(p, vi+4) > TL(p, v) for some i < 4, p is classified as a fasciculus
point ;

(iii) otherwise p is classified as a sheet point.

Classification (i) is used to identify points that are contained within thin or short structures
(Fig 1A), while classification (ii) identifies points that are part of large structures with a roughly
cylindric shape (Fig 1B). Classification (iii) implicitly identifies points in large structures which
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Figure 1: Classifying points as bundle, fasciculus, and sheet points. A: Local structure of bundle
points, characterised by either the fibre width in all directions being much lower than the length or by
a short length. Short structures are automatically included in this definition because characterisation of
the structure based on length-to-width ratio is unreliable due to the short length, and bundle points have
the smallest highlighting set (D), which reflects the small nature of the structure. B: Local structure of
fasciculus points, characterised by large fibre width in two perpendicular directions relative to the fibre
length, giving the impression of a large roughly cylindric structure. C: Local structure of sheet points,
characterised by large fibre width in only one direction relative to the fibre length. D: Area around a
bundle point to be highlighted, given by a line along the fibre direction. E: Area around a fasciculus point
to be highlighted, given by the union of a bundle line (D) and the second order neighbourhood of the
point. F: Area around a sheet point to be highlighted, given by the expanding the width of the bundle
line (D) at each point within the plane shown in E.

are narrow in all but two directions (Fig 1C). Each of the above classifications is assigned a set of
highlighting points associated with the local structure: bundle points are assigned a line of points
along the directions v and−v such that all points in the line have weight above wmin and the line
extends at most l̂ (Table 1) from the original point (Fig 1D). Fasciculi are assigned sets based
on this bundle line: fasciculus points are assigned the union of this line and the second-order
neighbourhood of p (Fig 1E). Sheet points are assigned the set of points based on the bundle line
and the vector u perpendicular to v corresponding to the longest length L: the bundle line is
widened along u up to a radius l̂ such that the width is non-increasing width distance from the
sheet point. An example of a sheet set is shown in Fig 1F.

Parameter Value
lmax 10 voxel lengths
lmin 8 voxel lengths

l̂ 6 voxel lengths
wmin 0.1

Table 1: Parameter values for highlighting structures. One voxel length is approximately 50 µm,
which means that 2lmax, the upper limit on length measurements for identifying structures, is approxi-
mately 1 mm, which is in the range of widths previously observed for fasciculi [2, 6]. Weight is a dimen-
sionless representation of nuclear density and local homogeneity with range [0, 1].
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Figure 2: The effect of various forms of highlighting A: Highlighting of bundle points; B: High-
lighting of fasciculus points; C: Highlighting of sheet points; D: Highlighting of all three structures. The
highlighting category of a point depends on the local structure. The fine structures formed from high-
lighting bundle points (A) are evenly distributed in the tissue. Fasciculus points form larger fibrous
structures (B), and show similar spatial distribution to bundles. Sheet points (C) are most dense toward
the perimetrium (right in the image).

Random seeding

If all structures are rendered, the result is a nearly solid mass. To obtain a graphic that conveys
more insight, a randomly selected portion is visualised. This selection is performed by selecting
seed points at random and highlighting neighbouring points in a recursive fashion, utilising the
previously assigned recursion sets (Fig 1).

For the purpose of selecting seed points, the reconstruction was divided into cuboid volumes,
and in each subvolume a randomly selected voxel was taken as a seed point. If this voxel was
weighted below the minimum weighting, then a new voxel was randomly selected, and this process
of reselection was repeated up to 5 times. Highlighting outward from this seed point p0 was
performed to obtain a set of highlighted points pi using the above assigned sets of points in the
following recursive algorithm:

(i) highlight pi;

(ii) obtain assigned set of highlighting points Si for pi;

(iii) repeat for all points in Si.

The number of iterations of this algorithm was bounded to constrain the amount of tissue high-
lighted. For highlighting of only fasciculi or bundles, the set Si in step (ii) is defined to be the
fasciculus or bundle highlighting set for all points. The dimensions of subvolumes used for selecting
seed points and bound on recursion varied depending on the type of highlighting being performed,
as given in Table 2. The result of these algorithms can be seen in Fig 2.

Network graphs

Whereas the visualisation tools described above are geared to assess a faithful micro-anatomical
representation, it may sometimes be desirable to visualise the underlying topology if the tissue,
in particular, its connectivity structure. This network model of the tissue is generated by using a
watershed algorithm in a similar manner to that used for the segmentation of the tissue presented
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Parameter bundle highlighting fasciculus highlighting combined highlighting
Subvolume x-length 10 30 30
Subvolume y-length 10 30 30
Subvolume z-length 3 10 10
Recursion bound 3 8 4

Table 2: Parameter values for different highlighting types. All lengths are in voxel
lengths (∼ 50 µm). Smaller subvolumes were used in bundle highlighting because the structures were
finer.

in Phase VII. In this case, however, the structures isolated by the watershed algorithm are used to
represent nodes of the network, with watershed boundaries representing the connections between
these nodes. This network representation provides a visualisation of the tissue which enables the
inspection of connectivity between fibres.

The three-dimensional scalar image used as the basis for the watershed algorithm is the weight-
ing image generated in Phase IX. This image has already been segmented to delineate borders
between tissue areas that are not deemed to be electrophysiologically connected To coarse grain the
connected areas, a standard watershed segmentation algorithm was applied to this image, giving
a set of isolated areas in the reconstruction that correspond to nodes in the network representa-
tion. The arcs of the network representation represent connections between these areas: if two
segmented areas shared a watershed boundary, then an arc was drawn between the corresponding
nodes. This process enabled the generation of a basic network representation of the tissue.

Each node in this network corresponds to a cluster of voxels in the reconstructed tissue. For
each node the size, centre of mass, and mean direction of the corresponding cluster were recorded.
Each connecting arc was assigned a weight equal to the largest weight value in the set of border
voxels between the two clusters connected by the arc. These measurements enabled the visualisa-
tion of orientation of the connections relative to fibre direction: the mean direction at two nodes
connected by an arc represents the fibre direction along that arc, which can be compared to the
direction of the arc to determine how close this arc is to the fibre direction. If an arc was closer
than 45◦ to the fibre direction, then it was classified as being along the fibre direction. Otherwise
it was classified as being perpendicular to the fibre direction. This classification presents the net-
work as a set of short straight line segments that either represent fibres (shown in red in Fig 3)
or connections (shown in blue in Fig 3) between them. Additionally, the weighting of each arc
represents the strength of the connection.

Simulating DT MRI

Diffusion tensor magnetic resonance imaging (DT MRI) is often used to determine fibre direction
and anisotropy of smooth muscle tissue [4, 5, 7]. The reconstructions presented here specifically
represent fibre direction, which can be used to simulate DT MRI scans of the reconstructions and
compare them to previous findings. Diffusion tensors represent three-dimensional diffusion, given
as a symmetric positive-definite matrix D, with principal eigenvector along the fibre direction, and
eigenvalues representing relative diffusion along the eigenvectors. Diffusion tensors for individual
voxels of the reconstruction were constructed with principal eigenvector equal to the previously
calculated fibre direction, and eigenvalues estimated based on previous diffusion simulations in the
myometrium [3], given in Table 3. These estimated eigenvalues are applied uniformly to all voxels,
and therefore the fractional anisotropy is also uniform in this representation. To simulate the
effects of DT MRI, this representation was coarse-grained to obtain diffusion tensors and fractional
anisotropy at a similar resolution to previous DT MRI measurements [5]. The reconstruction was
divided into cubes with side 8 voxels (380 µm) and the diffusion tensors were computed for each
of these cubes. Conventional DT MRI computes diffusion tensors by measuring the reduction of
intensity in resonance images when a range of diffusion gradients are applied to the volume [1].
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Figure 3: An example of a network graph of the whole tissue. Red arcs represent connections
along the fibre direction, blue arcs represent connections away from the fibre direction, opacity represents
the weighting of the arcs, nodes of the graph are omitted for ease of visualisation. Top: full network graph
of a rat uterus. Bottom left: detailed view of the box shown in the top panel. Bottom middle: the same
portion with just the arcs corresponding to fibres shown. Bottom right: bundle visualisation of the same
portion of tissue. The arcs representing fibres in the network graph show direct correspondence with the
visible longitudinal bundles in the reconstruction, while also showing arcs representing circular bundles
underneath. Blue arcs connecting these bundles (bottom left) show numerous putative connections along
the length of the bundles. This is true for the tissue in general, as can be seen by the high proportion of
blue arcs in the top panel.

For an initial intensity S0, the intensity of each diffusion gradient image Sk is given by

Sk = S0e
bvT

k Dvk ,

where b is a constant set to 1 for the purposes of this simulation, vk is the diffusion gradient vector
applied to obtain Sk, and D is the diffusion tensor to be found. This is a system of linear equations
that can be solved for D given an initial intensity image S0 with no diffusion and 6 images Sk

with diffusion gradient vectors vk. The gradient vectors selected for simulation here are given in
Table 3. The initial intensity S0 of a cube containing the set of weights {wi} is given as

S0 =
∑
i

wi.

The reduced intensity image Sk for a cube with direction vectors {vi} and corresponding weights {wi}
is given by

Sk = S0 −
∑
i

wi(λlvi · vk + λt(1− (vi · vk)2)1/2),

where λl and λt are given in Table 3. The diffusion tensors obtained from solving the equations
associated with these values are shown in Fig 4. These diffusion tensors are at a resolution (∼
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Parameter Value
λl 0.7
λt 0.3
v0 (1, 1, 0)
v1 (1, 0, 1)
v2 (0, 1, 1)
v3 (−1, 1, 0)
v4 (−1, 0, 1)
v5 (0,−1, 1)

Table 3: Parameter values for simulating DT MRI. The values λl and λt are the estimated eigen-
values of the diffusion tensor in each voxel along the longitudinal and transverse directions respectively.

400 µm) that is comparable to conventional DT MRI, and represent the local diffusion based on
estimated diffusion tensors in the original reconstruction. Additionally, the fractional anisotropy
of a diffusion tensor [1] is given by:

FA =

√
3

2

(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2
〈λ〉

,

where λi are the eigenvalues of the diffusion tensor and

〈λ〉 = λ1 + λ2 + λ3

These methods enable the comparison of the reconstructed tissue with DT MRI scans of similar
tissue samples.
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Figure 4: An example of diffusion tensors found by simulating DT MRI. Left: Direction vectors
in a 760 µm×760 µm×380 µm portion of the reconstructed tissue, pseudocoloured so that each of red,
green, and blue represent orthogonal directions. Right: The diffusion tensors resulting from simulating
DT MRI in the volume on the left, using the same colouring as on the left.
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