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APPENDIX A: Sampling from continuous sample
spaces

If events x are drawn from a continuous sample space Ω = [xmin, xmax], for instance the
magnitude of earthquakes, then the ‘natural order’ of possible events is simply given by
the magnitude x of the observation. Events x are drawn from a continuous power-law
distribution p(z|λ,Ω) = x−λ/Z, with Z = Zλ([xmin, xmax]) (compare Eq. (main 3) first
line).

To work with well defined probabilities we have to bin the data first. Probabilities to
observe events within a particular bin depend on the margins of the W bins
b = (b0, b1, · · · , bW ), with b0 = xmin and bW = xmax. The histogram k = (k1, · · · , kW )
counts the number ki of events x falling into the bin bi > x ≥ bi−1, and the probability
of observing x in the i’th bin is given by

p(i|λ, x) =
b1−λi − b1−λi−1

x1−λmax − x1−λmin

. (1)

Binning events sampled from a continuous distribution may have practical reasons. For
instance data may be collected from measurements with different physical resolution
levels, so that binning should be performed at the lowest resolution of data points
included in the collection of samples. We will not discuss the ML estimator for binned
data in detail but only remark that for given bin margins b it is sufficient to insert
p(i|λ, x) of Eq (1) into Eq. (main 7) with θ = {λ}, to derive the appropriate ML
condition for binned data. An algorithm for binned data r_plhistfit, where we
assume the bin margins bi to be given, is found in [2].

We point out that if margins for binning have not been specified prior to the
experiments, then specifying the optimal margins for binning the data becomes a
parameter estimation problem in itself, i.e. the optimal margins bi have to be estimated
from the data as well. One major source of uncertainty in the estimates of λ from binned
data is related to the uncertainty in choosing the upper and lower bounds xmin and
xmax of the data, i.e. specifying the bounds of the underlying continuous sample space.

Binning becomes irrelevant for clean continuous data for the following reason.
Suppose we fix the sample space [xmin, xmax] and cut this domain into M bins of width
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∆ = (xmax − xmin)/M . Since the data x = {x1, · · · , xN} is drawn from a continuous
sample space, the chance for two observations xm and xn to be exactly equal becomes
zero for m 6= n, if M has been chosen sufficiently large. Then each bin almost certainly
contains either one sample xn or none. The probability of observing x then is
asymptotically (as ∆ approaches zero) given by

P (x|λ) = ∆N
N∏
n=1

(
x−λn

Zλ(xmin, xmax)

)
. (2)

The parameter estimation problem of finding the optimal λ is equivalent to maximizing
P (x|λ) (or equivalently logP (x|λ)) with respect to λ. In this maximization problem ∆
becomes irrelevant and only the choice of xmin and xmax and the data x remains
relevant for the estimate. As a consequence, one obtains an equation

W∑
i=1

fi log zi =
d

dλ
logZλ , (3)

for the ML estimate of the exponent λ over continuous sample spaces. Equation (main
9) and Eq. (3) differ only in Zλ. In Eq. (main 9) the normalization constant of discrete
samples spaces gets used while in Eq. (3) Zλ is the normalization constant for a
continuous sample space. Switching between continuous and discrete sample spaces
therefore is simply a matter of choosing the one or the other normalization constant in
the algorithm.

Whether data should be assumed to be sampled from continuous or discrete sample
spaces is not always totally clear. Many measurements have an intrinsic resolution and
implicitly bin the data. For instance if real numbers sampled in an experiment are given
only with a three digit precision, such as xn = 0.123 and we know that 0.001 = xmin

and xmax = 5 then we better treat the data as discrete data on
Ωd = {0.001, 0.002, · · · , 4.998, 4.999, 5} if we have sufficiently many samples for the
histogram over Ωd not to be flat. A primitive test to see whether one should regard
data as sampled from a continuous sample space or not is to make a histogram over the
unique values of the recorded data. If each distinct value appears only once in the data
(i.e. if the histogram over the unique data-points is flat) then one should treat the
sample-space as continuous.

While for the discrete case we need not estimate xmin and xmax this remains
necessary for the continuous case. The method of cutting the [xmin, xmax] into segments
of length ∆ and then taking ∆ to zero explains why typically tha primitive estimates,
xmin = min{xn|n = 1, · · · , N} and xmax = max{xn|n = 1, · · · , N}, provides fairly good
results. Alternatively, strategies such as suggested in [1] could be used to optimize the
choices for xmin and xmax. However, this procedure can not be directly derived from
Bayesian arguments. Neither will we discuss this approach in this paper nor implement
such an option in r_plfit.

However, Bayesian estimates of xmin and xmax exist. Although we will not discuss
those estimators in detail here we will eventually implement them in r_plfit to replace
the primitive estimates. The idea of constructing such estimators is the following. For
instance, one asks how likely can the maximal value max(x) of the sampled data
x = (x1, · · · , xN ) be found to be larger than some value y. By deriving
P (max(x) > y|λ, [xmin, xmax]) and P (min(x) < y|λ, [xmin, xmax]), as a consequence, it
becomes possible to derive Bayesian estimators for xmin and xmax.
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Alternatively, see also S4 File Appendix D for the code.
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